

Evolutionary System Identification -
Modern Concepts and Practical Applications

DISSERTATION
zur Erlangung des akademischen Grades

DOKTOR DER TECHNISCHEN WISSENSCHAFTEN
IM DOKTORATSSTUDIUM DER TECHNISCHEN WISSENSCHAFTEN

Angefertigt am Institut für formale Modelle und Verifikation

Eingereicht von:

Dipl.-Ing. Stephan M. Winkler

Betreuung:

Priv.-Doz. Dipl.-Ing. Dr. Michael Affenzeller

Beurteilung:

Priv.-Doz. Dipl.-Ing. Dr. Michael Affenzeller

Univ.-Prof. Dipl.-Ing. Dr. Luigi del Re

Linz, April 2008

Johannes Kepler Universität Linz
A-4040 Linz • Altenberger Straße 69 • Internet: http://www.jku.at • DVR 0093696

Acknowledgements

Doing the work reported on in this thesis surely would not have been possible (or

as enjoyable as it was) without the support of a number of people.

First of all, I have to thank my supervisor Dr. Michael Affenzeller for his contin-

uous support over the last few years. It was him who introduced me to evolutionary

optimization strategies, such as genetic algorithms and genetic programming, and

also successfully organized the research project I have been working on over the

last two years; he has always been available for questions, offered useful suggestions

and substantially supported me in designing and testing the evolutionary system

identification framework presented in this thesis.

The work described here would not have been possible in such a convenient way

without being able to use the HeuristicLab framework. I am very grateful to Stefan

Wagner who is the project manager and key developer of the HeuristicLab, not only

for his effort on our software framework, but also for repeated design discussions

and valuable hints on various topics. I would also like to thank all members of

the Heuristic and Evolutionary Algorithms Laboratory (HEAL) for a very enjoyable

way of cooperation in our research on evolutionary computation.

Furthermore, I would like to express my gratitude to Prof. Dr. Luigi del Re

for giving me the opportunity to work at the Institute for Design and Control at

JKU Linz, and also all colleagues at the institute. Special thanks go to Prof. del

Re for his numerous advices and hints regarding heuristic system identification seen

from a different point of view, and for being the second supervisor of this thesis.

I am thankful to Prof. Dr. Witold Jacak, the dean of the School of Informatics,

Communications and Media at Hagenberg, Austria for making it possible for me to

work at the Research Center Hagenberg.

Finally, I have to thank my parents, my family, and all of my friends and col-

leagues who have encouraged me during my work on this thesis – and of course also

Veronika for proofreading this thesis and supporting me in easy as well as in hard

times.

Essentially, this thesis reflects on research work that has been supported by the

Austrian Science Foundation (FWF) in project L284-N04, “GP-Based Techniques

for the Design of Virtual Sensors”. Parts of the work described here have been

published in the articles listed in the publications section of this thesis; therefore I

would like to thank the co-authors for helpful suggestions on certain sections and

aspects, which also improved the presentation of the respective results in this thesis.

Abstract

Evolutionary computation is a subfield of computational intelligence that uses con-

cepts inspired by natural evolution: Solutions to a given problem are represented by

individuals of a population of solution candidates, and these individuals evolve iter-

atively by repeated selection of parents for producing new individuals. One of the

most famous evolutionary techniques is the genetic algorithm, a global optimization

technique using aspects inspired by evolutionary biology such as selection, recom-

bination, mutation and inheritance. Genetic programming (GP) is an extension to

the genetic algorithm that is able to automatically search for computer programs

that solve given problems.

In principle, system identification denotes the generation of mathematical models

for systems based not on a priori knowledge, but rather on measured data; the

result of a system identification algorithm consists in a mathematical description

of the behavior of the analyzed system. In this thesis we concentrate on system

identification techniques based on genetic programming: Mathematical expressions

are produced by an evolutionary process that uses the given measurement data.

The first part of this thesis summarizes the theoretical concepts used, starting

with a summary of basic principles of genetic algorithms, genetic programming and

data based modeling consisting of structure identification and parameter optimiza-

tion. The GP based structure identification method implemented as a set of plug-ins

for the HeuristicLab framework is described in detail, as well as a series of concepts

that can be used for monitoring population dynamics during the execution of the

GP process; we concentrate on genetic diversity and aspects of genetic propagation.

The application of further developed selection principles and additional optimization

stages is also explained as well as on-line and sliding window GP variants.

The second part of this thesis summarizes the results of empirical system iden-

tification test series that were executed using the GP concepts described in the

first part. The data sets used here include dynamic measurement data of techni-

cal, mechatronical systems as well as classification benchmark problems taken from

the UCI machine learning repository. The results of these test series do not only

demonstrate the ability of this method to produce models of high quality for different

kinds of machine learning problems, but also give insights into population dynamic

processes that occur during the execution of a genetic programming process.

The present thesis is completed by a conclusion summarizing the results pre-

sented, a bibliography and the author’s CV.

Kurzfassung

Evolutionäre Algorithmen sind im Allgemeinen Algorithmen, deren Verhalten durch

Vorgänge der natürlichen Evolution inspiriert ist: Lösungen für ein gegebenes Prob-

lem werden durch Individuen in Populationen von Lösungskandidaten repräsentiert,

und im Laufe eines iterativen, evolutionären Prozesses entwickeln sich diese Lösungs-

kandidaten weiter durch die wiederholte Produktion von neuen Lösungskandidaten

basierend auf der genetischen Information von zuvor selektierten Elternindividuen.

Einer der bekanntesten Vertreter dieser Klasse von Algorithmen ist der genetische

Algorithmus, eine globale Optimierungsstrategie welche Aspekte der natürlichen

Evolution (Selektion, Rekombination, Mutation und Vererbung) benützt. Genetis-

che Programmierung (GP) ist eine Erweiterung des genetischen Algorithmus welche

in der Lage ist, automatisiert Computerprogramme zu generieren, um ein gegebenes

Problem zu lösen.

Unter Systemidentifikation versteht man allgemein die datenbasierte Gener-

ierung von mathematischen Modellen, um das Verhalten von System zu beschreiben.

Die Grundlage der Systemidentifikation besteht dabei rein aus den gegebenen Meß-

daten; das Resultat dieser Modellgenerierung ist ein mathematischer Ausdruck,

welcher das Verhalten des zu untersuchenden Systems repräsentieren soll. Das

Hauptaugenmerk dieser Arbeit liegt auf Systemidentifikation basierend auf genetis-

cher Programmierung: Die Generierung eines mathematischen Ausdrucks geschieht

durch einen evolutionären Prozeß, welcher die gegebenen Meßdaten als Grundlage

verwendet.

Der erste Teil dieser Arbeit befaßt sich hauptsächlich mit den theoretischen

Konzepten welche in diesem Kontext relevant sind. Die Grundlagen genetischer Al-

gorithmen sowie genetischer Programmierung werden ebenso erläutert wie allgemein

datenbasierte Modellierung bestehend aus Strukturidentifikation und Parameterop-

timierung. Darauf folgt eine detaillierte Erklärung, wie GP-basierte Strukturidenti-

fikation als eine Reihe von Plugins für das HeuristicLab Framework implementiert

wurde. Eine Reihe von Konzepten zur Erfassung und Beschreibung von Popula-

tionsdynamik in GP-Prozessen (insbesondere genetische Diversität und Weitergabe

von Erbgut) wird erläutert, ebenso wie erweiterte Selektions-Konzepte, zusätzliche

Optimierungsstufen, on-line und sliding-window GP-Varianten.

Der zweite Teil der vorliegenden Arbeit faßt die Ergebnisse empirischer Studien

zu den im ersten Teil erläuterten GP-Konzepten zusammen. Diese Tests wurden

dabei unter Verwendung unterschiedlicher Datensätze ausgeführt: Einerseits wur-

den Meßdaten von technischen, mechatronischen Systemen verwendet, andererseits

wurden Benchmark-Datensätze aus dem Bereich des maschinellen Lernens verwen-

det, welche dem UCI machine learning repository entnommen wurden. Die Re-

sultate dieser Testserien demonstrieren nicht nur, daß bzw. wie GP geeignet ist,

für verschiedenste Arten von Systemen Modelle zu generieren, sondern bieten auch

Einblicke in populationsdynamische Prozesse, welche während der Ausführung von

GP-Prozessen auftreten.

Den Abschluß der vorliegenden Arbeit bilden eine Zusammenfassung, eine Bib-

liographie der referenzierten Arbeiten sowie eine kurze Biographie des Verfassers.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Dissertation selbständig und

ohne fremde Hilfe verfaßt, andere als die angegebenen Quellen und Hilfsmittel nicht

benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, April 2008 Dipl.-Ing. Stephan M. Winkler

i

Contents

1 Introduction 1

1.1 Thesis Outline . 1

1.2 Research Project Background . 4

I Theoretical Aspects 5

2 Evolutionary Computation 7

2.1 Evolutionary Computation . 7

2.2 Genetic Algorithms . 9

2.2.1 Darwin’s Evolution Theory . 9

2.2.2 Basics of Genetic Algorithms 9

2.2.3 Problem Representation . 14

2.3 Evolution Strategies . 15

3 Genetic Programming 21

3.1 Main Ideas and Historical Background 22

3.2 Chromosome Representation . 24

3.2.1 Hierarchical Labeled Structure Trees 25

3.2.2 Modular Genetic Programming 32

3.2.3 Other Representations . 33

3.3 Basic Steps of the GP Process . 35

3.3.1 Preparatory Steps . 35

3.3.2 Initialization . 36

3.3.3 The Genetic Process: Breeding Populations of Programs . . . 37

3.3.4 Process Termination and Results Designation 39

3.4 Typical Applications of Genetic Programming 41

3.4.1 Automated Learning of Multiplexer Functions 41

3.4.2 The Artificial Ant . 42

3.4.3 Symbolic Regression . 44

3.4.4 Other GP Applications . 48

ii CONTENTS

3.5 GP Schema Theories . 49

3.5.1 Program Component GP Schemata 50

3.5.2 Rooted Tree GP Schema Theories 52

3.5.3 Exact GP Schema Theory . 54

3.5.4 Summary . 59

3.6 Current GP Challenges and Research Areas 59

3.7 Conclusion . 63

3.8 Bibliographic Remarks . 63

4 Enhanced Selection Concepts 65

4.1 Gender Specific Parents Selection . 65

4.2 Offspring Selection . 66

5 Parallel Genetic Algorithms 69

5.1 Parallelization of Genetic Algorithms 69

5.1.1 Global Parallelization . 70

5.1.2 Coarse-Grained Parallel GAs 70

5.1.3 Fine-Grained Parallel GAs . 71

5.1.4 Hybrid Parallel GAs . 71

5.1.5 Migration . 72

5.1.6 The SASEGASA . 72

5.2 Parallel Genetic Programming . 73

6 Data Based Modeling 75

6.1 Basics . 75

6.2 An Example . 78

6.3 The Basic Steps in System Identification 85

6.4 Data Based Modeling Using Genetic Programming 87

6.5 Appendix: Fitting Polynomials to Data 89

7 GP Based System Identification 91

7.1 Introduction . 91

7.2 Problem Representation . 93

7.2.1 The Data Base and Data Partitions 93

7.2.2 Scaling and De-Scaling Basic Problem Data 94

7.2.3 Definition of Minimum and Maximum Time Offsets 95

7.2.4 Metadata . 96

7.3 The Functions and Terminals Basis 97

7.3.1 Motivation, Introduction . 97

7.3.2 Definition of the Evaluation of Terminals 98

7.3.3 Definition of the Evaluation of Functions 98

CONTENTS iii

7.3.4 String Representations of Terminals and Functions 100

7.3.5 Parameterization of Terminals and Functions 101

7.4 Solution Representation . 103

7.4.1 Representing Formulas by Structure Trees 103

7.4.2 Operators for Initializing and Manipulating Model Structures 105

7.5 Solution Evaluation . 107

7.5.1 Standard Solution Evaluation Operators 107

7.5.2 Combined Solution Evaluation 109

7.5.3 Adjusted Solution Evaluation 110

7.5.4 Runtime Consumption Considerations 111

7.5.5 Early Stopping of Model Evaluation 112

8 Structure Identification Applications 115

8.1 Regression and Time Series Analysis 115

8.1.1 Regression . 115

8.1.2 Time Series Analysis . 116

8.1.3 Time Series Specific Evaluation 117

8.2 Classification . 118

8.2.1 Introduction . 118

8.2.2 Real-Valued Classification Using Genetic Programming 119

8.2.3 Analyzing Classifiers . 120

8.2.4 Classification Specific Evaluation in GP 127

9 Incorporation of A Priori Knowledge 133

9.1 Introduction: A Priori Knowledge and GP 133

9.2 Introduction of Partial Models into GP 134

10 Local Adaptation in GP 139

10.1 Parameter Optimization . 139

10.2 Pruning . 142

10.2.1 Basics and Method Parameters 142

10.2.2 Pruning a Structure Tree . 145

11 Similarity Measures for GP Solutions 151

11.1 Evaluation Based Similarity Measures 152

11.2 Structural Similarity Measures . 153

12 Population Dynamics 161

12.1 Parents Analysis . 162

12.2 Variables Diversity . 163

12.2.1 Frequency Based Relevance of Variables 163

iv CONTENTS

12.2.2 Impact Based Relevance of Variables 164

12.2.3 Weighting of Variables Relevance Estimations 167

12.2.4 Calculating the Relevance of Variables in Populations 167

12.3 Functions and Terminals Diversity . 167

12.3.1 Frequency Based Relevance of Functions and Terminals 168

12.3.2 Impact Based Relevance of Functions and Terminals 168

12.3.3 Calculating the Relevance of Functions and Terminals 170

12.4 Genetic Diversity . 171

12.4.1 In Single-Population GP . 171

12.4.2 In Multi-Population GP . 172

13 GP in Volatile Environments 173

13.1 On-Line GP Based System Identification 173

13.2 Sliding Window Behavior in GP . 176

13.2.1 Basics . 176

13.2.2 Selection Pressure as Window Moving Trigger 177

II Empirical Studies 179

14 Time Series Analysis 181

14.1 Virtual Sensors for Diesel Engine Emissions 181

14.1.1 Designing Virtual Sensors for Nitric Oxides (NOx) 182

14.1.2 Designing Virtual Sensors for Particulate Emissions (Soot) . . 187

14.2 NOx Data Sets Used for Further Tests 188

14.2.1 NOx Data Set II . 190

14.2.2 NOx Data Set III . 191

14.3 Pressure Differences in a Tractor Gearbox 196

14.3.1 The Gearbox Data Set . 196

14.3.2 Modeling Methods Used for Analyzing the Gearbox Data Set . 196

14.3.3 Test Results . 199

14.3.4 Conclusion . 205

15 Classification 207

15.1 Medical Data Analysis . 207

15.1.1 Benchmark Data Sets . 207

15.1.2 Solution Representation Using Hybrid Tree Structures 209

15.1.3 Evaluation of Classification Models 209

15.1.4 Finding Appropriate Thresholds: Dynamic Range Selection . . 211

15.1.5 First Results and Optimal Parameter Settings 212

15.1.6 Graphical Classifier Analysis 216

CONTENTS v

15.1.7 Classification Methods Applied in Detailed Test Series 219

15.1.8 Detailed Test Series Results 223

15.1.9 Conclusion . 230

15.2 Quality Pre-Assessment in Steel Industry 232

15.2.1 Introduction . 232

15.2.2 Solution Structure . 233

15.2.3 Empirical Results . 237

15.2.4 Discussion . 240

16 GP in Volatile Environments 243

16.1 Simulated On-Line Design of Virtual Sensors 243

16.2 Selection Pressure Based Sliding Window GP 246

16.2.1 Parameter Settings and Test Results 247

16.2.2 Discussion . 249

17 Population Dynamics 251

17.1 Genetic Propagation . 251

17.1.1 Test Setup . 251

17.1.2 Test Results . 252

17.1.3 Summary . 255

17.1.4 Additional Tests Using Random Parents Selection 255

17.2 Variables Diversity . 258

17.2.1 First Exemplary Results . 258

17.2.2 Detailed Analysis, Comparing Standard GP to Extended GP . 263

17.3 Single Population Diversity Analysis 270

17.3.1 GP Test Strategies . 270

17.3.2 Test Results . 271

17.3.3 Conclusion . 278

17.4 Multi Population Diversity Analysis 279

17.4.1 GP Test Strategies . 279

17.4.2 Test Results . 280

17.4.3 Discussion . 284

17.5 Comparison of Population Diversity Measures 285

17.5.1 Test Setup . 285

17.5.2 Test Results . 286

17.5.3 Conclusion . 296

17.6 Code Bloat, Pruning, and Population Diversity 297

17.6.1 Introduction . 297

17.6.2 Test Strategies . 298

17.6.3 Test Results . 300

vi CONTENTS

17.6.4 Conclusion . 309

18 Incorporation of A Priori Knowledge 313

18.1 Physical Knowledge about the Formation of NOx 313

18.2 Incorporation of Knowledge about NOx 315

18.2.1 Introduction of a New Variable for HFM∗ 316

18.2.2 Seeding Stub Models for NOx 316

18.2.3 Defining Terminals and a Basic Function for NOx 316

18.3 Test Strategies . 317

18.4 Test Results . 319

18.4.1 Test Series I: Using no Additional Information 319

18.4.2 Test Series II: Using an Additional Variable 319

18.4.3 Test Series III and IV: Inducing Model Structures into GP . . 320

18.4.4 Test Series V: Using an Enhanced Functional Basis 323

18.5 Conclusion . 326

19 Results Stability 327

19.1 Introduction . 327

19.2 Test Setup . 328

19.3 Test Results . 329

19.4 Conclusion . 333

III Conclusion 335

20 Conclusion and Future Perspectives 337

IV Indices 341

Bibliography 343

List of Tables 375

List of Figures 381

List of Algorithms 387

Curriculum Vitae 389

List of Publications 393

1

Chapter 1

Introduction

1.1 Thesis Outline

Except for this short introduction and conclusion and bibliography sections at the

end of this thesis, the present work is divided into two major parts: Part I sum-

marizes the most important theoretical concepts that are relevant in the context

of evolutionary system identification, and Part II describes and summarizes several

empirical test series that have been designed and executed in order to demonstrate

not only how, but also how well and why the theoretical concepts described in Part I

perform on various kinds of data sets.

Theoretical Aspects

Part I starts with an introduction into evolutionary computation in general in Chap-

ter 2, followed by a detailed summary of theory and practical aspects of genetic

programming (GP) in Chapter 3. As we see in this chapter, GP can be seen not

only as a powerful extension to the genetic algorithm, but also as the art of evolving

computer programs and as a generic concept for the automated programming of

computers. The so-called GP cycle [LP02], shown in the left part of Figure 1.1, rep-

resents GP’s iterative concept of repeatedly creating and testing programs in order

to obtain programs that are able to solve the given problem situation.

2 CHAPTER 1. INTRODUCTION

Chapter 4 describes enhanced selection concepts (for parents as well as offspring

selection) which can be used for improving GP’s performance in system identifi-

cation; parallel concepts for genetic algorithms, which can also be used in genetic

programming, are summarized in Chapter 5.

A detailed introduction to data based modeling and structure identification is

given in Chapter 6: Mathematical expressions modeling the behavior of systems are

generated using measurement data; what we want to get in the end is a formula

that fits the given data as well as possible (as exemplarily shown in the right part

of Figure 1.1). The GP based structure identification approach, that has been

implemented using the HeuristicLab framework, is then described in Chapter 7

followed by discussions on regression, time series and classification specific aspects

in system identification in Sections 8.1 and 8.2, respectively. Chapter 9 describes

various approaches for the incorporation of a priori knowledge into the GP-process,

and local model adaptation techniques (pruning and parameter optimization) for

GP are summarized in Chapter 10.

The Chapters 11 and 12 are dedicated to GP model similarity measures and

population dynamics: The similarity of formulas (in a GP population) is measured

with respect to their structure or subtree evaluations, and based on these similar-

ities we can measure the diversity in GP populations. Additionally, concepts for

measuring characteristics regarding genetic propagation and variables diversity are

also described. Part I on theoretical aspects in GP based system identification is

concluded by an overview of approaches for on-line and sliding window GP given in

Chapter 13.

 -15 -10 -5 0 5
-2000

-1500

-1000

-500

0

500

1000
Order 3, MSE (training): 14435.8497

Population
of Programs

-

x +

x x
*

x *

x x

Select Parents
in Proportion to
their Fitness Values

-

x +

x *

x x

Generate new
Programs / Formulae

Test (Evaluate)
Programs

Figure 1.1: Left: The genetic programming cycle [LP02]; right: illustration of a data

based modeling example.

1.1. THESIS OUTLINE 3

Empirical Studies

As empirical studies with different problem classes and instances are widely consid-

ered one of the most effective ways to analyze the potential of heuristic optimization

techniques, Part II summarizes several test series that have been executed and ana-

lyzed in order to demonstrate how and how well evolutionary system identification

works using the concepts described in the first part of this thesis.

The first two chapters of Part II demonstrate the ability of GP to generate ap-

propriate models for time series and classification problems. Chapter 14 summarizes

the results obtained for data sets representing measurement data of mechatronical

systems; classification models generated using GP for benchmark data sets are re-

ported on in Chapter 15. Figure 1.2 exemplarily illustrates the evaluation of time

series and classification models.

Test results in the context of GP in volatile environments, i.e. on-line and sliding

window genetic programming, are summarized in Chapter 16. In Chapter 17 the

reader can find the analysis of exemplary GP test series regarding genetic propa-

gation and the impact of selection strategies on genetic inheritance distributions,

variables diversity, population diversity in single population as well as multi popu-

lation GP, and code bloat and strategies how to combat it.

We have also tested strategies for incorporating physical knowledge about the

formation of NOx emissions of a diesel engine; test results regarding the generation

of virtual sensors for NOx using a priori knowledge are summarized in Chapter 18.

Finally, Part II on the results of practical applications of enhanced GP techniques to

system identification is completed by an analysis of the similarity of models produced

by GP for different data based modeling tasks in Chapter 19.

-150

-100

-50

0

50

100

150

200

250

300

350

1 20001

TESTTRAINING

TRAINING TEST

Figure 1.2: Left: Time series model evaluation; right: classification model evaluation

including optimal class thresholds.

4 CHAPTER 1. INTRODUCTION

1.2 Research Project Background

This thesis mainly reflects on research work done within the Translational Research

Project L284 “GP-Based Techniques for the Design of Virtual Sensors” sponsored

by the Austrian Science Fund (FWF). The following institutions are involved in the

execution of this project:

• Department of Software Engineering as well as Research Center Hagenberg,

Upper Austrian University of Applied Sciences, Campus Hagenberg,

• Institute for Design and Control of Mechatronical Systems, Johannes Kepler

University Linz, and

• Linz Center of Mechatronics (LCM).

The author of this thesis as well as the proposer of the research project men-

tioned above are members of the Heuristic and Evolutionary Algorithms Laboratory

(HEAL) research group, founded by Dr. Michael Affenzeller in 2002 as the Genetic

Algorithms Research Group at the former Institute of Systems Theory and Simu-

lation, JKU Linz. The HeuristicLab, a paradigm-independent and extensible envi-

ronment for heuristic optimization that has been implemented by members of the

HEAL research group (mainly by Stefan Wagner), has been used as basic framework

for the research work described in this thesis.

Information about the HEAL research group and also the HeuristicLab software

framework can be found at the HeuristicLab website1.

1http://www.heuristiclab.com/

5

Part I

Theoretical Aspects

7

Chapter 2

Evolutionary Computation

2.1 Evolutionary Computation

Basically, there are two main approaches in computer science that copy evolutionary

mechanisms: Genetic algorithms (GA) and evolution strategies (ES). Genetic algo-

rithms go back to Holland [Hol75], an American computer scientist and psychologist

who developed his theory not only under the aspect of solving optimization problems

but also to observe biological processes. Essentially, this is the reason why genetic

algorithms are much closer to the biological model than evolution strategies, for

which the theoretical foundations were given by Rechenberg and Schwefel ([Rec73],

[Sch94]).

In general, evolutionary computation (EC) attempts use populations in which

each individual is different from the other ones with respect to their genetic infor-

mation; the genotype includes parameters which contain all necessary information

about the fitness of a certain individual. Before the intrinsic evolutionary process

is started, the initial population is initialized (in most cases arbitrarily). Evolution,

i.e. replacement of the old generation by a new generation, proceeds until a certain

termination criterion is fulfilled.

The major differences between evolution strategies and genetic algorithms lie

in the representation of the genotype and the calculation of the fitness of solution

candidates as well as in the operators used (mutation, recombination, selection). In

contrast to GAs, where the main role of the mutation operator is simply to avoid

stagnation, mutation is the primary operator of Evolution Strategies. As a further

difference between the two major representatives of evolutionary computation, se-

8 CHAPTER 2. EVOLUTIONARY COMPUTATION

lection in case of evolution strategies is deterministic which is not the case in the

context of genetic algorithms or in nature.

Genetic programming (GP), an extension to genetic algorithms, is a domain-

independent, biologically inspired method that is able to create computer programs

from a high-level problem statement. In fact, virtually all problems in artificial

intelligence, machine learning, adaptive systems, and automated learning can be

recast as a search for a computer program; genetic programming provides a way

to search for a computer program in the space of computer programs. Similar to

GAs, GP works by imitating aspects of natural evolution, but whereas GAs are

intended to find an array of characters or integers representing the solution of a

given problem, the goal of a GP process is to produce a computer program (or,

as in our case, a formula) solving the optimization problem at hand. As in every

evolutionary process, repeatedly new individuals (in GP’s case, new programs or

formulae) are created, tested, and fitter ones of the population succeed in creating

children of their own whereas unfit ones are removed from the population.

Figure 2.1 shows a taxonomy of optimization techniques1; GAs and their subclass

GP belong to the class of evolutionary algorithms and, more general, nature inspired

algorithms and stochastic optimization techniques.

OPTIMIZATION
TECHNIQUES

STOCHASTIC ENUMERATIVES

INDIRECT

CALCULUS
BASED

DIRECT

Fibonacci Newton Greedy

GUIDED NON GUIDED GUIDED NON GUIDED

Las Vegas

EVOLUTIONARY ALGORITHMS

Dynamic
Programming

Branch &
Bound

Backtracking

Evolution
Strategies

Genetic
Algorithms

Tabu
Search

Genetic Programming

Simulated
Annealing

Neural
Networks

NATURE
INSPIRED

Hopfield Kohonen
Maps

Back-
propagation

Figure 2.1: Taxonomy of optimization techniques.

1This taxonomy is in fact a slightly simplified version of the overview chart given in [AW04].

2.2. GENETIC ALGORITHMS 9

2.2 Genetic Algorithms

2.2.1 Darwin’s Evolution Theory

Charles Robert Darwin, born in 1809 in Shrewsbury, England, was a revolutionary

geologist, botanist, naturalist and zoologist who laid the foundation for both the

modern theory of evolution and of natural selection as a mechanism. From 1831 to

1836, after graduating from Cambridge with a degree in theology, Darwin joined a

British science expedition aboard the H.M.S. Beagle, serving as naturalist. During

this worldwide sea voyage, especially on the Galapagos Islands, he studied animals

and plants everywhere he went, collected specimen for further studies and so got

the inspiration and data for his theories.

Back in England he went on studying the notes and the specimen he had collected

during his voyage around the world. Out of his studies he developed several theories;

in 1859, he published them in the book “On the Origin of Species by Means of

Natural Selection, or the Preservation of Favoured Races in the Struggle for Life”

([Dar59], revised edition: [Dar98]), which surely remains his most famous work.

Darwin continued to write and publish his works on biology, botany, geology and

zoology until he died on April 19, 1882; he lies buried in Westminster Abbey.

Some of the most important aspects of Darwin’s theories are that evolution surely

occurs, that evolutionary changes are gradual, requiring thousands to millions of

years, and that the primary mechanism for evolution is a process called natural

selection (which he explained especially in Chapter 4 of his book on the origin of

species, “Natural Selection; Or the Survival of the Fittest”). Furthermore, Darwin

stated that in sexually reproducing species generally no two individuals are identical,

and that this variation is heritable. From this it follows that in stable populations,

where each individual must struggle to survive, those are more likely to survive that

show the “best” characteristics; those advantageous characteristics will be passed

on to their offspring and inherited by following generations. As evolution goes on,

these desirable characteristics will become dominant among the population: This is

what Charles Darwin called natural selection.

2.2.2 Basics of Genetic Algorithms

The principles of genetic algorithms (GAs) were first presented by John Holland,

an American computer scientist and psychologist, in 1975 [Hol75]. Basically, a GA

tries to imitate the biological evolution of a species in order to achieve an (almost)

10 CHAPTER 2. EVOLUTIONARY COMPUTATION

optimal state, that is to produce (almost) optimal solutions for a given problem ap-

plying the principles of evolutionary biology to computer science. Detailed overviews

of GAs and their implementation in various fields were for example given by Gold-

berg [Gol89] and Michalewicz [Mic92].

A GA works with a set of candidate solutions (also known as individuals) called

population. Each solution candidate is characterized by its list of parameters, in

analogy to the terminology of biology also called chromosomes or genome. Orig-

inally, chromosomes are represented as simple strings of data and instructions; in

general, a chromosome is a n-tuple (c1, . . . , cn) where each position represents one

gene storing information for a certain characteristic feature of the represented ob-

ject. By now a wide variety of other data structures for storing chromosomes has

also been used.

When a GA is started, the initial gene pool has to be created (typically at

random, or the programmer may “seed” the population intentionally to form an

initial pool of possible solutions). This is also called the first generation pool.

During the execution of the algorithm each individual has to be evaluated, which

means that a value indicating the “fitness” or “goodness” is returned by a fitness

function. This fitness value should quantify the adaptedness of a chromosome in

correlation with the algorithm’s goal.

A bit more exactly, the fitness function f is a function f : S → R
+ with S being

the set of all possible solutions to the problem at hand, also called the search space.

After starting the algorithm, new individuals are created in each generation by

• combining the genetic make-up of two solution candidates (this procedure is

called “crossover” or “recombination”), producing a new “child” from two

“parents”;

• and mutating some individuals, which means that a randomly chosen gene

is changed (normally 3-5% of the algorithm’s population is mutated in each

generation).

In general, crossover is responsible for producing new individuals, whereas mutation

is applied to only a small part of the population. Still, the role of mutation shall

not be underestimated because it is very important for avoiding so-called premature

convergence; without mutation, a genetic algorithm will quite surely get stuck in a

local minimum.

2.2. GENETIC ALGORITHMS 11

Examples of crossover and mutation of solution candidates for a binary encoded

problem are shown in Figure 2.2.

1 0 0 1 1 0

0 1 0 1 0 1

1 0 0 1 0 1

Crossover-
Point

Parent 1

Parent 2
Child

1 0 0 1 1 0

1 1 0 1 1 0

1 0 0 1 0 0

Mutant 1

Mutant 2

Solution

(a) Crossover of binary encoded solutions of a GA (b) Mutations of a binary encoded solution of a GA

Figure 2.2: Exemplary genetic operations in a GA.

Beside crossover and mutation, the third decisive aspect of genetic algorithms is

selection, a mechanism in analogy to biology also called “survival of the fittest”. As

already mentioned, each individual pi is associated with a fitness value fi. Typically,

the individual’s probability to inherit its genetic information to the next generation

is proportional to its fitness; the better a solution candidate’s fitness value, the higher

the probability, that its genetic information will be included in the next generation’s

population of the algorithm.

More exactly, there are actually various ways of accomplishing this selection.

Those, that are relevant in the context of this thesis (i.e. those, that have been

applied during our empirical test series and shall be mentioned in the second part

of this thesis), are:

• Proportional selection:

The classical genetic algorithm utilizes this selection method which has been

proposed in the context of Holland’s approach. Here the expected number of

descendants for an individual i is given by pi = fi/f̄ with f : S → R
+ denot-

ing the fitness function and f̄ representing the average fitness of all individuals

([Hol75], [Aff03]). Therefore, each individual in the population is represented

by a space proportional to its fitness. One can imagine this somehow as a

roulette wheel, on which every individual gets assigned some space; when the

wheel is rotated, that individual, in whose space the ball comes to lie in the

12 CHAPTER 2. EVOLUTIONARY COMPUTATION

end, is selected.

By repeatedly spinning the wheel, individuals are chosen using random sam-

pling with replacement.

• Linear-rank selection:

In the context of linear-rank selection the individuals in the population are

ordered according to their fitness values and copies are assigned in such a way

that the best individual receives a predetermined multiple of the number of

copies the worst one receives [GB89]. On the one hand, rank selection reduces

the dominating effects of very good solution candidates (“super individuals”),

but on the other hand also warps the difference between individuals with close

fitness values and so increases the selective pressure in stagnative populations.

Even although linear-rank selection ignores the information about the relative

fitness of different individuals and even violates some of Holland’s fundamental

ideas2, it has been used with some success in various situations.

• Tournament selection:

Actually, there is a number of variants of this selection model. The most

common one is the so-called k-tournament: Every time an individual has to

be selected, k individuals are drawn from the population, and the fittest one

of those is presented as the selected individual.

• Random selection:

In random selection individuals are selected from the population completely

randomly without regard to their fitness.

This procedure of crossover, mutation and selection is repeated many times (over

many generations) until some abort criterion is fulfilled to reach a generation in

which all members of the population have good quality values in the sense of the

chosen fitness function. This approach is summarized in Algorithm 1 (where a

maximum number of generations is used as termination criterion) and graphically

shown in Figure 2.3.

One of the main advantages of the genetic algorithm concept is that it combines

both directed and undirected search methods: Whereas selection normally picks

individuals with respect to their fitness values, crossover and mutation are performed

randomly without considering the quality of the involved solution candidates.

2One of the basics of Holland’s theory of genetic algorithms is his so-called schema theorem; it
was described in [Hol75] and is for example summarized and explained in [Aff03]. In the context
of this schema theorem, the proportional selection model has been proposed, whereas linear-rank
selection violates the schema theorem.

2.2. GENETIC ALGORITHMS 13

Encode the
Problem

Create (random)
initial population

Calculate fitness of
all individuals

Criterium for
termination of algorithm

fulfilled?
End

Yes

No

Selection

Crossover

Mutation

Create
new generation

Figure 2.3: The standard genetic algorithm (GA).

Algorithm 1 The classical genetic algorithm (GA).

Initialize total number of generations noOfGenerations ∈ N;

Initialize actual number of generations i = 0;

Initialize size of population |POP | ∈ N;

Initialize mutation rate mutRate ∈ [0, 1];

Initialize elitism rate elitism ∈ [0, |POP |];
Produce an initial population POP0 with size |POP | randomly

while i < noOfGenerations do

Initialize next population POPi+1

while |POPi+1| < (|POP | − elitism) do

Select two individuals from the members of POPi;

Generate new child by crossing the two selected parents;

Mutate child with probability mutRate;

Insert child into POPi+1

end while

Insert elitism best individuals from POPi into POPi+1;

i = i+ 1

end while

14 CHAPTER 2. EVOLUTIONARY COMPUTATION

2.2.3 Problem Representation

As already stated before, the first genetic algorithm presented in literature [Hol75]

used binary vectors for the representation of solution candidates (chromosomes).

Consequently, the first solution manipulation operators (single point crossover, bit

mutation) have been developed for binary representation. Furthermore this very

simple GA, commonly denoted as the canonical genetic algorithm (CGA), represents

the basis for extensive theoretical inspections, resulting in the well known schema

theorem and the resulting building block hypothesis ([Hol75], [Gol89]).

This unique selling point of GAs is to compile so-called building blocks, i.e.

somehow linked parts of the chromosome which become larger as the algorithm

proceeds, advantageously with respect to the given fitness function. In other words,

one could define the claim of a GA to assemble the basic modules of highly fit or

even global optimal solutions (which the algorithm of course doesn’t know at the

beginning), which are all already available in the initial population but widespread

over many individuals, in such a clever way that continuously growing sequences of

somehow linked highly qualified alleles, the so-called building blocks, are formed.

Compared to heuristic optimization techniques based on neighborhood search

like tabu search [Glo86] or simulated annealing [KGV83], for example, the method-

ology of GAs to combine partial solutions (by crossover) is potentially much more

robust with respect to getting stuck in local but not global optimal solutions; this

tendency of neighborhood based searches denotes a major drawback of these heuris-

tics. Still, when applying GAs the user has to draw much more attention on the

problem representation in order to fulfill the claim stated above. In that sense the

problem representation must allow the solution manipulation operators, especially

crossover; this is because crossover is responsible for combining the properties of

two solution candidates which may be located in very different regions of the search

space so that valid new solution candidates are built. For that reason the problem

representation has to be designed in a way that it allows its certain crossover oper-

ators to build valid new children (solution candidates) with a genetic make-up that

consists of the allele set union of its parent alleles.

Furthermore, as a tribute to the general functioning of GAs, the crossover oper-

ators also have to support the potential development of higher-order building blocks

(longer allele sequences). Only if all these solution manipulator properties can be

provided by a certain problem representation, the corresponding GA can be ex-

pected to function as it should, i.e. in the sense of a generalized interpretation of

the building block hypothesis.

2.3. EVOLUTION STRATEGIES 15

2.3 Evolution Strategies

Evolution strategies (ESs), beside GAs the second major representative of evolu-

tionary computation, were developed since the 1960s, primarily by a German re-

search community around Rechenberg and Schwefel at the Technical University of

Berlin, and have been extensively studied in Europe (see for example [Rec73], [Sch75]

or [Sch94]).

As it is an evolutionary algorithm, the optimization process based on ES is

executed by applying operators in a loop, i.e. main operations are applied on the

solution candidates repeatedly until a given termination criterion is met. Similar to

GAs, an ES works with a population of individuals; each individual is characterized

by its parameter vector which is used to calculate the individual’s fitness value.

In every step of the algorithm’s execution (that is, in each generation), the old

population is replaced by a new one. Still, there are differences between GAs and

ESs, especially in the form of their genotypes, the calculation of the fitness values

and the operators (mutation, recombination and selection):

• ESs use real-coding of design parameters, they model the organic evolution at

the level of individual’s phenotypes; the representation used is a fixed-length

real-valued vector. As with the bit- or integer-arrays of genetic algorithms,

each position in the vector corresponds to a feature of the individual.

• Whereas GAs use mutation only for avoiding stagnation, mutation is the main

reproduction operator in evolution strategies: Each component of the parame-

ter vector is mutated individually in each generation. An additive mutation is

carried out, and small mutations are more likely than big ones. The standard

mutation distribution is the Gaussian mutation, for it has a lot of advantages:

The Gaussian distribution N(0, σ) is standardized with average 0 and vari-

ance σ2 (see Figure 2.5). The intensity of the mutation can be adapted by the

algorithm during its execution.

• In addition to mutation, recombination can be used to create a new individual

(a “child”) out of two “parents”, too. In general, recombining two ES solution

candidates means calculating the geometric average of the parents’ parameter

vectors.

• In contrast to nature and GAs, the selection of ESs works in a totally deter-

ministic way: In each generation only the best individuals survive, whereas in

GAs better individuals (normally) just have higher likelihood to be considered

for producing new solution candidates.

16 CHAPTER 2. EVOLUTIONARY COMPUTATION

1.2 0.8 -0.9 1.9 3.5 -3.2

+0.1 -0.2 -0.1 +0.3 +0.0 -0.1

1.3 0.6 -1.0 2.2 3.5 -3.3

Parent

(Random)
Additive
Mutation

Child

1.2 0.8 -0.9 1.9 3.5 -3.2

1.8 0.4 1.1 -0.1 2.3 -3.0

1.5 0.6 0.1 0.9 2.9 -3.1

Parent 1

Parent 2

Child

(a) Mutation of a real-value encoded
solution of an ES

(b) Recombination of real-value encoded
solutions of an ES

Figure 2.4: Exemplary genetic operations in ES.

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 2.5: The Gaussian probability density function for N(0, 1).

Examples for mutation and recombination in the context of ESs are shown in

Figure 2.4.

In each generation of an ES algorithm, λ children are produced by μ parent

individuals (with λ � μ); by selection, the best children are chosen and become

the parents of the next generation. Typically, parent selection in ES is performed

uniformly randomly, with no regard to fitness; survival in ESs simply saves the μ

best individuals, which is only based on the relative ordering of fitness values. This

form of selection is often referred to as ranking selection, since only the rank of

individuals is of importance [SJB+93].

2.3. EVOLUTION STRATEGIES 17

Encode the
problem

Create (random)
initial population

Calculate fitness of
all individuals

Criterium for
termination of algorithm

fulfilled?
End

Yes

No

Selection

Mutation

(Recombination)

Create
new generation

Figure 2.6: The standard evolution strategy (ES) algorithm.

Basically, there are two selection strategies for ESs:

• The (μ, λ)-strategy: μ parents produce λ children; the best μ children are

selected and form the next generation’s parents. This selection approach is

also called the “point-selection”.

• The (μ+ λ)-strategy: If this selection model, also called the “plus-selection”,

is applied, μ parents produce λ offspring; parents and children form a pool of

potential new parents, and the best μ individuals are selected from this pool

to become the next generation’s parents. Using this strategy has the effect

that individuals can survive for indefinitely many generations and that the

algorithm is more likely to run into premature convergence.

The main procedure steps of the execution of ES is summarized in Algorithm 2

(where again a maximum number of generations is used as termination criterion)

and graphically shown in Figure 2.6.

Rechenberg proposed a heuristic for the adaptation of the mutation variance,

the so-called 1/5 success rule3:

3Actually, this success rule was originally proposed for the special case of a (1+1) ES. Similar

18 CHAPTER 2. EVOLUTIONARY COMPUTATION

Algorithm 2 The classical evolution strategy (ES) algorithm.

Initialize total number of generations noOfGenerations ∈ N;

Initialize actual number of generations i = 0;

Initialize selection operator SelOp ∈ {P lus, Point};
Initialize size of population μ ∈ N;

Initialize number of children λ ∈ N, λ ≥ μ;

Produce an initial population POP0 with size μ randomly

while i < noOfGenerations do

Initialize next population POPi+1

if SelOp = Point then

Initialize children pool pool with size λ

else

Initialize children pool pool with size λ+ μ

end if

Initialize number of generated children j = 0

while j ≤ λ do

Select an individual from the members of POPi;

Generate new child by mutating the selected parent;

Insert child into pool;

j = j + 1

end while

if SelOp = P lus then

Insert all individuals from POPi into pool

end if

Insert μ best individuals from pool into POPi+1;

i = i+ 1

end while

The quotient of the number of the successful mutants (those that improve the popu-

lation’s quality) to all mutants should be about 1/5. If this quotient is greater than

1/5, then the mutation variance should be increased; if the quotient is less than 1/5

(which means that less than 20% of the mutations produce better mutants), the

mutation variance should be reduced.

Another possibility of influencing the algorithm with respect to the quotient of suc-

cessful mutants is adapting μ and λ; for example, increasing λ causes higher selection

pressure, whereas decreasing λ or increasing μ reduces it.

rules have also been stated for other ES-variants.

2.3. EVOLUTION STRATEGIES 19

Comparing GAs and ESs, one has to consider the following aspects (as summa-

rized in [Aff01]):

Applied to problems of combinatorial optimization evolution strategies tend to find

local optima quite efficiently. But in the case of multimodal test functions, global

optima can only be detected by evolution strategies if one of the start values is

located in the narrower range of a global optimum. GAs on the other hand are

mainly controlled by the crossover operator and therefore, a significant greater part

of the search space is taken into account. That is why GAs are usually superior to

evolution strategies in finding global optima of multimodal test functions.

Still, ESs show certain advantages in comparison to GAs, too. The selection of

parent individuals, for example, is not as constrained as it is in GAs or GP; it is easy

to average vectors from many individuals to form an offspring, due to the nature of

the real vector representation.

Furthermore, when it comes to designing the encoding of a problem one should

consider that in evolution strategies features are considered to be behavioral rather

than structural. “Consequently, arbitrary non-linear interactions between features

during evaluation are expected which forces a more holistic approach to evolving

solutions” [Ang96].

20 CHAPTER 2. EVOLUTIONARY COMPUTATION

21

Chapter 3

Evolving Programs: Genetic

Programming

In the previous chapter we have summarized and discussed genetic algorithms; it has

been illustrated how this kind of algorithms is able to produce high quality results

for a variety of problem classes.

Still, a GA is by itself not able to handle one of the most challenging tasks in com-

puter science, namely getting a computer to solve problems without programming

it explicitly. As Arthur Samuel stated in 1959 [Sam59], this central task can be

formulated in the following way:

How can computers be made to do what needs to be done,

without being told exactly how to do it?

In this chapter we give a compact description and discussion of an extension of

the genetic algorithm called genetic programming (GP). Similar to GAs, genetic

programming works on populations of solution candidates for a given problem and

is based on Darwinian principles of survival of the fittest (selection), recombination

(crossover), and mutation; it is a domain-independent, biologically inspired method

that is able to create computer programs from a high-level problem statement1.

Research activities in the field of genetic programming started in the 1980s; still,

it took some time until GP was widely received by the computer science community.

1Please note that we here define computer programs as entities that receive inputs, perform
computations, and produce output.

22 CHAPTER 3. GENETIC PROGRAMMING

Since the beginning of the nineteen-nineties GP has been established as a human-

competitive problem solving method. The main factors for its widely accepted

success in the academic world as well as in industries can be summarized in the

following way [Koz92]:

• Virtually all problems in artificial intelligence, machine learning, adaptive sys-

tems, and automated learning can be recast as a search for computer programs,

and

• genetic programming provides a way to successfully conduct the search in the

space of computer programs.

In the following we

• give an overview of the main ideas and foundations of genetic programming in

Sections 3.1 and 3.2,

• summarize basic steps of the GP-based problem solving process (Section 3.3),

• report on typical application scenarios (Section 3.4),

• explain theoretical foundations (GP schema theories, Section 3.5),

• discuss current GP challenges and research areas in Section 3.6,

• summarize this chapter on GP in Section 3.7, and finally

• refer to a range of outstanding literature in the field of theory and praxis of

GP in Section 3.8.

3.1 Main Ideas and Historical Background

As has already been mentioned, one of the central tasks in artificial intelligence is to

make computers do what needs to be done without telling them exactly how to do it.

This does not seem to be unnatural since it demands of computers to mimic the hu-

man reasoning process - humans are able to learn what needs to be done, and how to

do it. In short, interactions of networks of neurons are nowadays believed to be the

basis of human brain information processing; several of the earliest approaches in ar-

tificial intelligence aimed at imitating this structure using connectionist models and

3.1. MAIN IDEAS AND HISTORICAL BACKGROUND 23

artificial neural networks (ANNs, [MP43]). Suitable network training algorithms

enable ANNs to learn and generalize from given training examples; ANNs are in

fact a very successful distributed computation paradigm and are frequently used

in real-world applications where exact algorithmic approaches are too difficult to

implement or even not known at all. Pattern recognition, classification, data based

modeling (regression) are some examples of AI areas in which ANNs have been ap-

plied in numerous ways. Unlike this network-based approach, genetic algorithms

were developed using main principles of natural evolution. As has been explained

in Section 2.2, GAs are population-based optimization algorithms that imitate nat-

ural evolution: Starting with a primordial ooze of thousands of randomly created

solution candidates appropriate to the respective problem, populations of solutions

are progressively evolved over many generations using the Darwinian principles.

Similar to the GA, GP is an evolutionary algorithm inspired by biological evo-

lution to find computer programs that perform a user-defined computational task.

It is therefore a machine learning technique used to optimize a population of com-

puter programs according to a fitness landscape determined by a program’s ability

to perform the given task; it is a domain-independent, biologically inspired method

that is able to create computer programs from a high-level problem statement (with

computer programs being here defined as entities that receive inputs, perform com-

putations, and produce output).

The first research activities in the context of GP have been reported in the

early nineteen-eighties. For example, Smith reported on a learning system based

on GAs [Smi80], and in [For81] Forsyth presented a computer package producing

decision-rules (i.e., small computer programs) in forensic science for the UK police

by induction from a database (where these rules are Boolean expressions represented

by tree structures). In 1985, Cramer presented a representation for the adaptive gen-

eration of simple sequential programs [Cra85]; it is widely accepted that this article

on genetic programming is the first paper to describe the tree-like representation

and operators for manipulating programs by genetic algorithms.

Even though there was noticeable research activity in the field of GP going on by

the middle of the 1980s, still it took some time until GP was widely received by the

computer science community. GP is very intensive from a computational point of

view and so it was mainly used to solve relatively simple problems until the 1990s.

But thanks to the enormous growth in CPU power that has been going on since the

1980s, the field of applications for GP has been extended immensely yielding human

competitive results in areas such as data-based modeling, electronic design, game

playing, sorting, searching and many more; examples (and respective references) are

going to be given in the following sections.

24 CHAPTER 3. GENETIC PROGRAMMING

One of the most important GP publications was “Genetic Programming: On

the Programming of Computers by Means of Natural Selection” [Koz92] by John R.

Koza, professor for computer science and medical informatics at Stanford University

who is known as one of the main proponents of the GP idea. Based on extensive

theoretical background as well as test results in many different problem domains he

demonstrated GP’s ability to serve as an automated invention machine producing

novel and outstanding results for various kinds of problems. By now there have

been three more books on GP by Koza (and his team), but also several other very

important publications (for example by Banzhaf, Langdon, Poli and many others);

a short summary is given in Section 3.8.

Along with these ad-hoc engineering approaches there was an increasing interest

in how and why GP works. Even though GP was applied successfully for solving

problems in various areas, the development of a GP theory was considered rather

difficult even through the 1990s. Since the early 2000s it has finally been possible

to establish a theory of GP showing a rapid development since then. A book that

has to be mentioned in this context is clearly “Foundations of Genetic Program-

ming” [LP02] by Langdon and Poli since it presents exact GP schema analysis.

As we have now summarized the historical background of GP, it is now high time

to describe how it really works and how typical applications are designed - this is

exactly what the reader can find in the following sections.

3.2 Chromosome Representation

As in the context of any genetic algorithm based problem solving process, the repre-

sentation of problem instances and solution candidates is a key issue also in genetic

programming. On the one hand, the representation scheme should enable the algo-

rithm to find suitable solutions for the given problem class, but on the other hand

the algorithm should be able to directly manipulate the coded solution representa-

tion. The use of fixed-length strings (of bits, characters or integers, e.g.) enables

the conventional GA to solve a huge amount of problems and also allows the con-

struction of a solid theoretical foundation, namely the schema theorem. Still, in

the context of GP the most natural representation for a solution is a hierarchical

computer program of variable size [Koz92].

3.2. CHROMOSOME REPRESENTATION 25

3.2.1 Hierarchical Labeled Structure Trees

3.2.1.1 Basics

So, how can hierarchical computer programs be represented? The rep-

resentation that is most common in literature and is used by Koza

([Koz92], [Koz94], [KIAK99], [KKS+03a]), Langdon and Poli ([LP02]), and many

other authors is the point-labeled structure tree. Originally, these structure trees

were for example seen as graphical representations of so-called S-expressions of the

programming language LISP ([McC60], [Que03], [WH87]) which have for example

been used by Koza in [Koz92] and [Koz94]2. We do here not strictly stick to LISP-

syntax for the examples given, but the main paradigms of S-expressions are to be

used in the following.

The following key facts are relevant in the context of structure-tree based genetic

programming:

• All tree nodes are either functions or terminals.

• Terminals are evaluated directly, i.e. their return values can be calculated and

returned immediately.

• All functions have child nodes which are evaluated before using the children’s

calculated return values as inputs for the parents’ evaluation.

• The probably most convenient string representation is the prefix notation,

also called Polish or �Lukasiewicz3 notation: Function nodes are given before

the child nodes’ representations (optionally using parentheses). Evaluation is

executed recursively, depth-first way, starting from the left; operators are thus

placed to the left of their operands.

In case of fixed arities of the functions (i.e., if the numbers of function’s inputs

is fixed and known), no parentheses or brackets are needed.

2In fact, of course any higher programming language is suitable for implementing a GP-
framework and for representing hierarchical computer programs. Koza, for example, switched
to the C programming language as described in [KIAK99], and the HeuristicLab framework and
the GP-implementation, which is realized as plug-ins for it, are programmed in C# using the .NET
framework - but this is all explained in further detail in later chapters.

3Jan �Lukasiewicz (1878–1956), a Polish mathematician, invented the prefix notation which is
also the basis of the recursive stack (“last in, first out”; [Ham58], [Ham62]). In reference to his
nationality the notation is also referred to “Polish” notation.

26 CHAPTER 3. GENETIC PROGRAMMING

In a more formal way this program representation structure schema can be sum-

marized as follows [ES03]:

• Symbolic expressions can be defined using

– a terminal set T , and

– a function set F .

• The following general recursive definition is applied:

– Every t ∈ T is a correct expression,

– f(e1, . . . , en) is a correct expression if f ∈ F , arity(f) = n and e1, . . . , en

are correct expressions, and

– there are no other forms of correct expressions.

• In general, expressions in GP are not typed (closure property: any f ∈ F can

take any g ∈ F as argument). Still, as we see in the discussion of genetic

operators in Section 3.2.1.3, this might be not true in certain cases depending

on the function and terminal sets chosen.

In the following we give exemplary simple programs. We thereby give conven-

tional as well as prefix (not exactly following LISP notation) textual notations:

• (a) IF (Y>X OR Y<4) THEN i:=(i+1), ELSE i:=0.

Prefix notation: IF(OR(>(Y,X),<(Y,4)),:=(i,+(i,1)),:=(i,0)).

• (b) X+5
2Y

. Prefix notation: DIV(ADD(X,5),MULT(2,Y)).

Graphical representations of the programs (given as rooted, point-labeled structure

trees) are given in Figure 3.1.

3.2.1.2 Evaluation

As already mentioned previously, the execution (evaluation) of GP chromosomes

representing hierarchical computer programs as structure trees is done recursively,

depth-first way, and starting from the left. In order to demonstrate this we here

simulate the evaluation of the example programs given in Section 3.2.1.1; graphical

representations are given in Figures 3.2 and 3.3.

3.2. CHROMOSOME REPRESENTATION 27

/

+ *

2 Y X 5

(a) (b) IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

Figure 3.1: Exemplary programs given as rooted, labeled structure trees.

• (a) Internal states before execution: X = 7, Y = 3, i = 2.

Execution:

IF(OR(>(Y,X),<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(>(3,7),<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,<(Y,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,<(3,4)),:=(i,+(i,1)),:=(i,0))

⇒ IF(OR(FALSE,TRUE),:=(i,+(i,1)),:=(i,0))

⇒ IF(TRUE,:=(i,+(i,1)),:=(i,0))

⇒ :=(i,+(i,1))

⇒ :=(i,+(2,1))

⇒ :=(i,3).

Internal states after execution: X = 7, Y = 3, i = 3.

• (b) Internal states before execution: X = 7, Y = 3.

Execution:

DIV(ADD(X,5),MULT(2,Y))

⇒ DIV(ADD(7,5),MULT(2,Y))

⇒ DIV(12,MULT(2,Y))

⇒ DIV(12,MULT(2,3))

⇒ DIV(12,6)

⇒ 2

Return value: 2; internal states after execution: X = 7, Y = 3.

28 CHAPTER 3. GENETIC PROGRAMMING

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

> <

3 7 Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE <

Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE <

3 4

i +

i 1

i 0

IF / ELSE

OR := :=

FALSE TRUE i +

i 1

i 0

IF / ELSE

:= := TRUE

i +

i 1

i 0

:=

i +

i 1

:=

i +

2 1

:=

i 3

(1) (2)

(3) (4)

(5) (6)

(7) (8) (9)

Figure 3.2: Exemplary evaluation of program (a).

3.2.1.3 Genetic Operations: Crossover and Mutation

As genetic programming is an extension to the genetic algorithm, GP also uses two

main operators for producing new solution candidates in the search space, namely

crossover and mutation.

As we already know from Section 2.2, crossover, the most important reproduction

operator, takes two parent individuals and produces new offspring by swapping parts

3.2. CHROMOSOME REPRESENTATION 29

/

+ *

2 Y X 5

/

+ *

2 Y 7 5

/

12 *

2 Y 2

/

12 *

2 3

/ (1) (2) (3) (4) (5)

(6)

12 6

Figure 3.3: Exemplary evaluation of program (b).

of the parents. Here we immediately see one of the major advantages of hierarchical

tree representations of computer programs: Single-point crossover can be simply

performed by replacing a sub-tree of (a copy of) one of the parents by a sub-tree of

the other parent; these sub-trees are chosen at random. There are several different

strategies for selecting these sub-trees as it might be reasonable to choose either

rather small, rather big, or completely randomly chosen parts.

Mutation can be seen as an arbitrary modification introduced to prevent prema-

ture convergence by randomly sampling new points in the search space. In the case

of genetic programming, mutation is applied by modifying a randomly chosen node

of the respective structure tree:

• A sub-tree could be deleted or replaced by a randomly re-initialized sub-tree.

• A function node could for example change its function type or turn into a

terminal node.

Numerous other mutation variants are possible, many of them depending on the

problem and chromosome representation chosen. In Chapter 7, for example, we

describe mutation variants applicable for GP based structure identification (related

to symbolic regression, see Section 3.4.3).

Figure 3.4 illustrates examples for sexual reproduction using the exemplary pro-

grams (a) and (b) as parents, labeled as parent1 and parent2, respectively. It thereby

becomes obvious that in the context of GP there can be the chance of creating invalid

chromosomes: The second offspring (child2) seems to be incorrect since it includes

the comparison of a Boolean value (Y>X OR Y<4) and a number (2*Y). Thus, also

in GP there are certain constraints that affect the crossover of solution candidates;

these constraints have to be considered when it comes to designing and implementing

a GP framework.

Of course, it again depends on the chosen implementation if the evaluation of

this syntactically dubious program can be executed or not. In case of real-valued

30 CHAPTER 3. GENETIC PROGRAMMING

representation of Boolean values (TRUE represented by 1.0, FALSE represented by 0.0,

e.g.) this structure tree represents a valid program that can be calculated without

any further problems.

Figure 3.5 illustrates exemplary results of applying mutation to program (a). In

the first case, a Boolean function node (<) is turned into another type of Boolean

function node (>) yielding mutant1; mutant2 is produced by omitting a sub-tree,

namely the second child of the OR function node. While these two first mutants are

syntactically correct, mutant3 is an example for an invalid mutation example: The

first child of the conditional (IF) node has been deleted leaving the root node with

only two children - the evaluation of this program is not possible.

Again, real-valued representation of Boolean values can help here. In this case

the value calculated by the first child of such a conditional node would have to be

interpreted as a Boolean value triggering the execution of the second child sub-tree,

the then-branch. As there is no third child node there is also no else-branch, thus

there is probably no action if the first (condition) node is evaluated (or at least

interpreted) as false.

These two examples of syntactically incorrect programs demonstrate what was

hinted in Section 3.2.1.1: Even though expressions are in general not typed in GP,

there are cases in which this is not true - a fact which has to be considered during

the design and implementation of a GP based problem solving system.

3.2.1.4 Advantages

As we are going to see later, the hierarchical structure tree is not the only way how

programs can be modeled and used in the GP process. Still, the cumulation of the

following reasons strongly favors the choice of this program representation schema4:

• Even though structure trees show an (at least for many people) rather unusual

appearance and syntax, most programming language compilers internally con-

vert given programs into parse trees representing the underlying programs (i.e.,

their compositions of functions and terminals). In most programming lan-

guages, these parse trees are not (conveniently) accessible to the programmer;

here we present the programs directly as parse trees as we need to genetically

manipulate parts of the programs (sub-trees).

• As evaluation is executed recursively starting from the root node, a newly

4In fact, these reasons partially correlate to Koza’s reasons for choosing LISP for his GP im-
plementation reported on in [Koz92] and [Koz94], e.g.

3.2. CHROMOSOME REPRESENTATION 31

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

/

+ *

2 Y X 5

IF / ELSE

OR := :=

> <

Y X Y 4

i i 0 +

X 5

(1)

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

/

+ *

2 Y X 5

(2)

/

*

2 Y

OR

> <

Y X Y 4

parent 1 parent 2

parent 1 parent 2

child 1

child 2

Figure 3.4: Exemplary crossover of programs (a) and (b) labeled as parent1 and

parent2, respectively. Child1 and child2 are possible new offspring programs formed

out of the genetic material of their parents.

32 CHAPTER 3. GENETIC PROGRAMMING

IF / ELSE

OR := :=

> <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

< <

Y X Y 4

i +

i 1

i 0

IF / ELSE

OR := :=

>

Y X

i +

i 1

i 0

IF / ELSE

:= :=

i +

i 1

i 0

parent 1

mutant 1 mutant 2 mutant 3

Figure 3.5: Exemplary mutation of a program: The programs mutant1, mutant2,

and mutant3 are possible mutants of parent.

generated or manipulated program can be (re-)evaluated immediately without

any intermediate transformation step.

• Structure trees allow the representation of programs whose size and shape

change dynamically.

3.2.2 Modular Genetic Programming

Numerous variations and extensions to Koza’s structure tree based genetic program-

ming have been proposed since its publication at the beginning of the 1990s. The

probably best known and most frequently used one is the concept of automatically

defined functions (ADFs) proposed in “Genetic Programming II: Automatic Discov-

ery of Reusable Programs” [Koz94].

The main idea of ADFs is that program code (which has been evolved during the

GP process) is organized into useful groups (subroutines); this enables the parame-

terized reuse and hierarchical invocation of evolved code as functions that have not

been taken from the original functions set F but are rather defined automatically.

3.2. CHROMOSOME REPRESENTATION 33

The (re-)use of subroutines (subprograms, procedures) is enabled in this way. In

the meantime the idea of ADFs has been extended; automatically defined iterations,

loops, macros, recursions and stores have since then been proposed and their use

demonstrated for example in [Koz94], [KIAK99], and [KKS+03a].

With ADFs a GP chromosome program is split into a main program tree (which is

called and executed from outside) and arbitrarily many separate trees representing

ADFs. These separate functions can take arguments as well as be called by the

main program or another ADF.

Different approaches realizing modular genetic programming which have gained

popularity and are well known in the GP community are the Genetic Library (pre-

sented by Angeline in [Ang93] and [Ang94], e.g.) and the Adaptive Representation

through Learning (ARL) algorithm (proposed by Rosca, see for example [Ros95a]

or [RB96]). In both approaches, some parts of the evolved code are automatically

extracted from programs (usually of those that show rather good fitness values).

These extracted code fragments are then fixed and kept in the GP library, thus they

are available for the evolving programs in the GP population.

Other advanced GP concepts that extend the tree concept are discussed

in [Gru94], [KBAK99], [Jac99], and [WC99]; basic features of these modular GP

approaches can be combined with multi-tree (multi-agent) systems which shall be

described a bit later.

3.2.3 Other Representations

We are not going to say much about not tree based GP systems in the context of

this thesis; still, the reader could be prone to suspect that there might be com-

puter program representations other than the tree-based approach. In fact, there

are two other forms of GP that shall be mentioned here whose program encoding

differs significantly from the approach described before: Linear and graphical genetic

programming.

3.2.3.1 Linear Genetic Programming

The main difference between linear GP and tree based GP is that in linear GP

individuals of the GP algorithm (the programs) are not represented by structure

trees but rather by linear chromosomes. These linear solutions represent lists of

computer instructions which are executed linearly.

34 CHAPTER 3. GENETIC PROGRAMMING

Linear GP chromosomes are more similar to those of conventional GAs; how-

ever, their size is usually not fixed so that a GP population is likely to contain

chromosomes of different sizes which is usually not the case with conventional GA

approaches. On the one hand this of course brings along the loss of the advantages

mentioned in Section 3.2.1.4, but on the other hand this schema easily enables the

representation of stack based programs, register based programs, and machine code.

• In general, a stack is a data structure based on the “last in first out” princi-

ple. If a program instruction is to be evaluated, it takes (pops) its arguments

from the stack, performs the calculation, and writes back the result by adding

(pushing) it back to the top of the stack. A chromosome in stack-based GP

represents exactly such a stack based program by storing the program instruc-

tions in a list and using a stack for executing the program. A typical example

can be seen in Perkins’ article “Stack-Based Genetic Programming” [Per94],

a recent implementation has for example been presented in [HRv07].

• Register based and machine code GP are essentially similar [LP02]: In both

cases data is stored in (a rather small number of) registers, and instructions

read data from and write results back to these registers. Initially, a program’s

inputs are written to registers, and after executing the program the results

are given in one or more registers. The main difference between these two GP

approaches is the following:

– Programs in register based GP (as also those of any other kind of GP sys-

tem) have to be interpreted, i.e. they are executed indirectly or compiled

before execution.

– On the contrary, programs in machine code GP consist of real hardware

machine instructions; thus, these programs can be executed directly on a

computer. The execution of machine code GP programs is therefore a lot

faster than the evaluation of programs in traditional implementations.

Nordin’s Compiling Genetic Programming System (CGPS) [Nor97] for

example presents an implementation of machine code GP.

3.2.3.2 Graphical Genetic Programming

Parallel Distributed Graphical Programming (PDGP, [Pol97], [Pol99b]) is a form

of GP in which programs are represented as graphs representing functions and ter-

minals as nodes; links between those nodes define the flow of control and results.

PDGP defines a fixed layout for the nodes whereas the connections between them

3.3. BASIC STEPS OF THE GP PROCESS 35

and the referenced functions are evolved by the GP process. PDGP enables a high

degree of parallelism as well as an efficient and effective reuse of partial results;

furthermore, it has been shown that it performs better than conventional tree based

GP on a number of benchmark problems.

Figure 3.6 shows the graphical, intron-augmented representation of an exemplary

program in PDGP (adapted from [Pol99b]).

Output Node

Active Terminal

Active Function

Inactive Function

Inactive Terminal

Figure 3.6: Intron-augmented representation of an exemplary program in

PDGP [Pol99b].

3.3 Basic Steps of the GP Based Problem Solving

Process

3.3.1 Preparatory Steps

Before the GP process can be started there are several preparatory steps that have to

be executed. As explained in Section 3.2.1.1, the function and terminal sets (F and

T , respectively) have to be determined. Furthermore, as in any GA application, a

fitness measurement function also has to be established so that a solution candidate

can be evaluated and its fitness can be measured (either explicitly or implicitly).

In addition to these preparations that directly affect the construction and man-

agement of individuals of the GP population, there are also some things to be done

regarding the execution of the GP algorithm:

36 CHAPTER 3. GENETIC PROGRAMMING

• Parameters that control the GP run have to be set,

• a termination criterion has to be defined, and

• a result designation method has to be defined (as explained later in Sec-

tion 3.3.4).

These preparations in fact have to be done for any genetic algorithm; a similar sum-

mary is for example given in [KIAK99]. Figure 3.7 summarizes the major prepara-

tory steps for the basic GP process.

GP Process

Solution (Program)

Fitness Measure f

Termination Criterion
Functions Set F

Parameters

Terminals
Set T Results Designation

Figure 3.7: Major preparatory steps of the basic GP process.

3.3.2 Initialization

At the beginning of each GA and GP execution the population is initialized arbitrar-

ily before the intrinsic evolutionary process can be started. This initialization can

be done either completely at random or using certain (problem specific) heuristics.

For hierarchical program structures as used in GP the random initialization

utilizes a maximum initial tree depth Dmax. As introduced in [Koz92] and for

example reflected on in [ES03], there are two possibilities for creating random initial

programs:

• Full method: Nodes at depth d < Dmax point to randomly chosen functions

from function set F , and nodes at depth d = Dmax are randomly chosen

terminals (from terminal set T);

3.3. BASIC STEPS OF THE GP PROCESS 37

• Grow method: Nodes at depth d < Dmax become either a function or a ter-

minal (randomly chosen from F ∪ T), and nodes at depth d = Dmax are again

randomly chosen terminals (from T).

The so-called ramped half-half GP initialization method, proposed by Koza [Koz92],

has meanwhile become one of the most frequently used GP initialization ap-

proaches [ES03]. Both methods, grow and full, are hereby applied, each delivering

parts of the initial population.

Still, there is research work going on regarding this issue of finding optimal initial-

ization techniques as it is a fact that the use of different initialization strategies

can lead to very different overall results (as for example demonstrated in [HHM04]).

For example, there are approaches that produce initial populations that are gener-

ated adequately distributed in terms of tree size and distribution within the search

space [GAMRRP07].

Later (in Chapter 7) we describe how the definition of structural limits for initial

programs has been implemented not via their tree depth but rather via their tree

size (i.e., the number of nodes involved) Smax.

3.3.3 The Genetic Process: Breeding Populations of Pro-

grams

After preparing the GP process and initializing the population, the genetic process

can be started. As it is the case in any GA, new individuals (programs) are created

using recombination and mutation, tested, and become a part of the new population.

Fitter individuals have a bigger chance to succeed in creating children of their own;

thus, optimization happens during the run of the evolutionary algorithm. Unfit

programs (and with them also their genetic material) wither out of the population.

As populations cannot grow infinitely in most applications, new programs somehow

have to replace old ones that die off. There are in fact several ways how this

replacement can be done:

• Generational replacement: The entire population is replaced by its descen-

dants. This corresponds to generations changes in nature when for example

annual plants or animals die in winter whereas their eggs (hopefully) survive;

thus, the next generation of the species is founded.

• Steady state replacement: New individuals are produced continuously, and the

removal of old individuals also happens continuously. Analogies in nature are

obvious as this is more or less how for example human evolution happens.

38 CHAPTER 3. GENETIC PROGRAMMING

• Selection of replaced programs: The individuals removed can be either chosen

from the unfit ones (worst replacement), from the older ones (replacement

with aging), or at random (random replacement), e.g.

This whole procedure is graphically displayed in Figure 3.8 (adopted

from [LP02]).

Population
of Programs

-

x +

x x
*

x *

x x

Select Parents
in Proportion to
their Fitness Values

-

x +

x *
x x

Generate new
Programs / Formulae

Test (Evaluate)
Programs

Figure 3.8: The genetic programming cycle [LP02].

In fact, the whole genetic programming process involves more than what is dis-

played in Figure 3.8: The preparatory steps summarized in Section 3.3.1 also have

to be considered, and of course a validation of the results produced has to be done

that might lead to a re-formulation of the pre-conditions. A more comprehensive

overview of the GP process is given in Figure 3.9.

The execution of the GP cycle is – as GP is an extension to the GA – similar to the

cyclic execution of the GA: Solutions are selected from the population, by crossing

them they become parents, mutation is applied with a rather small probability,

and thus new offspring is produced. In the generational replacement scheme this

is repeated until the next generation’s population is complete; in the steady state

scheme there is no generational cycle but this procedure is also repeated over and

over again. The whole procedure is repeated until some pre-defined termination

criterion is met (see Section 3.3.4 for details).

3.3. BASIC STEPS OF THE GP PROCESS 39

Knowledge / Suspection
about the Search Space

Experimental Design,
Data Collection

GP Functions and
Terminals Library

GP Algorithm

GP Results

Expert Analysis,
Validation

Termination Criterion

Results Designation
Criteria

Result Designation

Fitness Measure

Figure 3.9: The GP based problem solving process.

In fact, there is a veritable difference in the descriptions of this cyclic workflow

for GAs and for GP regarding the offspring creation scheme applied5:

• In GAs, crossover and mutation are used sequentially, i.e. both are applied

(with mutation having a rather small probability).

• In GP, crossover or mutation (or a simple copy action) are executed indepen-

dently; each time a new offspring is to be created, one of these variants is

chosen probabilistically.

In fact, some researchers even recommend the GP-like offspring creation schema for

all evolutionary computation systems (as for example given by Eick, see [Eic07]).

3.3.4 Process Termination and Results Designation

In general, the termination criteria of genetic algorithms are also applicable for

genetic programming. A termination criterion might monitor the number of gen-

erations and terminate the algorithm as soon as a given limit is reached. Problem

5The GA workflow was described in detail in Section 2.2; the GP workflow as it is summarized
here is also described in further detail in [Koz92], [KKS+03a], and [ES03], e.g.

40 CHAPTER 3. GENETIC PROGRAMMING

yes
no

Go on to Next
Generation

Select Action to be
Performed

Select one
Individual

Perform
Mutation

Select 2 Parent
Individuals

Perform
Crossover

Perform
Mutation with
Probability pm

Add New
Offspring to
Intermediate

Pool

New Population
Complete?

yes
no

Go on to Next
Generation

Add New
Offspring to
Intermediate

Pool

New Population
Complete?

pmut

Select two
Individuals

Perform
Crossover

Add New
Offspring to
Intermediate

Pool

pcross

Select one
Individual

Copy
Individual

Add New
Offspring to
Intermediate

Pool

pcopy

The GA Workflow:
Production of a New

Generation

The GP Workflow:
Production of a New

Generation

Figure 3.10: GA and GP flowcharts: The conventional genetic algorithm and genetic

programming.

specific criteria are also used frequently, i.e. the algorithm is terminated as soon as a

problem-specific success predicate is fulfilled. In practice, one may manually monitor

and manually terminate the run when the values of fitness for numerous successive

best-of-generation individuals appear to have reached a plateau [KKS+03a].

After terminating the algorithm it comes to the designation of the result returned

by the algorithm. Normally, the single best-so-far individual is then harvested and

designated as the result of the run [KKS+03a]. As we show in Chapter 7 there are

applications (as for example data based structure identification) in which this is not

3.4. TYPICAL APPLICATIONS OF GENETIC PROGRAMMING 41

the optimal strategy. In this case the use of a validation data set V is suggested,

i.e. a data collection that was not used during the GP training phase; we eventually

test the programs on V and pick the one that performs best on V .

3.4 Typical Applications of Genetic Program-

ming

As genetic programming is a domain-independent method, there is an enormous

number of applications for which it has been used for automatically producing so-

lutions of high quality. Here we give a very short summary of exemplary problem

classes which have been used for demonstrating GP’s power in automatically learn-

ing programs for solving problems for more than 15 years, namely the automated

learning of multiplexer functions (Section 3.4.1), the artificial ant (3.4.2), and sym-

bolic regression (3.4.3). Finally, in Section 3.4.4 we give a short list of various

problems for which GP has proven to be able to produce high quality results.

3.4.1 Automated Learning of Multiplexer Functions

The automated learning of functions requires the development of compositions of

functions that can return correct values of functions after seeing only a relatively

small number of specific examples; these training samples are combinations of values

of the function associated with particular combinations of arguments.

The problem of learning Boolean multiplexer functions has become famous as a

benchmark application for genetic programming since Koza’s work on it for example

presented in [Koz89] and [Koz92]. The input to a Boolean k-multiplexer function is

a bit-string consisting of k address bits ai and 2k data bits di; normally, the bits are

thereby aligned following the form [ak−1 . . . a1a0d2k−1 . . . d1d0]. The value returned

by the multiplexer function is the value of the particular data bit that is addressed by

the k address bits. For example, let k be 3 and the three address bits a2a1a0 = 101,

then the multiplexer singles out data bit d5 to be its output6. The abstract black

box model of the Boolean multiplexer with three address bits and 23 = 8 data bits

as well as the concrete addressing of data bit d5 is displayed in Figure 3.11.

A solution to this problem obviously has to be a function that uses input in-

6Data bit d5 is in fact the sixth data bit since if a2a1a0 = 000 data bit d0 is addressed, so the
indices of these data bits are zero-based.

42 CHAPTER 3. GENETIC PROGRAMMING

a2
a1

a0

d7
d6

d5
d4

d3
d2

d1
d0

output

1
0

1

d7
d6

d5
d4

d3
d2

d1
d0

output

(a) (b)

Figure 3.11: The Boolean multiplexer with three address bits; (a) general black box

model, (b) addressing data bit d5.

formation a and d and calculates a Boolean return value. Thus, the terminal has

(k + 2k) elements which correspond to the inputs to the multiplexer; in the case of

k = 3 the terminal set T = {A0, A1, A2, D0, D1, . . . , D7}. The functions used contain

Boolean functions and the conditional function, i.e. F = {AND, OR, NOT, IF}.
The evaluation of a solution candidate is done applying the formula to all possible

input bit combinations and counting the number of correct output values. As there

are (k+2k) inputs to the Boolean multiplexer, the number of possible input combi-

nations is (2k+2k
); in the case of k = 3, the number of possible input combinations

is 2048.

Koza was able to show that GP is able to solve the 3-address multiplexer problem

100% correctly [Koz92]; this optimal result is shown in Figure 3.12. Of course, var-

ious test series have been documented in which GP was used for solving problem

with multiplexers with more address bits in numerous publications.

3.4.2 The Artificial Ant

The artificial ant problem ([CJ91a], [CJ91b], [JCC+92]) has also been a fre-

quently used benchmark problem for GP since Koza’s application [Koz92]; mean-

while, it has become a well-studied problem in the GP community (see for exam-

ple [LW95], [IIS98], [Kus98], [LP98], and [LP02]).

In short, the problem is to navigate an artificial ant on grid consisting of 32

× 32 cells. The grid is toroidal so that if the ant moves off the edge of the grid,

it reappears and continues on the opposite edge. On this grid, “food” units are

distributed (normally along a trail); each time the ant enters a square containing

3.4. TYPICAL APPLICATIONS OF GENETIC PROGRAMMING 43

(IF A0 (IF A2 (IF A1 D7 (IF A0 D5 D0))
 (IF A0 (IF A1 (IF A2 D7 D3) D1) D0))
 (IF A2 (IF A1 D6 D4)
 (IF A2 D4 (IF A1 D2 (IF A2 D7 D0)))))

IF

A0 IF IF

IF

IF

IF

IF

IF

IF IF

IF

IF

A2

A1 D7

D0 A0 D5

D3 A2 D7

D1 A1

D0 A0

A2

D4 A1 D6 A2 D4

A1 D2

D0 A2 D7

Figure 3.12: 100% Correct solution to the 3-address Boolean multiplexer prob-

lem [Koz92].

food, the ant eats it. At the beginning of the ant’s wanderings it starts at cell (0, 0)

facing in a particular direction (east, e.g.); at each time step, the ant is able to move

forward in the direction it is facing, to turn right, or to turn left. The goal is to find

a program that is able to navigate the ant so that as many food items as possible

are eaten in a certain number of time units. The program can use the following:

• Three operations are available, namely Move, Left, and Right which let the

ant move ahead, turn left or turn right, respectively; these operations are used

as terminals in the GP process.

• The sensing function IfFoodAhead investigates the cell the ant is currently

facing and then executes the first child operation if food is ahead or the second

child action otherwise.

• Additionally, two more functions are available: Prog2 and Prog3 take two and

three arguments (operations), respectively, which are executed consecutively.

The most frequently used trail is the so-called “Santa Fe trail” designed by

Christopher Langton. This trail is displayed in Figure 3.13 (copied from [LP02]);

the ant is allowed to wander around the map for 600 time units. This problem is in

fact considered a hard problem for GP; thorough explanations for this statements are

for example given by Langdon and Poli in “Why ants are hard” ([LP98] and [LP02]).

What makes it so hard is not that it is difficult to find correct solutions but rather

44 CHAPTER 3. GENETIC PROGRAMMING

X

Figure 3.13: The Santa Fe trail.

to find these efficiently and significantly better than random search. As is listed

in [LP98], the smallest solutions that solve the Santa Fe trail problem (i.e., those

that provide programs that let the ant eat all food packets) are of length 117; one

of them is exemplarily shown in Figure 3.14.

Even though it is a very “simple” problem, the artificial ant problem still pro-

vides a good basis for many theoretical investigations in GP such as building blocks

and schema analysis [LP02], operators discussions ([LS97] or [IIS98], e.g.), further

algorithmic development [CO07] and many other research activities.

3.4.3 Symbolic Regression

In short, symbolic regression is the induction of mathematical expressions on data.

The key feature of this technique is, as Keijzer summarized in [Kei02], that the

7In fact, there are 2,554,416 possible programs with length 11, but only 12 (i.e., 0.00047%)
of them are successes. For programs of length 14 this ratio is approximately 0.0007%, for bigger
program sizes (up to 200 – 500) it levels off between 0.0001% and 0.0002% [LP98].

3.4. TYPICAL APPLICATIONS OF GENETIC PROGRAMMING 45

IF FOOD
AHEAD

MOVE
AHEAD

TURN
LEFT

MOVE
AHEAD

TURN
RIGHT

TURN
RIGHT

IF FOOD
AHEAD

MOVE
AHEAD

TURN
LEFT

Figure 3.14: Santa Fe trail solution.

object of search is a symbolic description of a model, not just a set of coefficients in

a pre-specified model. This is in sharp contrast with other methods of regression,

including linear regression, polynomial approaches, or also artificial neural networks

(ANNs), where a specific model is assumed and often only the complexity of this

model can be varied.

The main goal of regression in general is to determine the relationship of a

dependent (target) variable t to a set of specified independent (input) variables x.

Thus, what we want to get is a function f that uses x and a set of coefficients w

such that

t = f(x, w) + ε (3.1)

where ε represents the error (noise) term.

The form of f is usually pre-defined in standard regression techniques as for

example linear regression (fLinReg) and ANNs (fANN):

fLinReg(x, w) = w0 + w1x1 + . . .+ wnxn (3.2)

fANN(x, w) = w0 · g(w1x) (3.3)

In linear regression, w is the set of coefficients w0, w1, . . . , wn. In ANNs we

usually use an auxiliary transfer function g (which normally is a sigmoid function

as for example the logistic function 1
1+e−t); the coefficients w are here called weights

46 CHAPTER 3. GENETIC PROGRAMMING

and include the weights from the hidden nodes to the output layer (w0) and those

from the input nodes to the hidden nodes (w1) [Kei02].

In contrast to this, the function f which is searched for is not of any pre-specified

form when applying genetic programming to symbolic regression. Instead, low-level

functions are used and combined to more complex formulas during the GP process.

Given a set of functions f1, . . . , fu, the overall functional form induced by genetic

programming can take a variety of forms. Usually, standard arithmetical functions

such as addition, subtraction, multiplication, and division are in the set of functions

f , but also trigonometric, logical, and more complex functions could be included.

An exemplary composed function therefore could be:

f(x, w) = f1(f4(x1), f5(x3, w1), f4(f2(x1, w2)), x2) (3.4)

or, by filling in some concrete functions for the abstract symbols f and w we could

get:

f1(x) = +(∗(0.5, x), 1) ≡ 0.5 ∗ x+ 1 (3.5)

f2(x) = +(2, ∗(x, x)) ≡ 2 + x ∗ x (3.6)

When it comes to evaluating solution candidates in a GP based symbolic regres-

sion algorithm, the formulae have to be evaluated on a certain set of evaluation data

X yielding the estimated values E. These estimated values are then compared to

the original values T, i.e. those which are known from data retrieval (experiments)

or calculated applying the original formula to X.

For example, let ftarget be the target function

ftarget(x) = −(∗(0.5, ∗(x, x)), 2) ≡ 0.5 ∗ x2 − 2 (3.7)

and the functions f1 and f2 solution candidates. Furthermore, let the input data X

be

X = [−5,−4, . . . ,+4,+5]. (3.8)

Thus, by evaluating ftarget, f1, and f2 on X we get T , E1, and E2:

T = [10.5, 6, 2.5, 0,−1.5,−2,−1.5, 0, 2.5, 6, 10.5] (3.9)

E1 = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5] (3.10)

E2 = [27, 18, 11, 6, 3, 2, 3, 6, 11, 18, 27] (3.11)

By crossing f1 and f2, these become parent functions (parent formula 1 and 2)

and we could for example get the child formula f3:

f3(x) = +(∗(0.5, ∗(x, x)), 1) ≡ 0.5 ∗ x ∗ x+ 1 (3.12)

3.4. TYPICAL APPLICATIONS OF GENETIC PROGRAMMING 47

and by evaluating it on X we get E3:

E3 = [13.5, 9, 5.5, 3, 1.5, 1, 1.5, 3, 5.5, 9, 13, 5] (3.13)

Graphical displays of the formulae f1, f2, and f3 (labeled as parent and child

functions) and their evaluations are given in the Figures 3.16 and 3.15, respectively.

-5

0

5

10

15

20

25

30

35

-8 -6 -4 -2 0 2 4 6 8

Target Function

Child Formula

Parent Formula (I)

Parent Formula (II)

Figure 3.15: Symbolic regression example.

+

* 1

0.5 x
+

1 *

x x

+

* 1

0.5 *

x x

parent 1

parent 2

child

Crossover

Figure 3.16: Exemplary formulae.

The task of GP in symbolic regression thus is to find a composition of the func-

tions, input variables, and coefficients that minimizes the error of the function with

respect to the desired target values. There are several ways how to measure this

error, one of the simplest and probably most frequently used ones being the mean

48 CHAPTER 3. GENETIC PROGRAMMING

squared error (mse) function; the mean squared error of the vectors A and B each

containing n values is calculated as

mse(A,B) =
1

n
∗

n∑
k=1

(Ak − Bk)
2; |A| = |B| = n (3.14)

So, we can calculate the fitness of f1, f2, and f3 as mse(E1, T), mse(E2, T), and

mse(E3, T), respectively yielding

fitness(f1) = 26.0 (3.15)

fitness(f2) = 100.5 (3.16)

fitness(f3) = 9.0 (3.17)

Whereas the search for formulas that minimize a given error function (or maxi-

mize some other given fitness function) is the major goal of GP based regression, the

shape and the size of the solution could also be integrated into the fitness estimation

function. The number and values of coefficients used is another issue that is tackled

in the optimization process; the search process is also free whether to consider cer-

tain input variables or not, thus it is able to perform variables selection (possibly

leading to dimensionality reduction) [Kei02].

3.4.4 Other GP Applications

Finally we shall here give a short list of problems for which GP has proven to be

able to produce high quality results - this list of course comes without the claim of

completeness.

Koza can be for sure seen as one of the pioneers of applying GP to a variety of

different problems: In [Koz92], [Koz94], [KIAK99], and [KKS+03a] he reports (to-

gether with co-authors) on the GP based solving of problems for example in classi-

fication, regression, pattern recognition, computational molecular biology, emergent

behavior, cellular automata, sorting networks, design of topology and component siz-

ing for complex hardware structures (such as analog electrical circuits, controllers,

and antenna), and many others. Many of those results can be considered human-

competitive results, some even being patentable new inventions created by GP.

In hardware design, for example, one of the problem situations explained

in [KIAK99] is the automated design of amplifiers. In general, an amplifier is a

3.5. GP SCHEMA THEORIES 49

V

0

-

+
VSOURCE RSOURCE

1k q2n2222
Q56

R39; 4.97k

R24
18.8k

RLOAD
8

VOUT

VccVcc

Q71
q2n2222

Q21
q2n2222

R17; 0.427k

R58
5.3k

Q89R62; 7.04k

R42; 7.04k

Q83; q2n2222

Q30;
q2n2222

R59; 0.696k

R85
0.123k

Figure 3.17: Design of a 10 dB Amplifier, created by GP ([KIAK99], Fig. 42.4).

circuit with one input and one output which multiplies the voltage of its input sig-

nal by a certain factor (the so-called voltage amplification factor) over a specified

range of frequencies. The goal now is to realize such an amplifier only using re-

sistors, capacitors, inductors, transistors and power sources; the functions set used

thus includes component creating functions for creating digital gates, inductors,

transistors, power supplies, and resistors. Solution candidates are tree structures

representing complete hardware entities which can be displayed in a way which we

are used to: Figure 3.17 resembles Figure 42.4 of [KIAK99] showing the best-of-run

circuit realizing a 10 dB amplifier.

Of course, there is a vast number of other fields of applications for genetic pro-

gramming. Numerous applications of GP to problems of practical and scientific im-

portance have for example also been documented in the conference proceedings of

the GECCO, CEC or EuroGP conferences ([CPFD+03a], [CPFD+03b], [DPB+04a],

[DPB+04b], [BOA+05], [KCA+06], [TBB+07], [KOL+04], [KTC+05], [CTE+06],

or [EOE+07], e.g.). Please see the GP bibliography (Section 3.8) for a short list

of sources of publications on those.

3.5 GP Schema Theories

As we have now summarized how genetic programming works, we shall now turn

our minds towards investigations why it works so well. Holland’s work in the mid-

1970s produced the well-known GA schema theorem; schemata have since then been

50 CHAPTER 3. GENETIC PROGRAMMING

frequently used to demonstrate how and why GAs work. In fact, as is summarized

in [PMR04], in the 1990s interest in GA theory shifted towards exact microscopic

Markov chain models possibly with aggregated states. However, after the work

of Stephens and collaborators in the late 1990s on exact schema theories based

on the notion of dynamic building blocks and the connection highlighted by Vose

between his model and a different type of exact schema-based model, it is now

clear that Markov-chain and schema-based models are, when exact, just different

representations of the same thing.

Genetic programming theory has had an, as Poli et. al. stated in [PMR04],

“difficult childhood”: After some early works on approximate GP schema theorems,

it took quite some time until schema theories could be developed that give exact

formulations for expected frequencies of schemata at the next generation.

In this section we give a rough overview of these GP schema theorems: After

summarizing early work on GP schema theories in Section 3.5.1, which see schemata

as components of programs, we give an introduction to rooted tree GP schema

theories (Section 3.5.2) and an exact GP schema theory (Section 3.5.3). Finally, in

Section 3.5.4 we summarize the GP schema theory concept.

The classification of schemata given in this section follows the grand concepts

of [LP02], Chapters 3–6.

3.5.1 Program Component GP Schemata

First attempts to explain why GP works were given by Koza; in short, he gave an

informal argument showing that Holland’s schema theorem would work also for GP

as described in [Koz92], pp. 116–119. In Koza’s definition, a schema is defined as

a set of program subtrees (S-expressions); a schema can so be used for defining a

subspace of the program trees search space by collecting all programs that include all

subtrees given by the schema. For example, the schema H=[(+ x 3), y] includes the

programs *(y,+(x,3)) and *(+(y,3),+(2,+(x,3))) as they both include (at least) one

occurrence of the S-expressions (+ x 3) and y. This example is displayed graphically

in Figure 3.18.

The first probabilistic model of GP that can be considered a mathematical for-

mulation of a schema theorem for GP [LP02] was given by Altenberg in [Alt94a].

Also assuming very large populations, the neglection of mutation, and the applica-

tion of proportional selection, he was able to calculate the frequency of a program

at the next generation. Altenberg used a schema concept in which schemata are

3.5. GP SCHEMA THEORIES 51

*

y +

x 3

*

+

2 +

+

y 3

x 3

Figure 3.18: Programs matching the exemplary schema H=[(+ x 3), y].

subexpressions and not, as in Koza’s work, collections of subexpressions.

O’Reilly formalized Koza’s work on schemata ([O’R95], [OO94]) and derived

a schema theorem for GP with proportional selection and crossover (but without

mutation). The main difference to Koza’s approach was that she defined schemata

as collections of subtrees and tree fragments; tree fragments in this context are trees

with at least one leaf being a “don’t care” symbol (‘#’). O’Reilly was also able

to calculate the frequency of a program at the next generation; unfortunately, the

frequency depends on the shape, the size and the composition of the trees containing

the schemata investigated. Thus, frequencies are given rather as lower bounds than

as concrete values. As O’Reilly argued in the discussion of her result, no hypotheses

can be made on the basis of this theorem regarding the real propagation and the

use of building blocks in GP.

Another approach was investigated by Whigham: He produced a definition of

schemata for context free grammars and the related schema theorem which was

published for example in [Whi95], [Whi96b], and [Whi96a]. Based on his definition

of schemata he was able to give equations for the probabilities of disruption of

schemata by crossover and mutation. Like in O’Reilly’s work, also in Whigham’s

theorem the propagation of the components of schemata from one generation to the

next is described.

In all these early attempts GP schemata were used for modeling how components

(or groups of components) propagate within the population and how the number of

these instances can vary over time.

52 CHAPTER 3. GENETIC PROGRAMMING

3.5.2 Rooted Tree GP Schema Theories

In rooted tree GP schema theory, a schema can be seen as a set of points of the

search space that share some syntactic feature. This can be defined in the following

way [PMR04]: Let F be the set of functions used, and T the set of terminals.

Syntactically, a GP schema is then defined as a tree composed of functions from

the set F ∪ {=} and terminals from T ∪ {=}; the primitive = here means “don’t

care” and stands for a single terminal or function. Semantically, H is the set of

programs that have the same shape and the same labels for the non-“=” nodes as

the tree representation of H .

A simple example is given in Figure 3.19: Be F = {+,−, ∗} and T = {x, y, z},
and the schema H given as ∗(=,= (x,=)). For example, the programs ∗(y, ∗(x, x)),
∗(z,+(x, z)), and ∗(x,−(x, z)) are program members of H , i.e. they are included in

H ’s semantics.

*

= =

x =

Schema
Syntax:

Schema
Semantics:

, , ,…

*

y *

x x

*

z +

x z

*

x -

x z

Figure 3.19: The rooted tree GP schema ∗(=,= (x,=)) and three exemplary pro-

grams of the schema’s semantics.

Rosca proposed this kind of schemata in [Ros97] (using the symbol ‘#’ instead

of ‘=’). He formulated his schema theorem so that it became possible to calculate

a lower bound for a schema’s frequency at the next generation. As a matter of fact,

here also schemata divide the space of programs into subspaces containing programs

of different sizes and shapes.

Contrary to this, the following fixed-size-and-shape theory for GP was developed

by Poli and Langdon ([PL97c], [PL97a]):

Under the assumption that fitness proportional selection is applied, the proba-

bility of a program h sampling the schema H to be selected is

Pr{h ∈ H} =
m(H, t)f(H, t)

Mf(t)
(3.18)

wherem(H, t) denotes the number of programs matching the schema H at generation

3.5. GP SCHEMA THEORIES 53

t, f(H, t) the mean fitness of programs matching H , M the population size, and f(t)

the mean fitness of the programs in the population.

The main idea is that the probability of the disruption of a schema can be

estimated. Let Dc(H) be the event “H is disrupted when a program h matching H

is crossed over with a program ĥ”; as is described in full detail in cite [LP02], the

probability of such a disruption caused by one-point crossover can be formulated as

Pr{Dc(H)} ≤ pdiff (t)

(
1 − m(G(H), t)f(G(H), t)

Mf (t)

)

+
L(H)

N(H) − 1

m(G(H), t)f(G(H), t) −m(H, t)f(H, t)

Mf (t)
(3.19)

where G(H) is the shape of all programs matching the schema H (which is called

the hyperspace of H), and L(H) the defining length of H ; pdiff is the probability of

the disruption of schema H by crossing h (matching H) with program ĥ that has

different shape than h, i.e. which is not in G(H): pdiff (t) = Pr(Dc(H)|ĥ /∈ G(H)).

When it comes to point mutation, a schema H will survive mutation only if

all of its O(H) defining nodes are not modified. Thus, the probability of H being

disrupted by mutation Pr{Dm(H)} is dependent on the probability of a node to be

altered (pm):

Pr{Dm(H)} = 1 − (1 − pm)O(H) (3.20)

The overall formula uses these partial results and finally gives the expected num-

ber of programs matching schema H at generation t+ 1:

E[m(H, t+ 1)] ≥MPr{h ∈ H}(1 − Pr{Dm(H)})(1 − pxoPr{Dc(H)}) (3.21)

By substituting (3.18), (3.19) and (3.20) in (3.21) we get the final overall formula

for the lower bound of individuals sampling H at generation t + 1 in generational

GP with fitness proportional selection, one-point crossover and point mutation as it

is given in [LP02].

This GP schema theorem, produced by generalizing Holland’s GA schema the-

orem, thus gives a pessimistic lower bound for the expected number of copies of a

schema in the next generation. In the next chapter we will summarize an exact GP

schema theory, produced by generalizing an exact GA schema theorem and using

the concept of hyperschemata.

54 CHAPTER 3. GENETIC PROGRAMMING

3.5.3 Exact GP Schema Theory

In the previous section we have summarized pessimistic GP schema theory based

on generalization of Holland’s GA schema theorem. As Langdon and Poli summa-

rize in [LP02], the usefulness of these schema theorems has been widely criticized

(see [CP94], [Alt94b], [FG97], [FG98] or [Vos99], e.g.). In order to overcome its

main drawbacks, namely that they are pessimistic and only give lower bounds for

the expected numbers of instances for a given schema at the next generation, more

exact schema theorems for GAs and GP had to be developed. These are going to be

summarized in this section: After explaining the main idea of Stephen and Wael-

broeck’s GA schema theory, the hyperschema concept is summarized, and finally,

on the basis of these hyperschemata, exact GP schema theorems.

An exact GA schema theorem has been developed by the end of the last mil-

lennium ([SW97], [SW99]): The total transmission probability α of a schema H is

defined so that α(H, t) is the probability that at generation t the individuals of the

GA’s population will match H . Assuming a crossover probability pxo, α(H, t) is

calculated as:

α(H, t) = (1 − pxo)p(H, t) +
pxo

N − 1

N−1∑
i=1

p(L(H, i), t)p(R(H, i), t) (3.22)

with L(H, i) and R(H, i) being the left and right parts of schema H , respectively, and

p(H, t) the probability of selecting an individual matching H to become a parent.

The “left” part of a schema H is thereby produced by replacing all elements of H at

the positions from the given index i to N with “don’t care” symbols (with N being

the length of the bit strings); the “right” part of a schema H is produced by replacing

all elements of H from position 1 to i with “don’t care”. The summation sums over

all positions from 1 to N−1, i.e. over all possible crossover points. A generalization

of this theorem to variable-length GAs has also been constructed [SPWR02].

After the publication of this exact GA schema theory, immediately the question

came to mind whether it would be possible to extend pessimistic GP schema theories

towards an exact GP schema theorem [LP02]. In fact, it was: Poli developed an exact

GP schema theorem (see [Pol99a], [Pol00c], [Pol00b], [Pol00a], e.g.), a theorem which

was then generalized by Poli and McPhee to become known as Poli and McPhee’s Ex-

cact GP Schema Theorem ([PM01b], [PM01a], [Pol01], [PM03a], [PM03b], [PMR04],

and [LP02]).

Assuming equal size and shape for GP programs, (3.22) can be also used for

describing the transmission probability of a fixed-size-and-shape GP schema. In the

presence of one-point crossover, the transmission probability for a GP schema H at

3.5. GP SCHEMA THEORIES 55

generation t, α(H, t), can be thus given as

α(H, t) = (1 − pxo)p(H, t) +
pxo

N(H)

N−1∑
i=1

p(l(H, i), t)p(u(H, i), t) (3.23)

with l(H, i) and u(H, i) being the lower and upper parts (building blocks) of schema

H , respectively, and N(H) the number of nodes in the schema (which is assumed

to have the same size and shape as all other programs in the population). l(H, i)

is defined as the schema produced by replacing all nodes above cutting point i with

“don’t care” symbols, and u(H, i) as the schema produced by replacing all nodes

below cutting point i with “don’t care” symbols. In analogy to (3.22), the summa-

tion in (3.23) sums over all possible crossover points.

Exemplary l and u schemata for the schema H = +(*(=,x),=) are shown in Fig-

ure 3.20.

+

= *

= x

H

1 4

2 3

+

= *

= x

u(H,1)

1

+

= =

= =

+

= *

= x

l(H,1)

1

=

= *

= x

+

= *

= x

l(H,2)

2

=

= =

= =

Figure 3.20: The GP schema H = +(*(=,x),=) and exemplary u and l schemata.

Cross bars indicate crossover points, shaded regions show that parts of H which are

replaced by “don’t care” symbols.

In order to generalize this exact GP schema theorem so that it can be applied

to populations of programs of different sizes and shapes, a more general schema

approach is used, namely the GP hyperschema concept.

A GP hyperschema represents a set of schemata in the same way as a schema

represents a set of program trees (which is why it is called “hyperschema”). This

can be defined in the following way [PMR04]: Let F be the set of functions used,

56 CHAPTER 3. GENETIC PROGRAMMING

and T the set of terminals. Syntactically, a GP schema is then defined as a tree

composed of functions from the set F ∪ {=} and terminals from T ∪ {=,#}. The

primitives = and # here mean “don’t care”; = stands for exactly one node, whereas

stands for any valid subtree.

Examples are shown in Figure 3.21: Be F = {+,−, ∗} and T = {x, y, z}, and the

hyperschema H given as ∗(#,= (x,=)). The three exemplary programs ∗(y, ∗(x, ∗)),
∗(∗(x, y),+(x, z)) and ∗(∗(∗(x, y), y),+(x, z)) are a part of H ’s semantics.

*

=

x =

Hyperschema
Syntax:

Hyperschema
Semantics:

, , ,…

*

y *

x x

*

* +

x z x y

*

* +

x z * y

x y

Figure 3.21: The GP hyperschema ∗(#,= (x,=)) and three exemplary programs

that are a part of the schema’s semantics.

In analogy to l(H, i) and u(H, i) defined above and sketched in Figure 3.20, the

hyperschemata building blocks L(H, i) and U(H, i) are defined in the following way:

L(H, i) is the hyperschema obtained by replacing all nodes on the path between

crossover point i and the root of hyperschema H with = nodes, and all subtrees

connected with those nodes with # nodes. U(H, i) is the hyperschema obtained by

replacing the subtree below crossover point i with a # node. [PMR04]

As examples might here also help to make this concept clearer, Figure 3.22 shows

an exemplary schema H = +(*(=,x),=) and potential hyperschema building blocks.

As for example shown in the second column, L(H, 1) is constructed by turning all

nodes between crossover point 1 and the root (in this case only the root node) into

= nodes, and all subtrees of the so modified nodes become # nodes. U(H, 1) is

in column 3 constructed by replacing the subtree under crossover point 1 into a

node. And finally, as can be seen in column 4, L(H, 2) is again constructed by

turning all nodes from crossover point 2 to the root into = nodes, and all subtrees

of the so modified nodes become # nodes.

Using hyperschemata, it is possible to formulate a general, exact GP schema

theorem for populations of programs of any size or shape. The total transmis-

sion probability of a fixed-size-and-shape GP schema H is, for GP with one-point

3.5. GP SCHEMA THEORIES 57

+

= *

= x

H

1 4

2 3

+

= *

= x

U(H,1)

1

+

= #

+

= *

= x

L(H,1)

1

=

= *

= x

+

= *

= x

L(H,2)

2

=

*

= x

=

= =

= x

=

=

= #

Figure 3.22: The GP schema H = +(∗(=, x),=) and exemplary U and L hyper-

schema building blocks. Cross bars indicate crossover points, shaded regions show

that parts of H which are modified.

crossover and no mutation, given as

α(H, t) = (1 − pxo)p(H, t)+ (3.24)

pxo

∑
h1

∑
h2

p(h1, t)p(h2, t)

NC(h1, h2)

∑
i∈C(h1,h2)

δ(h1 ∈ L(H, i))δ(h2 ∈ U(H, i))

where NC(h1, h2) is the number of nodes in the tree fragment representing the

common region of the programs h1 and h2, C(h1, h2) is the set of indices of the

crossover points in the common region of h1 and h2, and δ(x) is a function that

returns 1 if x is true and 0 otherwise. The first two summations sum over all

individuals in the population, i.e. we sum over all possible pairs of programs; the

second summation sums over all indices of crossover points of the common region of

58 CHAPTER 3. GENETIC PROGRAMMING

the respective programs pair.

This GP schema theorem is called the Microscopic Exact GP Schema Theorem

in the sense that it is necessary to consider each member of the population.

Via several transformations and lemmata (which are not given here) it is finally

possible to formulate the Macroscopic Exact GP Schema Theorem:

α(H, t) = (1 − pxo)p(H, t)+ (3.25)

pxo

∑
j

∑
k

1

NC(Gj, Gk)

∑
i∈C(Gj ,Gk)

p(L(H, i) ∩Gj, t)p(U(H, i) ∩Gk, t))

where G(H) denotes the schema that is obtained by replacing all nodes in a schema

H by “don’t care” symbols8; the sets L(H, i) ∩ Gj and U(H, i) ∩ Gk are either

schemata (of fixed size and shape), or the empty set ∅.
Thus, using this theorem (3.5.3), it is at last possible to give the exact transmission

probability of a schema for genetic programming under one-point crossover and no

mutation; an exact schema theorem for GP is established. We have here omitted lots

of transformation steps and proofs; for these, the interested reader is for example

referred to [PM03a], [PM03b], [LP02], or [PMR04].

An overview of the development of approximate and exact schema theorems for

GAs and GP is graphically shown in Figure 3.23 (as given in [PMR04]).

Holland‘s GA Schema Theorem (1975);

Whitley‘s Version (1993)

Stephens and Waelbroeck‘s GA
Schema Theorem (1997)

Stephens‘ GA Schema Theorem (2001)

Poli and Langdon‘s
GP Schema Theorem (1997)

Poli‘s Exact GP Schema
Theorem (2000)

Poli and McPhee‘s Exact
GP Schema Theorem (2001)

GAs with One-
Point Crossover

GAs with
Homlogous
Crossover

GP with
One-Point
Crossover

Refinement

Generalization

Refinement

Generalization

GP with
Homlogous
Crossover

Figure 3.23: Relation between approximate and exact schema theorems for different

representations and different forms of crossover (in the absence of mutation).

8G(H) is called the hyperspace of H .

3.6. CURRENT GP CHALLENGES AND RESEARCH AREAS 59

3.5.4 Summary

Until the development of the GP schema theorems described in this section, GP

theory was typically considered scarce, approximate and not terribly useful [PM01c].

Especially the facts, that GP is relatively young and that building theories for

variable size structures are very complex, are considered the reasons for this.

Significant breakthroughs, which have been summarized in this section, have

fundamentally changed this understanding; after the development of GP schema

theorems, we now have an exact GP theory based on schema and hyperschema

concepts.

3.6 Current GP Challenges and Research Areas

Of course, theoretical work on GP was by far not finished after the development of

GP schema theorems. Even though they shall be not be discussed in detail here, we

still want to line out a selection of current research areas in GP theory.

For example, operators design for GP has been discussed in numerous publica-

tions; extensive analysis of initialization, crossover and mutation operators can be

found in [Lan99], [ES03] or [LN00], for example.

The genetic programming search space has been subject to theoretical analy-

sis (see [LP98], [LP02], e.g.). Experimental exploration of the GP search space

by random sampling can be used for comparing GP to random search or other

search techniques. Additionally, hypotheses have been stated regarding minimum

and maximum tree depth.

As has already been mentioned before, a Markov model for GAs has been for-

mulated by Vose, see [NV92], [VL91] and [Vos99] for explanations. In short, a GA is

modeled as a Markov chain; selection, mutation, and crossover are incorporated into

an explicitly given transition matrix, thus the method is complete, and no special

assumptions are made which restrict populations or population trajectories.

This GA Markov model could also be extended to GP using the schema GP the-

ory described in the previous section, which gives exact formulas for computing the

probability that reproduction and recombination create any specific program. A

GP Markov chain model is then easily obtained by plugging this ingredient into a

minor extension of Vose’s model of GAs [PMR04]; in fact, an alternative approach

for describing the dynamics of evolutionary algorithms is provided by this theory.

60 CHAPTER 3. GENETIC PROGRAMMING

One fact has been known for genetic programming since some of its first appli-

cations and has been frequently reported: Programs in genetic programming pop-

ulations tend to grow in size ([Ang94], [Lan95], [NB95], [SFD96], [AA05], [Ang98],

[TH02]). “Redundancy”, “introns” and, probably most frequently used as well as

with the most negative connotation, “bloat” have (amongst others) been used since

then as names for this tendency. In principle, it means that introns, i.e. code which

has no effect on the performance of the program containing it, grow during the GP

process; it is in fact a phenomenon also known from natural evolution [WL96].

Of course, this seems to be an unwanted phenomenon and is not conform to

“Occam’s Razor”, a law attributed to the 14th-century Francisian friar William of

Ockham. This law is also known as the “law of parsimony”, the Latin principle “entia

non sunt multiplicanda praeter necessitatem” meaning that “entities should not be

multiplied beyond necessity” is also often quoted. In principle, this law demands the

selection of exactly that theory that postulates the fewest entities and introduces the

fewest assumptions (of course, in case if there are multiple competing theories which

are considered equal in other respects). Argumentations pointing out how and why

GP does or does not fulfill Occam’s law can be found in [Dro98] and [LP97], e.g.9

Examples for bloat are given in Figure 3.24: In the left example, the left subtree

will always return (x − (0 ∗ y + x)) = x − x = 0 and since the multiplication of 0

with any other value always results in 0, the result of the whole program will always

be 0 regardless of the values of x, y and z. In fact, the whole right subtree becomes

code that does not influence the whole program’s evaluation. In the second example

shown on the right part of Figure 3.24, A will always be smaller than A+4, thus the

condition of the root condition will always be fulfilled and “else”-branch will never

be activated.

In contrary to the examples in Figure 3.24, in which bloat is rather obvious, there

are also of course examples in which it can be seen that GP will not always auto-

matically produce rather simple results. For example, in Figure 3.17 we have shown

the design of a 10dB amplifier created by GP [KIAK99]. After the excision of ev-

erything except voltage gain and selected other parts10, a strongly simplified circuit

is designed (shown in Figure 3.25); when retested, as is documented in [KIAK99],

this excised circuit proves to be an amplifier with a gain almost identical to that

9Especially “The Myth of Occam’s Razor” [Tho18], a paper written by Thorburn in 1918, is
worth reading in this context as it discusses the origins of the principle. For more discussions
on Occam’s razor and its reception in philosophy and science the interested reader is referred
to [Jac94], [Nol97], [Pop92] or [RF99].

10As documented in [KIAK99], all parts of the circuit were excised except the voltage gain and
the so-called quasi-Darlington emitter-follower section.

3.6. CURRENT GP CHALLENGES AND RESEARCH AREAS 61

*

- +

x +

* x

0 y

z *

+ -

x y 3 x

IF

< IF

A +

A 4

< C

B D

D

B

Figure 3.24: Examples for bloat.

of the original entire circuit. Even though this is not exactly what we see as bloat

in that sense that there is (in the original circuit) code that is irrelevant, still it is

obvious that there is a remarkable amount of code which is of almost no effect to

the program’s performance.

V

0

-

+
VSOURCE RSOURCE

1k q2n2222
Q56

R39; 4.97k

R24
18.8k

RLOAD
8

VOUT

Q71
q2n2222

Q21
q2n2222

R85
0.123k

+

-

V1

15V

Figure 3.25: Design of a 10 dB Amplifier, created by GP, excised ([KIAK99], Fig.

42.8)

In their article entitled “Fitness Causes Bloat” [LP97], Langdon and Poli showed

that fitness based selection seems to be responsible for the solutions’ growth in size;

fitness based parents selection therefore leads to code bloat. In this context bloat

has also been ironically described as “survival of the fattest”.

According to [Zha97], [Zha00] and [LP02], approaches used for preventing or

at least decreasing bloat include, but are not restricted to the following anti-bloat

techniques:

62 CHAPTER 3. GENETIC PROGRAMMING

• Size and/or depth limitations: The growth of programs is limited, programs are

not allowed to become bigger in size and/or depth (where the size of a program

is normally the size of its structure tree and its depth the depth of its structure

tree). Size limits are nowadays commonly used, see for example [KIAK99].

• Incorporation of program size in the selection process: An also often used

technique to combat bloat is to include some preference for smaller programs

in the criterion used to select programs for reproduction; this additional factor

to selection is also called parsimony pressure. Examples and analysis can be

for example found in [Kin93], [Zha97], [Zha00], [SF98] and [SH98].

• Incorporation of program size in evaluation: The size of a program could of

course also be incorporated in its evaluation. It might also be included as one

the goals which the GP population tries to reach ([LN00], [EN01]).

• Genetic operators: Besides selection and evaluation, several crossover and mu-

tation operators have been proposed which are designed so that they combat

bloating, see for example [Ang98], [PL97b] or [Lan00].

Often we see another tendency of GP that does not fulfill Occam’s law, namely

that it is prone to producing programs that are overspecified. This means that

programs that are too complex for the problem at hand and that much simpler

programs could fulfill the given task as well; especially in data based modeling this

phenomenon is also known as “overfitting”. We shall come back to this topic in

Chapter 7.

Another field of GP research is the development of practical guides for ideal pa-

rameter settings for GP. As we find in [SOG04], for example, GP researchers and

practitioners are often frustrated by the lack of theory available to guide them in

selecting key algorithm parameters; GP population sizes, for example, run from ten

to a million members or more, but at present there is no practical guide to know-

ing when to choose which size. [SOG04] here gives a population-sizing relationship

depending on tree size, solution complexity, problem difficulty and building block

expression probability.

Furthermore, numerous other theoretical topics are widely discussed in the GP

community, lots of them directly connected to well known problems (or rather chal-

lenges) with GP. Selected ones are to be mentioned in the next chapters.

As a part of the conclusions of [LP02], Langdon and Poli demand that GP users

might like to consider how their GP populations are evolving, whether they are

converging and, if so, whether they are converging in the right direction. At the

3.7. CONCLUSION 63

present, many GP packages offer only few possibilities to monitor populations. As we

are going to demonstrate in later chapters, this is exactly what we try to accomplish

by investigating dynamics in the populations of our GA and GP implementations.

3.7 Conclusion

In this chapter, genetic programming has been summarized and described as a pow-

erful extension to the genetic algorithm. In fact, GP is more than a GA extension:

It can be rather seen as the art of evolving computer programs and as a generic

concept for the automated programming of computers.

After describing GP basics and a variety of applications for GP, we have summa-

rized theoretical concepts for GP based on schemata and hyperschemata. Problems

and challenges in the context of GP have also been discussed.

In the following chapters we shall now come back to algorithmic developments

in GAs. These advanced concepts can of course also be used with GP. In Chapter 7

we then come back to GP and its application to data based system identification;

we also demonstrate the effects of these algorithmic enhancements in GP.

3.8 Bibliographic Remarks

There are numerous books, journals, and articles available that survey the field of

genetic programming. In the following we summarize some of the most important

ones.

The following books are widely considered very important sources of information

about GP:

• J. R. Koza et al.: Genetic Programming I - IV ([Koz92], [Koz94], [KIAK99],

[KKS+03a]): A series of books on theory and praxis of genetic programming

by John Koza and varying co-authors

• W. Banzhaf et al.: Genetic Programming – An Introduction [BNKF98]

• W. Langdon: Genetic Programming and Data Structures [Lan98]

• W. Langdon and R. Poli: Foundations of Genetic Programming [LP02]

64 CHAPTER 3. GENETIC PROGRAMMING

The following journals are dedicated to either theory and applications of genetic

programming or evolutionary computation in general:

• Genetic Programming and Evolvable Machines (Springer Netherlands)

• IEEE Transactions on Evolutionary Computation (IEEE)

• Evolutionary Computation (MIT Press)

Moreover, several conference and workshop proceedings include papers related

to genetic programming. Some examples are the following ones:

• Genetic and Evolutionary Computation Conference (GECCO), a recombina-

tion of the International Conference on Genetic Algorithms and the Genetic

Programming Conference

• Congress on Evolutionary Computation (CEC)

• Parallel Problem Solving from Nature (PPSN)

• European Conference on Genetic Programming (EuroGP)

Of course there is lots of GP-related information available on the internet includ-

ing theoretical background and practical applications, course slides and source code.

The probably most comprehensive overview of publications in GP is The Genetic

Programming Bibliography which is maintained by Langdon, Gustavson, and Koza

and available at http://www.cs.bham.ac.uk/ wbl/biblio/.

Finally, publications of the Heuristic and Evolutionary Algorithms Labora-

tory (HEAL) (including several articles on GAs and GP) are available at

http://www.heuristiclab.com/publications/.

65

Chapter 4

Enhanced Selection Concepts

4.1 Gender Specific Parents Selection

Inspired by the idea of male vigor and female choice as it is considered in the model

of sexual selection discussed in the area of population genetics, a new selection

paradigm for GAs called SexualGA has been developed [WA05b]. The main idea

of this gender specific selection scheme is to use two different selection schemes for

the selection of the two parents required for each crossover. So it becomes possible

to simulate the concept of male vigor and female choice by using random selection

as the first selection scheme and another selection strategy with far more selection

pressure as the second one (e.g. roulette wheel selection or linear rank selection).

This gender specific selection concept not only brings the concept of GAs a

little bit more towards its biological archetype, but it also has relevant advantages

compared to classical GA approaches particularly concerning flexibility. By using

two different selection concepts simultaneously a GA user can influence the selection

pressure level of a GA run more precisely. It is thus also possible to control the

interplay between genetic diversity supporting and reducing forces in a more directed

way and to better tune GA behavior depending on the individual needs of the

attacked optimization problem. Further discussions and a comparison of solution

qualities achieved using this principle can for example be found in [WA05b].

66 CHAPTER 4. ENHANCED SELECTION CONCEPTS

4.2 Offspring Selection

Offspring selection (OS, [AWW05a], [AWW05b]) considers not only the fitness of

the parents in order to produce a child for the ongoing evolutionary process. Addi-

tionally, the fitness value of the evenly produced offspring is compared to the fitness

values of its own parents. An offspring is accepted as a candidate for the further

evolutionary process if and only if the reproduction and possibly the mutation oper-

ator were able to produce an offspring that could outperform the fitness of its own

parents. This strategy guarantees that evolution is presumed mainly with crossover

results that were able to mix the properties of their parents in an advantageous way.

As in the case of conventional GAs or GP, offspring are generated by parent

selection, crossover, and mutation. In a second (offspring) selection step, the number

of offspring to be generated is defined to depend on a predefined ratio parameter

giving the quotient of next generation members that have to outperform their own

parents (success ratio, SuccRatio). As long as this ratio is not fulfilled, further

children are created and only the successful offspring will definitely become members

of the next generation (as illustrated in Figure 4.1). When the postulated ratio is

reached, the rest of the next generation’s members is randomly chosen from the

children that did not reach the success criterion.

Within our new selection model, selection pressure selP res is a measure for the

effort that is necessary to produce a sufficient number of successful solutions; it is

defined as the ratio of generated candidates to the population size:

selP res =
|virtualPOP |+ |POP | · SuccRatio

|POP | (4.1)

where virtualPOP denotes the virtual population, the pool of solutions that are

not considered immediately but might be inserted into the new population as “lucky

losers”. Figure 4.1 schematically displays the main aspects of this offspring selection

model.

An upper limit for selection pressure gives a quite intuitive termination heuristics:

If it is no more possible to find a sufficient number of offspring that outperform their

parents, the algorithm terminates.

This offspring selection concepts plays a major role in the SASEGASA algorithm

([AW04]), a segregative genetic algorithm that incorporates aspects of simulated

annealing and self adaptive selection pressure steering, see also Section 5.1.6.

4.2. OFFSPRING SELECTION 67

.

|POP|

POPi

Selection (roulette, linear rank, tournament, ...)
Crossover
Mutation

Child
“better” than

parents?
.

|POOL|

.

|POP|

|POP| * SuccRatio |POP| * (1-SuccRatio)

POPi+1

POOL
No

Yes

Fill up rest of new
population after enough
“better” children
have been created

Figure 4.1: Offspring selection.

68 CHAPTER 4. ENHANCED SELECTION CONCEPTS

69

Chapter 5

Parallel Concepts for Genetic

Algorithms and Genetic

Programming

5.1 Parallelization of Genetic Algorithms

When it comes to parallel and distributed approaches in metaheuristics or, in gen-

eral, computer science, the basic idea is to divide a given task into subtasks and

to solve those simultaneously using multiple processors. In GAs, this divide-and-

conquer approach can be used in different ways; some methods for parallelizing

GAs change the behavior of the GA whereas others do not. Some methods, es-

pecially fine-grained parallel GAs, are designed to exploit massively parallel com-

puter architectures, while others (especially coarse grained parallel GAs) are bet-

ter qualified for multi-computers with fewer and more powerful processing ele-

ments. Detailed descriptions and classification of distributed GAs can be found

in [CPG99], [CP01], [CP97], [AT99] and [Alb05].

Roughly speaking (and following classifications as for example the one given

in [DLJD00]), parallel GA concepts can be classified into global parallelization,

coarse-grained parallel GAs and fine-grained parallel GAs. In practical applications,

the most popular model is the coarse-grained model, also known as the island model.

70 CHAPTER 5. PARALLEL GENETIC ALGORITHMS

5.1.1 Global Parallelization

Similar to the basic behavior of standard GAs, parallel GAs (PGAs) implementing

the global parallelization concept have only one single panmictic population, i.e., all

individuals have the chance to mate with any other individual of the population. In

principle, the algorithm behaves as a standard GA and the global GA has exactly

the same qualitative properties as a serial GA. In most applications the evaluation

of the individuals is parallelized because the fitness of an individual is independent

from the rest of the population and there is no need for communication during this

phase.

The probably most frequently used concept in PGAs is the master-slave ap-

proach: One master node executes the GA (selection, crossover, and mutation),

and the evaluation of the individuals is distributed among several slave processors.

Communication is necessary only insofar as each processor receives its subset of

individuals for evaluation and returns the fitness values after evaluation.

5.1.2 Coarse-Grained Parallel GAs

In coarse-grained PGAs, the population is divided into multiple sub-populations

(also called islands or demes) that evolve more or less independently from each

other and only occasionally exchange individuals; this exchange of individuals is

called migration. In contrast to the global parallelization model, coarse-grained

parallel GAs introduce fundamental changes in the structure of the GA and have

a different behavior than serial GAs. Coarse-grained parallel GAs are also known

as distributed GAs because they are usually implemented on distributed-memory

computers; they are also often referred to as island parallel GAs in analogy to

the island model known in population genetics, a model which considers relatively

isolated demes.

The left part of Figure 5.1 schematically shows the design of a coarse-grained

parallel GA: Each circle represents a simple GA, and there is (infrequent) commu-

nication between the populations. The qualitative performance of a coarse-grained

parallel GA is influenced by the number and size of the certain demes and also by

the information exchange between them (migration). The main idea of this type of

parallel GAs is that relatively isolated demes will converge to different regions of

the solution-space, and that migration and recombination will combine the relevant

solution parts [SWM91]. However, at present there is only one model in the theory

of coarse-grained parallel GAs, namely the SASEGASA algorithm (see Section 4.2),

5.1. PARALLELIZATION OF GENETIC ALGORITHMS 71

that considers the concept of selection pressure for recombining the favorable at-

tributes of solutions evolved in the different demes. The concept of coarse-grained

parallel GAs is the most frequently used parallel GA concept as those are quite easy

to be implemented and a natural extension to the general concept of serial GAs

making use of commonly available cluster computing facilities.

Research in the field of parallel island GA is still going on; for example,

in [HLdVL07] the question whether island model is fault tolerant is discussed in

detail.

5.1.3 Fine-Grained Parallel GAs

The fine-grained model for PGAs, sketched in the right part of Figure 5.1, considers

a large number of very small demes; it defines one spatially distributed population,

and is especially well-suited for massively parallel computers or any other super-

computing architecture.

5.1.4 Hybrid Parallel GAs

A recent research topic in the area of parallel evolutionary computation is the com-

bination of certain aspects of the different population models resulting in so-called

hybrid parallel GAs, of which most are coarse-grained at the upper level and fine-

grained at the lower levels. Alternatively, it is also possible to use coarse-grained

GAs at the high as well as at the low levels in order to force stronger mixing at the low

levels using high migration rates and a low migration rate at the high level [CP97].

Migration

Figure 5.1: Schematic sketches of basic concepts for parallel genetic algorithms.

Left: The coarse-grained parallel GA, right: The fine-grained parallel GA.

72 CHAPTER 5. PARALLEL GENETIC ALGORITHMS

5.1.5 Migration

Especially for coarse-grained parallel GAs the concept of migration is considered to

be the main success criterion in terms of global solution quality. The most important

parameters for migration are:

• The communication topology which defines the interconnections between the

subpopulations (demes),

• the migration scheme which controls which individuals (best, random) migrate

from one deme to another and which individuals should be replaced (worst,

random, doubles),

• the migration rate which determines how many individuals migrate, and

• the migration interval or migration gap that determines the frequency of mi-

grations.

As was for example already summarized and explained in [Aff03] and [Aff05], the

most essential question concerning migration is, when and to which extent migration

should take place. Usually, migration occurs synchronously meaning that it occurs

at predetermined constant intervals. Still, this approach is known to be slow and

inefficient for some problems [AT99].

Asynchronous migration schemes perform communication between demes only

after specific events. The migration rate which determines how many individuals

undergo migration at every exchange can be expressed as a percentage of the pop-

ulation size or as an absolute value. The majority of articles in this field suggest

migration rates between 5% and 20% of the population size. However, the choice of

this parameter is considered to be very problem dependent [AT99].

5.1.6 The SASEGASA

Recent theory of self adaptive selection pressure steering (as explained in Section 4.2)

plays a major role in defying the conventions of recent parallel GA theory. Within

these models it becomes possible to detect local premature convergence, i.e. pre-

mature convergence in a certain deme, exactly if the actually required selection

pressure exceeds an upper limit. Thus, local premature convergence can be de-

tected independently in all demes, which should give a high potential in terms of

5.2. PARALLEL GENETIC PROGRAMMING 73

efficiency especially for parallel implementations. Furthermore, the fact that se-

lection pressure is adjusted self-adaptively with respect to the potential of genetic

information stored in the certain demes, makes the concept of a parallel GA much

more independent in terms of migration parameters.

Offspring selection plays a major role in the SASEGASA algorithm [AW04], a

segregative genetic algorithm that incorporates aspects of simulated annealing and

self adaptive selection pressure steering. This SASEGASA concept is also designed

to retard the unwanted effects of premature convergence by combining concepts of

GAs, ES and simulated annealing. Roughly speaking, premature convergence occurs

when a GA’s population reaches a suboptimal state in which the genetic operators

can no longer produce offspring that are fitter than their parents (e.g. [Fog94])1.

A self-adaptive feature of this approach is realized in that way that the number

of individuals that have to be created in order to produce a sufficient amount of

“successful” offspring depends on the actual stadium of the evolutionary process.

5.2 Parallel Genetic Programming

Of course, as GP is built on the basic ideas of genetic algorithms, any paralleliza-

tion concept for GAs can also be applied for genetic programming. Koza, for ex-

ample, mentions that the asynchronous island approach is the most commonly used

approach to parallelization of genetic programming [KIAK99]; experiments docu-

mented in [AK96] and [KIAK99] indicate that a modest amount of migration (circa

2% of a processor’s population in each of four possible directions) is better than

extremely high or extremely low amounts of migration.

Parallel GP on a network of transputers has for example been described already in

1995 [AK95], and in [BKSS99] a parallel computer system that performs a half peta-

flop per day is described as well as island model based parallel GP using it. Massively

parallel GP and respective application scenarios have been discussed in [JP96], e.g.

In order not to arouse confusion about multi-population genetic algorithms (or

genetic programming) on the one side and multi-agent GP systems on the other

side, we shall here mention some main aspects of these two approaches.

Multi population GAs have already been discussed: Several populations evolve in-

dependently, and depending on their organization (and level of interaction) they can

be classified into global parallelization, coarse-grained parallel GAs and fine-grained

parallel GAs. The coarse-grained model is considered the most popular model for

1Several methods have been proposed to combat premature convergence in genetic algorithms;
some of them are described in-depth in [CG93], [Gol89] and [Jon75].

74 CHAPTER 5. PARALLEL GENETIC ALGORITHMS

practical, it is also known as the island model.

When talking about multi-agent GP systems, normally a different approach is re-

ferred to: Evolving programs of one (or more) GP population(s) are seen as agent(s),

each of which has a defined purpose [Lan98]. These agents show a rather high level

of interaction with each other; programs can for example use other programs by

calling them as sub-routines. Obviously, the ADF concept can be easily integrated

into (or rather combined with) multi agent GP; ADFs can then be either shared by

the agents or specific to each purpose / agent [LP02]. Application examples are also

given in [KIAK99] and [KKS+03a].

75

Chapter 6

Data Based Modeling and System

Identification

6.1 Basics

Data mining is in general understood as the practice of automatically searching for

patterns in large stores of data. Nowadays, incredibly large (and quickly growing)

amounts of data are collected in commercial, administrative, and scientific databases;

several sciences produce extreme amounts of information which are often collected

automatically. This is why it is impossible to analyze and exploit all these data

manually; what is needed are intelligent computer systems that can extract useful

information (such as general rules or interesting patterns) from large amounts of

observations. In short, “data mining is the non-trivial process of identifying valid,

novel, potentially useful, and ultimately understandable patterns in data” [FPSS96].

One of the ways how genetic algorithms and, more precisely, genetic program-

ming can be used in data mining is its application in systems analysis and data based

system modeling: A given system is to be analyzed and its behavior modeled by a

mathematical model, the process is therefore (especially in the context of modeling

dynamic physical systems) called system identification [Lju99].

The principles have already been summarized in the GP introduction chapter,

Section 3.4.3 on symbolic regression, and they shall be repeated and extended in

the following:

The main goal of regression is to determine the relationship of a dependent

76 CHAPTER 6. DATA BASED MODELING

(target) variable t to a set of specified independent (input) variables x. Thus, what

we want to get is a function f that uses x and a set of coefficients w such that

t = f(x, w) + ε (6.1)

where ε represents the error (noise) term.

Applying this procedure we assume that a model can be created with which it

will also be able to predict correct outputs for other data examples (test samples);

from the training data we want to generalize to situations not known (or allowed to

analyze) during the training phase.

When it comes to evaluating a model (a solution candidate in a GP based mod-

eling algorithm, e.g.), the formula has to be evaluated on a certain set of evaluation

(training) data X yielding the estimated values E. These estimated target values are

compared to the original values T , i.e. those which are known from data retrieval

(experiments) or calculated applying the original formula to X.

This comparison is done by calculating the error between original and calculated

target values. There are several ways how to measure this error, one of the sim-

plest and probably most frequently used ones being the mean squared error (mse)

function; the mean squared error of the vectors A and B each containing n values

is calculated as

mse(A,B) =
1

n
∗

n∑
k=1

(Ak −Bk)
2 (6.2)

Some of the major problems of in data based modeling are noise and overfitting:

• In common language, on the one hand we know noise as in general that what

is heard, but on the other hand also as unwanted sound which is added to

the audio signals that are of interest. Furthermore, the concept of noise is

also known in image and video processing, where it is used more to describe

unwanted signals that are rather disturbing. In the context of data based

modeling we often see that additional and somehow unwanted values are added

to the original signals; this disturbing additional data is called noise.

• In machine learning, overfitting is understood as the exceeding fitting of mod-

els to given data. As already mentioned, data based training of models is done

using training data, i.e. sets of training examples of the functions which are

searched for; the problem is that it can happen – especially in cases where too

complex models are trained or the training process is executed too long – that

the learner may adjust to very specific features or samples of the training data.

6.1. BASICS 77

Even a structurally inadequate model may fit to given training data perfectly

if the model is complex enough.

From the point of view of mathematical systems theory, we assume that a

system Σ can be described by a function φ(θ) : u → y, where u and y are

the system’s input and output, respectively, φ describes the structure of the

function and θ denotes the vector of parameters. Data based structure iden-

tification is supposed to find a function ψ(θ̂) : u → y that reproduces the

system’s output. The more parameters are stored in θ̂ the easier it becomes

to reproduce the given training data, but it also becomes more probable that

ψ(θ̂) represents not the basic behavior of Σ but rather the measured signal

(which also includes noise). Of course, as we do in general not know the size

of θ (or the structure of φ), we cannot know when θ̂ becomes “too big”.

Overfitting can also be seen as a violation of Occam’s razor (see Section 3.6 for

explanations on this); fitting too exactly to (noisy) training data might lead to

a model whose ability to generalize is far worse than the general applicability

of a simpler model.

Unfortunately there is no rule how to generally avoid overfitting as we often

do not exactly know the complexity of the system whose behavior is to be

modeled. However, there are several techniques that can help to avoid it:

For instance, overfitting might cause a significant rise of the variances of the

estimated parameter values θ̂i, i.e. the parameter values estimated in inde-

pendent identification runs diverge (which should of course not be the case if

the structure of ψ and the size of θ̂ are correct); early stopping and the use

of validation sets which are not included in the training data can also help to

decrease the probability of overfitting.

Thus, accuracy (on training data) is not the only requirement for the result of

the modeling process: Compact and (if possible) minimal models are preferred as

they can be used in other applications easier. It is, of course, not easy to find that

models that ignore unimportant details and capture the behavior of the system that

is analyzed; due to this challenging character of the task of system identification,

modeling has been considered as “an art” [Mor91].

In the following section we are going to explain the problems of noise and over-

fitting using a simple example.

78 CHAPTER 6. DATA BASED MODELING

6.2 An Example

Let us consider the following example: Be S a system whose behavior is to be

modeled using the input / output (target) training examples given in Table 6.1

(where X and Y values denote input and output data, respectively).

Table 6.1: Data based modeling example: Training data.

X Y X Y

-15 -1571.1605 -4 229.6581

-14 -1405.3919 -3 249.9523

-13 -644.6956 -2 518.4009

-12 -398.4149 -1 294.8873

-11 -69.9755 0 22.0334

-10 -87.4658 1 -193.7337

-9 126.4967 2 -146.7154

-8 227.3979 3 -294.5191

-7 309.4894 4 -179.5208

-6 522.4300 5 -353.2186

-5 474.8867

By looking at the values as shown in Figure 6.1 the suspicion is aroused that there

might be a cubic connection between theX and Y values, distorted by additive noise.

This is in fact correct: The data were generated using the model y = x3−100x+100

and adding noise (uniformly distributed in the interval [-250; +250]). This is why

the original function x3 − 100x+ 100 is also depicted in Figure 6.1.

If we want to evaluate the original formula that was used for simulating the

system (x3−100x+100), we can for example evaluate this model on all integral values

for X in the range of the given training data (i.e., -15, -14, . . . , 4, 5) and calculate

the mean squared differences of these calculated values and the given training target

data for Y which yields 18,556.4719 – the “fitness” of the original formula therefore

is approximately 18,556.

Now let us suppose that we do not know or suspect anything about the system

or its order. We could therefore try for example polynomial approaches of order 2,

3, 10 and 20; thus, we assume model structures of the form

y = a0 + a1x+ a2x
2 + . . .+ anx

n (6.3)

6.2. AN EXAMPLE 79

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Original Data

x3 − 100x + 100

Mean squared error: 18556.4719

Figure 6.1: Data based modeling example: Training data.

for a model of order n. The parameters [a0, a1, a2, . . . , an] are now to be set so that

the model fits the given training data as exactly as possible1.

As we see in the Figures 6.2, 6.3, 6.4 and 6.5, the quadratic model performs

fairly, the model of order 3 performs better on the given training data, and the

models of order 10 and especially 20 perform even a lot better; the polynomial of

order 20 is even able to explain the training data perfectly. The quality of the so

generated models of order 1, 3, 10 and 20 is approximately 244,218, 14,435, 6,605

and 02, respectively.

Now let us assume that test data is available for evaluating the models; this test

data is not included in the training data but rather used for estimating the quality

of the models produced (and of the identification method itself). These test data

are given in Table 6.2.

Now we see that the linear model performs even worse on the test data (msetest ≈
25 ∗ 106, see Figure 6.6); the cubic model, which performed a lot better in training,

is much more accurate also on test data (msetest ≈ 4.5 ∗ 106, see Figure 6.7).

1The source code for this calculation of optimal models of order 2, 3, 10 and 20 is given in
the appendix of this chapter, Section 6.5. There the reader can also find the source code used for
generating the exemplary training and test data sets used here.

2Minor inaccuracies are here due to numerical imprecisions.

80 CHAPTER 6. DATA BASED MODELING

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 1, MSE (training): 244217.8279

Figure 6.2: Data based modeling example: Evaluation of an optimally fit linear

model.

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 3, MSE (training): 14435.8497

Figure 6.3: Data based modeling example: Evaluation of an optimally fit cubic

model.

So, does this trend go on and does thus better fit on training data guarantee

better fit on test data? Analyzing the test performance of the models of order 10

6.2. AN EXAMPLE 81

−15 −10 −5 0 5
−2000

−1500

−1000

−500

0

500

1000
Order 10, MSE (training): 6605.174

Figure 6.4: Data based modeling example: Evaluation of an optimally fit polynomial

model (n = 10).

−15 −10 −5 0 5
−2000

−1000

0

1000

2000

3000

4000
Order 20, MSE (training): 3.4512e−005

Figure 6.5: Data based modeling example: Evaluation of an optimally fit polynomial

model (n = 20).

82 CHAPTER 6. DATA BASED MODELING

Table 6.2: Data based modeling example: Test data.

X Y X Y

6 -381.4362 16 2609.0386

7 -73.1285 17 3147.7311

8 -226.3715 18 3941.3802

9 60.7464 19 5006.4839

10 -84.9143 20 5957.1595

11 251.8633 21 7424.0707

12 877.4408 22 8664.473

13 1149.4064 23 9937.4536

14 1666.7466 24 11452.5263

15 1941.3963 25 12980.5208

−15 −10 −5 0 5 10 15 20 25
−2000

0

2000

4000

6000

8000

10000

12000

14000
Order 1, MSE (test): 25343377.6071

Figure 6.6: Data based modeling example: Evaluation of an optimally fit linear

model on training and test data.

and 20 the answer to this question obviously is: No. In Figure 6.8 we see that the

polynomial model of order 10 predicts something completely out of the range of the

given test data yielding mean squared error value of 5 ∗ 1016; the evaluation of the

model of order 20 is not shown, its mean squared error on test data is 5.8 ∗ 1034.

6.2. AN EXAMPLE 83

−15 −10 −5 0 5 10 15 20 25
−2000

0

2000

4000

6000

8000

10000

12000

14000
Order 3, MSE (test): 4516768.3077

Figure 6.7: Data based modeling example: Evaluation of an optimally fit cubic

model on training and test data.

−15 −10 −5 0 5 10 15 20 25
−2000

−1000

0

1000

2000

3000

4000

5000

6000

7000

8000
Order 10, MSE (test): 49584496262619024

Figure 6.8: Data based modeling example: Evaluation of an optimally fit polynomial

model (n = 10) on training and test data.

84 CHAPTER 6. DATA BASED MODELING

Summarizing this example we give an overview of training and test errors for

the data and models mentioned above in Figure 6.9 (models of order 0 and 5 were

created in the same way as the other models). This behavior is often observed: As

the number of parameters increases, often the training errors tend to decrease; in

the beginning, test errors are also likely to decrease3, but after some time (as soon

as overfitting happens), test errors start to increase with increasing training effort.

Please note that the training and test errors shown in Figure 6.9 are depicted on a

logarithmic y-axis.

0 2 4 6 8 10 12 14 16 18 20
10

0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

Training Error vs. Test Error

Test Error

Training Error

n

Figure 6.9: Data based modeling example: Summary of training and test errors for

varying numbers of parameters n.

3In the summary chart displayed in Figure 6.9 we have intentionally omitted the training and
test errors for n = 2. The reason is that it would have shown that in this particular case the
test error for the quadratic model is a lot worse than for the linear as well as the cubic model;
this would be correct, of course, but it so it is easier to sketch the characteristic behavior of first
decreasing and then increasing test errors as the number of parameters increases.

6.3. THE BASIC STEPS IN SYSTEM IDENTIFICATION 85

6.3 The Basic Steps in System Identification

Variable selection

Modeling
(Structure & parameter

identification;
linear, polynomial, ANN, …)

Test models

Evaluation
(by experts)

Evaluation
(by statistics)

Data preprocessing
(Filtering, downsampling,

detection of redundancies, …)

Sensor data
Structure

identification

Parameter
identification

ax’ + bx² = 0

Success? 1.24*x’ – 4.38*x² = 0
No

Yes

Sensor data

Initialization

(a) (b)

Result

Result

Figure 6.10: The basic steps in system identification ([BES01], [WEdR06]).

The following two phases in data based modeling are often distinguished: Struc-

tural identification and parameter optimization.

• First, structural identification is hereby seen as the determination of the struc-

ture of the model for the system which is to be analyzed; physical knowledge,

for example, can influence the decision regarding the mathematical structure

of the formula. This of course includes the determination of the functions used,

the order of the formula (in the case of polynomial approaches, e.g.) and, in

the case of dynamical models, potential time lags for the input variables used.

In the simple example given previously this step was the decision to use a

polynomial modeling approach; for example, the decision to try a polynomial

model y = a0 + a1x + a2x
2 + . . . + anx

n of specific orders was the structural

identification part. As we tried several polynomials of different orders we sim-

ply executed the procedure several times; this is exactly what is indicated by

the feedback loop in Figure 6.10 (a).

• Parameter identification is then the second step: Based on training data, the

parameters of the formula are determined (optimized) meaning that the coef-

ficients and, if used, time lags are fixed. Basically, this is what we did in the

previous example by calculating the coefficients for the polynomials of different

orders separately.

86 CHAPTER 6. DATA BASED MODELING

This separation is schematically shown in the left part (a) of Figure 6.10 (adapted

from [BES01]).

Of course, the whole process of building models out of data includes more steps

than those mentioned above. Especially data preprocessing is a very important issue,

i.e. preparing data before it is used for the “real” modeling process. For example,

as we have proposed in [WEdR06], data downsampling, filtering and the removal of

data without information should be applied in order to retrieve preprocessed data

on which it is easier to efficiently generate appropriate models.

Variables selection is also often considered a key issue in data based modeling: Those

variables are selected from the pool of variables which shall be used for the essential

modeling process. For example, variables which do not include information (since

they are constant in the whole data set, e.g.) or are redundant to other ones can

be omitted for simplifying the modeling process. Variables selection can be thereby

done using expert knowledge or statistical methods. Exhaustive statistical methods

are available as well as sequential iterative forward or backward variable selection:

• Exhaustive search is executed by computing all possible combinations of vari-

ables and evaluating them; exactly that combination of variables will be se-

lected which provides best approximation of measurement data. This method

is able to provide an optimal solution (if the process is linear), but especially for

higher dimensional problems (including big numbers of variables) it requires

excessive computation time. In order to overcome this drawback, forward

and backward selection can be used as alternatives even if they provide only

sub-optimal solutions.

• In sequential forward selection the algorithm sequentially derives the list of

input variables. In the first step, only one input variable is considered where

that variable is selected that minimizes the sum of squared errors. In the

next step, another input variable is selected where once again that variable is

chosen which minimizes the sum of squared errors; the algorithm iteratively

adds more and more input variables until a predefined accuracy is reached and

hence the algorithm terminates. Of course the results depend on the chosen

basis functions.

• The main difference when applying backward selection is that the algorithm

starts with all variables available as set of selected variables and then iteratively

removes variables that do not have a statistically measurable connection with

the observed (measured) target values.

• Hybrid variants combining backward selection and a subsequent forward selec-

tion step have also been investigated for producing good results very efficiently.

6.4. DATA BASED MODELING USING GENETIC PROGRAMMING87

These basic steps of the data driven modeling process are shown in the right part

(b) of Figure 6.10.

As we see in both diagrams shown in Figure 6.10, the total system identification

process based on measurement data is not finished as soon as models are created.

A decision whether the model at hand is appropriate and fulfills the given quality

requirements has to be made during a subsequent validation step. If this validation

(often also called test phase4) fails, the process might be repeated starting again at

the structural identification or data preprocessing step.

The major drawback of this classical approach is obvious: As the structure of

the model has to be fixed before identifying parameters, thus it has to use a priori

knowledge. However, there is a large number of applications in which the a priori

model information is not available to the desired precision. For all these cases, several

generic so-called “model free” approaches are widely used, ranging from simple static

maps up to self-organizing neural networks. For a critical discussion of ANN based

identification of a diesel engine’s NOx emissions see for example [dRLF+05], [PP01]

for a specific spectral analysis tool to describe the behavior of a plant or [THL94]

for a neural network approach.

In spite of the evident simplicity of generic approaches, the drawbacks are known

as well: Over-parameterization, lack of extrapolation and often even of interpolation

capabilities [dRLF+05], large data requirements etc. All these problems are related

to the fact that these approaches essentially reorganize the data, but nothing more.

6.4 Data Based Modeling Using Genetic Pro-

gramming

Using genetic programming for data based modeling brings along the advantage that

we are able to design an identification process that automatically incorporates vari-

ables selection, structural identification and parameters optimization in one process.

The function f which is searched for is not of any pre-specified form when ap-

plying genetic programming to data based modeling; during the GP process, low-

level functions are combined to more complex formulas. Given a set of functions

f1, . . . , fu, the overall functional form induced by genetic programming can take a

4Please note that in some cases the terms validation and test phase are used synonymously, but
often (and also in the following test case documentations) the validation and test phase are are
separate model analysis phases. Detailed explanation is to come in the following sections.

88 CHAPTER 6. DATA BASED MODELING

variety of forms. Usually, standard arithmetical functions such as addition, subtrac-

tion, multiplication, and division are in the set of functions f , but also trigonometric,

logical, and more complex functions can be included.

Test Models
Evaluation

(Statistics, Expert)

Data Preprocessing
(Filtering, downsampling,

detection of redundancies, …)

Sensor Data

Result

Population of Models

-

x +

x x

*

x *

x x

-

x +

x *

x x

Test Models

Genetic
Programming

Figure 6.11: The basic steps of GP-based system identification.

Thus, the key feature of this technique is that the object of search is a symbolic

description of a model, not just a set of coefficients in a pre-specified model. This

is in sharp contrast with other methods of regression, including linear regression,

polynomial approaches, or also artificial neural networks, where a specific model

structure is assumed and often only the complexity of this model can be varied. Of

course, data preprocessing and a separate validation / test phase are also parts of

the GP-based modeling process; the main workflow is sketched in Figure 6.11.

In the following chapters we shall see, how data based modeling using genetic

programming has been implemented in HeuristicLab (HL): After giving a general de-

scription of the basics of this GP implementation in Chapter 7, application domains

and respective specific aspects implemented in HL are discussed in Chapter 8.

6.5. APPENDIX: FITTING POLYNOMIALS TO DATA 89

6.5 Appendix: Fitting Polynomials to Data

In Section 6.2 we have given a simple example for the basic steps in data based

modeling. On the basis of given training and test data we have demonstrated basic

concepts such as structural identification, parameter identification, and training and

test evaluation of models. A polynomial approach is demonstrated, i.e. all models

are of the form

y = a0 + a1x+ a2x
2 + . . .+ anx

n (6.4)

and the task is to determine optimal values for n and a0, a1 . . . an.

For the fitting of a polynomial of order n we first compose a matrix M as a

concatenation of the input values (namely the x values of the training data, i.e. all

values in [−15; 5]) potentiated by 0, 1, . . . , n:

Z = [X0X1 . . .Xn], Xk = [xk
1x

k
2 . . . x

k
N]T (6.5)

where Xk is a column vector consisting of all N input values to the power of n.

Secondly, the training target values Y are, after transposing the matrices, divided

by Z using the right matrix division function (/); this numerically solves the system

of linear equations defined by the order of the model n, the input data Z and

the target values Y . Thus, we get the coefficients a0, a1 . . . an in the result of this

division (as a vector p) and calculate the estimated target values Ŷ (in the source

code denoted as Yhat) by multiplying poly and Z; this represents the evaluation of

the identified polynomial for each given sample.

The training and test qualities are calculated using the mean squared errors

function, i.e. we calculate the sum of squared residuals and divide by the number

of samples considered. The data documented in Section 6.2 were generated using a

noise range of 500.

All data generation and modeling steps used in Section 6.2 were implemented in

MATLAB c©, Version 7.0 (R14). In the following we give the essential parts of the

source code that was used for generating the data used and fitting the models to the

given training data. The random generator is initialized in the beginning so that

the results are comparable in each execution.

90 CHAPTER 6. DATA BASED MODELING

function StructureIdentificationExample(n, TrainingStart,

TrainingEnd, TestStart, TestEnd, NoiseRange)

%Creates training and test data for the specified ranges:

%- One input X, one output Y.

%- Y = X^3 - 100X + 100 + noise

%- Uniformly distributed noise is added

%A polynomial modeling approach is executed for order n; parameters are fit

%to training data using the right matrix division command.

%Results are displayed graphically including model quality information (MSE).

% -- preparations -----------

if nargin<6, NoiseRange = 500, end; if nargin<5, TestEnd = 25, end;

if nargin<4, TestStart = 6, end; if nargin<3, TrainingEnd = 5, end;

if nargin<2, TrainingStart = -15, end; if nargin<1, n = 5, end;

rand(’state’,12345);

X = TrainingStart:TrainingEnd; for i=1:length(X)

Y(i,1) = X(i)^3 - 100*X(i) + 100;

Y_(i,1) = rand(1)*NoiseRange - NoiseRange/2;

Y(i,1) = Y(i,1) + Y_(i,1);

end Z = zeros(length(X), n+1); for j = 1 : (n+1)

for i=1:length(X)

Z(i,j) = X(i)^(j-1);

end

end

Y = Y’; Z = Z’;

x = TrainingStart:0.01:TrainingEnd; z = zeros(length(x), n+1); for j

= 1 : (n+1)

for i=1:length(x)

z(i,j) = x(i)^(j-1);

end

end z = z’;

% -- training -----------

poly = Y/Z; Yhat = poly*Z; error = Yhat-Y; mse =

sum(error.*error)/length(Y)

y = poly*z;

figure plot(X,Y,’s’, ’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’k’,

’MarkerSize’,5) hold on; plot(x,y,’k’, ’LineWidth’,2); hold off;

grid on; titlestr = [’Order ’ num2str(n) ’, MSE (training): ’

num2str(mse)]; title(titlestr);

% -- test -----------

Xtest = TestStart:TestEnd; for i=1:length(Xtest)

Ytest(i,1) = Xtest(i)*Xtest(i)*Xtest(i) - 100*Xtest(i) + 100;

Ytest_(i,1) = rand(1)*NoiseRange - NoiseRange/2;

Ytest(i,1) = Ytest(i,1) + Ytest_(i,1);

end

Ztest = zeros(length(Xtest), n+1); for j = 1 : (n+1)

for i=1:length(Xtest)

Ztest(i,j) = Xtest(i)^(j-1);

end

end

Ytest = Ytest’; Ztest = Ztest’; YhatTest = poly*Ztest; errorTest =

YhatTest-Ytest; mseTest = sum(errorTest.*errorTest)/length(YhatTest)

x = TrainingStart:0.01:TestEnd; z = zeros(length(x), n+1); for j = 1

: (n+1)

for i=1:length(x)

z(i,j) = x(i)^(j-1);

end

end z = z’; y = poly*z;

figure plot([X Xtest],[Y Ytest],’s’, ’MarkerEdgeColor’,’k’,

’MarkerFaceColor’,’k’, ’MarkerSize’,5) hold on; plot(x,y,’k’,

’LineWidth’,2); hold off; grid on; titlestr = [’Order ’ num2str(n)

’, MSE (test): ’ num2str(mseTest)]; title(titlestr);

91

Chapter 7

Genetic Programming Based

System Identification in

HeuristicLab

7.1 Introduction

The HeuristicLab (HL) is our framework for developing and testing optimization

methods, parameters and applying these on a multitude of problems. The develop-

ment of HL was started in 2002 and has meanwhile lead to to a stable and productive

optimization platform; it is continuously enhanced and topic of several publications

([WA04c], [WA04a], [WA04b], [WA05a] and [WWP+07]). On the respective web-

site1 the interested reader can find information about the design of HeuristicLab, its

development over the years, installable software, information, documentation and

publications in the context of HeuristicLab and the research group HEAL2.

One of the most beneficial aspects of HeuristicLab is its plug-in based archi-

tecture. In software engineering in general, plug-in based software systems have

become very popular; by not only splitting the source code into different modules

but compiling these modules into enclosed ready to use software building blocks, the

development of a whole application or complex software system is reduced to the

task of selecting, combining and distributing the appropriate modules. Due to the

support of dynamic location and loading techniques offered in modern application

frameworks as for example Java or .NET, the modules do not need to be stati-

1http://www.heuristiclab.com/
2Heuristic and Evolutionary Algorithms Laboratory, Linz / Hagenberg, Austria

92 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

cally linked during compilation but can be dynamically loaded at runtime. Thus,

the core application can be enriched by adding these building blocks, which are

therefore called “plug-ins”.

Problem representations, solution encodings and numerous algorithmic concepts

have in the meanwhile been developed for HeuristicLab realizing a large number of

heuristic and evolutionary algorithms (GAs, GP, evolution strategies, tabu search,

etc.) for a wide range of problem classes including the traveling salesman problem,

the vehicle routing problem, real-valued test functions in different dimensions, and,

last, but not least, also data based modeling.

But not only the software platform itself is flexible and extensible, also the algo-

rithms created in HL are (since version 2.0) not fixed and can be not only param-

eterized, but even designed by the user. This is possible by organizing all solution

generating and processing methods into operators working on single solutions or sets

of solutions. Standardizing this interaction can be done by defining a small set of

fixed interfaces; a solution processing operator is simply a method taking a single

solution (for example evaluation) or a set of solutions (for example selection) and

returning a single solution or multiple solutions.

By providing a set of plug-ins, each realizing a specific solution representation

or operation, the process of developing new heuristic algorithms is revolutionized.

Algorithms do not need to be programmed anymore but can be created by combining

different plug-ins. This approach has a huge advantage: By providing a graphical

user interface for combining plug-ins, no programming or software engineering skills

are necessary for this process at all. As a consequence, algorithms can be modified,

tuned or developed by experts of different fields with less or no knowledge in the field

of application development. This transfers development from software engineering

to the concrete application domains profiting from the profound knowledge of the

users and eliminating the communication overhead between optimization users and

software engineers. [WWP+07]

Please note that by doing so, of course data preprocessing steps such as filtering,

downsampling and other operations can also be integrated into the whole GP-based

identification algorithm. Still, as data preprocessing is again a highly non-trivial

task on its own consisting of several critical issues, we are not going to go into this

topic any further.

So, this extensible and flexible concept enables us to combine the advanced GA

concepts with genetic operators for GP; operators for analyzing dynamics in GP

populations can be integrated as well as evaluators that compare training, validation

7.2. PROBLEM REPRESENTATION 93

and test qualities.

Here we want to summarize how system identification problems are represented

in HeuristicLab and how we have designed an appropriate solution encoding and

respective operators.

7.2 Problem Representation

A system identification problem instance has to include all data which are needed

in genetic programming for generating models describing the underlying system’s

behavior.

7.2.1 The Data Base and Data Partitions

The most important part of the representation of a system identification problem,

that is to be tackled with genetic programming, is the data collection storing all

available measurement data; the index of the target variable also has to be known

and available for the modeling algorithm.

Furthermore, there also has to be an indication which data samples are to be

used as training, validation, and test data (in our case given as start and end sample

indices). The use of these data segments is different for each particular partition:

• Training data are the real basis for the algorithm; the modeling algorithm is

allowed to use these training examples of the input / output behavior of the

system at hand (or rather of the model that is to be learned) for determin-

ing the quality of solution candidates (which in our case here are models /

formulae).

• Validation data are available for the training algorithm, but normally not

used for the essential evolutionary optimization process. These data can for

example be used for detecting overfitting phenomena, for pruning or selecting

the model that is eventually returned.

• Test data, finally, may not be considered by any part of the training algorithm.

These data shall be used for testing the models created on new data, i.e. data

not included in the algorithm’s data base, so that we can determine whether

the algorithm was able to generate appropriate models or not.

94 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

Additionally, there also has to be a possibility to state which variables of the

data base are really available for the modeling algorithm. For example, this becomes

relevant when sensor data is included in the data base and used for statistical analysis

(correlation analysis, automated fault detection, etc.), but the models that are to

be generated for a certain target variable are still not supposed to contain these

variables.

7.2.2 Scaling and De-Scaling Basic Problem Data

In theory, variances in the ranges of the variables should be no problem for the GP

process simply because multiplicative factors of any range can be produced. Still, in

several applications we have seen that approximately equally ranged variables can

be advantageous for GP’s ability to produce reasonable models.

Thus, a mechanism for scaling and de-scaling variables has been integrated into

the problem data management: Variables can be scaled using linear, exponential or

logarithmic transformations; the respective parameters are stored as metadata for

the basic data so that models created for manipulated data can be re-formulated

and applied to original data without changing the model’s semantics. Of course, this

also allows the application of models, that were originally created for a manipulated

data base, to the original data base or any other manipulated variant of the original

variables collection.

To be a bit more precise, the scaling functions available are:

• The linear transformation function lt needing two parameters, namely an ad-

ditive offset o and a multiplicative factor m. Applying this function to a value

x returns lt(o,m, x) = (x + o) ∗ m. This function is used for linearly scal-

ing data to fixed ranges (as for example [-1,+1] or [0, 100]) or to Gaussian

distributed variables with mean average 0 and standard deviation 1 (which

is done by subtracting the respective variable’s average and dividing by the

variable’s standard deviation).

The inverse function to lt(o,m) is lt−1(o,m): lt−1(o,m, x) = x/m− o.

• The exponential function exp which needs no parameters: exp(x) = ex. The

inverse function to exp, exp−1, is the logarithmic function log.

• The logarithm function log which also needs no parameters: log(x) = ln(x).

It is the inverse function to exp, and exp is also the inverse function to log.

Let us assume the following examples: Be T the target variable and X1, X2

7.2. PROBLEM REPRESENTATION 95

and X3 potential input variables; furthermore be m a model created for the given

data after scaling T to T ∗ = lt1(o1, m1, T), X2 to X2
∗ = log(X2) and X3 to

X3
∗ = lt2(o2, m2, X3).

If a model which was created on modified data is to be evaluated on the original

data base, then all references to modified input variables have to be replaced by

functions that introduce the respective transformations into the model, and the in-

verse transformation of the target variable has to be applied to the whole expression

by introducing the respective inverse function into the model. In out example, let

m be

m : T ∗ = X1 +X2
∗/X3

∗ (7.1)

and the model m′ the respective model equivalent to m with respect to original data.

By introducing the transformations of input variables into the model and applying

the inverse of the target variable’s transformation to the resulting model we get

m : T ∗ = X1 + log(X2)/lt2(o2, m2, X3) (7.2)

⇔ m′ : T =
X1 + log(X2)/lt2(o2, m2, X3)

m1
− o1 (7.3)

Of course, this procedure can also be applied vice versa, i.e. when it comes to

transforming a model created for (or transformed so that it fits to) original data

into an equivalent one that is applicable to modified data. In this case, the transfor-

mations applied to the input variables have to be inverted and the target variable’s

transformation applied to the whole resulting expression.

7.2.3 Definition of Minimum and Maximum Time Offsets

Pure availability of a variable is still not sufficient information; what we also need

is whether and which time offsets are allowed when referencing a variable. For

example, let y be the target variable and u, v and w possible input variables for a

model for y; as we want to model y for time (sample) t we search for a model for

yt. The first crucial decision to be made is whether we want to generate static or

dynamic models: In static models, only inputs at time t are considered for describing

the target variable at time t and the target yt would be described as a function

f : yt = f(ut, vt, wt). In dynamic modeling, on the contrary, input variables can also

be referenced with a certain time lag meaning that not values of time t are used but

rather “historic” data; for example, f could then be a function modeling yt using

ut−4, vt−1, vt−2 and wt.

In several application scenarios one also explicitly excludes input values of time

t; what we get by excluding contemporary input data is a prediction model that

96 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

can also be used for modeling future values on the basis of previously measured /

recorded data.

Furthermore, the generation of autoregressive models also becomes possible: Au-

toregressive models are formulas that model an output yt incorporating previous

outputs yt−1, yt−2, . . . , yt−tmax ; an exemplary autoregressive model for our example

could be fAR : yt = ut + vt−2 + yt−1.

So, as the target variable can also be used with certain time offsets, GP is also able

to generate autoregressive models.

7.2.4 Metadata

Lots of additional information for system identification problem instances can also

be not essentially necessary, but very useful in the modeling process:

• Complexity limits for the models that are to be created can be given as max-

imum values for the height as well as the size of the models. Height hereby is

equal to the height of the respective model structure tree as is to be described

in Section 7.4, size refers to the number of nodes of the structure tree.

• Meta-Information such as descriptions of the data and the underlying system

or descriptions and names of the variables in the data base, e.g.

• A collection of function and terminal definitions that can be used for compil-

ing and evaluating models – a detailed description about the management of

function bases is about to come in Section 7.3.

• The best solutions found so far - this of course also has to include at least

information about

– the data partitions used as training and validation data,

– the evaluation operator and respective parameter settings applied for

evaluating solution candidates,

– which variables were used in the modeling process applying which mini-

mum and maximum offsets, and

– the function and terminal definitions that were available for compiling

and evaluating models.

7.3. THE FUNCTIONS AND TERMINALS BASIS 97

7.3 The Functions and Terminals Basis

7.3.1 Motivation, Introduction

The correct design of the functions and terminals basis used for compiling and

evaluating formulas is one of the most crucial issues in the design of a GP-based

system identification approach; for the sake of simplicity we are in the following going

to refer to this pool of definitions of functions and terminals as functional basis. In

fact, this is not wrong at all, anyway: Terminals can also be seen as functions taking

no argument. As we will see in the following, terminal definitions are also functions

that take several inputs such as a reference to the data basis, the variable and sample

indices, the (time) offset and a concrete coefficient for calculating the returned value.

Still, as the handling of terminals differs a lot of the handling of functions, we also

treat them separately whenever necessary.

As the HeuristicLab and all plug-ins are implemented in C# using

the .NET framework, the most obvious approach would be to use the

functions of the .NET framework for building models; essentially, this

was done in our GP implementation for the versions 1 and 1.1 of HL

([Win04], [WAW05a], [WAW05b], [WAW06a], [WAW06e], [WAW06c], [WEA+06]).

During own research activities and in the course of discussion with research

partners in academics as well as industries we became more and more convinced

that it would be a great benefit for GP based modeling if the users were able to

program and parameterize the functions and terminals by themselves. So, starting

from the implementation in HL 2.0, a flexible and user-programmable functional

basis has been used.

The definition of the evaluation of functions and terminals surely is the core

of any functions and terminals management unit. So, for each function as well as

for every terminal definition we have to be able to manage the source code that

represents its evaluation definition, to compile it and provide compiled functions to

the GP process.

In detail, these definitions are designed and implemented in HeuristicLab as is

explained in following sections.

98 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

7.3.2 Definition of the Evaluation of Terminals

The definition of a terminal evaluation is a function that requires a reference to the

data basis, variable and sample indices, a sample offset and a coefficient as inputs;

depending on the selected terminal definition, this information is processed and the

return value calculated. So, a terminal definition t is a function of the data collection

D, the variable index v, the sample (time) index s, a sample offset o and a coefficient

c.

Let us consider the following examples tvar, tdiff and tconst representing standard

variable, differential and constant definitions:

tvar(D, v, s, o, c) = c ∗D[v, s− o]

tdiff (D, v, s, o, c) = c ∗ (D[v, s− o] −D[v, s− o− 1])

tconst(D, v, s, o, c) = c

tvar calculates the product of the given coefficient multiplied with the value of vari-

able v at sample index s shifted by o indices, thus taking the value D[v, s− o]. tdiff

calculates the difference of the referenced values at D[v, s− o] and its predecessor,

D[v, s− o− 1], and returns it multiplied with the coefficient c. tconst, finally, simply

returns the given coefficient and thus represents a constant terminal definition.

The definition of such a terminal can of course become arbitrarily simple or

complex, depending on the user’s intention. Anyway, in HL the definition of the

evaluation functions has to be done in C# notation using the following interface:

public double TerminalEvaluation(double[][] Data,

int Var, int Sample, int Offset, double Coeff)

The implementation of a terminal definition thus is a method following the in-

terface given above. The respective core method source codes for the exemplary

terminals tvar, tdiff and tconst could be defined in the following way:

tvar : return Coeff * Data[Var][Sample-Offset];

tdiff : return Coeff * (Data[Var][Sample-Offset] -

Data[Var][Sample-Offset-1]) ;

tconst : return Coeff;

7.3.3 Definition of the Evaluation of Functions

The interface for function evaluation definitions is a lot simpler than the evaluation

interface for terminals as described above: A function is simply defined by the way

7.3. THE FUNCTIONS AND TERMINALS BASIS 99

how it calculates a value given a set of input values. Additionally, we also use a

variant index so that it is possible to define several variants of functions within one

function definition. So, a function definition f is a function of the input data vector

input and the variant v.

Let us consider the following examples fadd, fdiv and ttrig representing addition,

division and trigonometric functions:

fadd(input, v) = sum(input)

fdiv(input, v) = input[1]/input[2]

ftrig(input, v) =

⎧⎪⎪⎨
⎪⎪⎩

sin(input[1]) : v = 1

cos(input[1]) : v = 2

tan(input[1]) : v = 3

error : otherwise

fadd calculates the sum of all input values, fdiv divides the first argument by the

second one, and ftrig returns the sine, the cosine or the tangent of the first input,

depending on the value of the variant index passed.

In HL the definition of the evaluation functions has to be done using the following

interface:

public double FunctionEvaluation(double[] Args, int Var)

The implementation of a function definition thus is a method following the in-

terface given above; the respective core method source codes for the exemplary

terminals fadd, fdiv and ftrig could be defined in the following way:

fadd : double d = 0;

for (int i=0; i<Args.Length; i++)

d += Args[i];

return d;

fdiv : if(Args[1]==0) return double.NaN;

return (Args[0] / Args[1]);

ftrig : if (Var==0) return Math.Sin(Args[0]);

if (Var==1) return Math.Cos(Args[0]);

if (Var==2) return Math.Tan(Args[0]);

throw new Exception("Unknown function variant");

Of course, logical functions can so be integrated into the functions pool as well as

Boolean functions connecting logical and Boolean functions.

100 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

Please note that the functions interface definition actually implemented in HL

is a bit more sophisticated. In fact, what is also handed over to the function is

an array storing a certain number of previously calculated values, i.e. a history of

exactly this function:

public double FunctionEvaluation(double[] Args, int Var,

double[] History)

If the history array is used in the evaluation function, then a number of pre-

defined calculated values are automatically saved in an appropriate array, stored

and given to the function at its next evaluation. Thus, it is for example possible to

implement an integral function fint using the history hist:

fint(input, v, hist) = hist[1] + input[1]

which in HL / C# notation could be implemented as

fint : return = History[0] + Args[0];

7.3.4 String Representations of Terminals and Functions

Even though the evaluation on a given data basis is the most important task for

a model, appropriate string representations are also necessary for representing for-

mulas in prefix notation, standard notation (as a mixture of infix and prefix nota-

tions) or in such a way that they can be immediately incorporated in MATLAB c©,

Mathematica c©, LATEX or C/C++/C# program code.

For each representation variant there are specific interfaces for terminals and

functions; in all cases character strings are returned, but the input parameters vary

significantly. The functions terminal string representations are given the same pa-

rameters as the evaluation functions (except for a reference to the data basis) and,

in some cases, the variable name; string representation methods for functions take

string respective string representations of the function’s inputs and return composed

strings representing the function and its inputs.

In the following we here use the standard (infix/prefix) notation for demonstrat-

ing the mechanisms that are to be described. For terminals and variables we use

the interfaces

public string Terminal Standard(int Var, string VarName,

int Offset, double Coeff) and

public string Function Standard(string[] Args, int Var),

7.3. THE FUNCTIONS AND TERMINALS BASIS 101

respectively. For standard variables and the addition function, for example, the

respective method implementations could be given in the following way:

tvar : string s = "[" + Coeff.ToString() + "*";

s = s + VarName;

if (Offset==0) s = s+"(t)";

else s = s+"(t-" + Offset.ToString() + ")";

return (s + ")]");

fadd : string s = "(" + Args[0];

for(int i=1; i<Args.Length; i++)

s = s + "+" + Args[i];

s = s + ")";

return s;

The standard string representations of two terminals referencing variable w with

time-offset 4 and coefficients 1.2 and 0.9, respectively, and their addition would so

result in [1.2*w(t-4)], [0.9*w(t-4)], and ([1.2*w(t-4)]+[0.9*w(t-4)]).

7.3.5 Parameterization of Terminals and Functions

Apart from the definitions of evaluation and string representation of terminals and

functions there are several respective parameter settings; these are summarized in

this section.

Terminal definitions can be parameterized in the following ways:

• The data type and the distribution function of the coefficients allowed has to

be defined: Coefficients can be

– either integral values or real-valued, and

– their distribution can be either uniform (defined by minimum and max-

imum values) or Gaussian (defined by average μ and standard deviation

σ).

• The set of possible parent types can be defined, i.e. the user is able to declare

which functions are allowed to use the respective terminal as input and which

ones are not allowed to do so.

This selection of possible parent functions can be done either explicitly by

102 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

selecting a set of functions that are allowed as direct parents, or implicitly by

defining which functions are not allowed as parents of the respective terminal

type.

The parameterization possibilities for function definitions are even more than

those for terminals:

• An arbitrary number of variants can be defined. Apart from considering these

variants in the method code (as can be seen in the code for the trigonometric

function definitions in Section 7.3.3), each variant can be activated and de-

activated independent of the other variants.

• Additionally, for each variant the function’s arity (its number of input param-

eters) has to be defined. The arity can be either fixed or given as a range

defined by minimum and maximum values.

• Each function has to define its neutral element(s), also called identity ele-

ment(s). In binary operations working on elements of the set X, an element e

of X is called left identity with respect to the operation ◦ if e ◦ a = a for all

elements a in X; in analogy to this, e is called right identity with respect to ◦
if a ◦ e = a for all elements a in X.

This concept of elements that leaves other elements unchanged when combined

with them is here used in a more general way as we define neutral (identity)

elements for each possible input index of a function:

– There can be one neutral element that is used for all input indices, or

– neutral elements can be defined for each possible input index indepen-

dently.

For the addition or subtraction functions, e.g., the neutral element for all

possible indices is 0, for the multiplication function it is 1 for all inputs. But

when it comes to the division, then the identity elements have to be defined

separately for each input: As we divide the first input by the second one, the

neutral element for the first index is 0, whereas for the second input it is 1

(because 0/a = 0 and a/1 = a for all a ∈ R).

• Similar to the parent type restrictions that can be set for terminals, functions

can also define a set of valid parent function definitions. Again, this can be

done either directly or indirectly by selecting functions that are not allowed

as parent function types.

7.4. SOLUTION REPRESENTATION 103

• Finally, functions can also define child type restrictions. This can also be

done directly by selecting certain function or terminal definitions as valid child

types (i.e. types that are allowed as inputs for the function), or by explicitly

excluding certain types from the set of possible input definitions.

In order to maximize the flexibility of this child type management concept,

these selections can be done either for all input indices uniformly or for each

input index separately.

Function and terminal definitions and their respective parameterizations are col-

lected in functional and terminal management units which we here, as already men-

tioned before, call “functional bases”. In each functional basis we not only store

function and terminal definitions, but also which ones are activated and which ones

are not, and an initial weighting factor is also given for each definition denoting

its relative probability to be chosen when it comes to selecting a randomly chosen

function or terminal.

7.4 Solution Representation

7.4.1 Representing Formulas by Structure Trees

As we have now described how function and terminal definitions are managed, we

shall now take a look at the representation of solution candidates for genetic pro-

gramming based system identification. The most intuitive way to represent models

is modeling them as structure trees; starting with Koza’s first GP attempts using

LISP structure trees, the concept of trees representing formulas has had a long

tradition in GP (see [Koz92], [KKS+03a], [LP02], [Kei02] or [PMR04], e.g.).

Structure trees consist of nodes and references from parent nodes to their chil-

dren. Thus, for representing formulas we have to create node structures that are

able to store all parameters needed as well as references to the function and terminal

definitions used; this concept is visualized in Figure 7.1.

The following parameters have to be stored by structure nodes in addition to

references to their function or terminal definition:

• Each terminal node has to store the index of the variable it references, the

samples (time) offset and the value of the coefficient that is to be used as a

multiplicative factor.

104 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

Functional Basis

Func 1

Func 2

Func 3

Term 1

Term 2

Params

Params Params Params

Params

Params
function

functionfunction

terminal terminal terminal

Figure 7.1: Structure tree representation of a formula.

Thus, when it comes to evaluating a terminal node for a given data base and

a certain sample index, the referenced terminal definition is called using the

given data and sample index as well as the parameters stored in the node; the

value returned by the terminal definition function is returned as result of the

node’s evaluation or representation method.

• A function node has to store not only references to its child nodes and a

function definition, but also the index of the function’s variant. So, when

it comes to evaluating a function node or compiling its string representation

for a given data base and a specific sample index, the children nodes are

first evaluated with these data and then the referenced function is called with

the children’s returned values and the variant index stored. The result of

this function call is then returned as the result of the node’s evaluation. As

we have described in Section 7.3.3, some functions also consider previously

calculated values. So, function nodes additionally have to manage history

arrays in which the calculated values are stored and which are also given to

the function definition at the next sample’s evaluation.

7.4. SOLUTION REPRESENTATION 105

7.4.2 Operators for Initializing and Manipulating Model

Structures

7.4.2.1 Initialization

The initialization of structure trees is essentially the compilation of random tree

structures referencing to randomly chosen function and terminal definitions. Of

course, all constraints given by the functional basis have to be considered:

• The number of children of each function node has to fulfill the arity constraints

given by the function definition parameterization; in the case of fixed arity the

number of children has to be exact this value, and in the case of variable

arities the number of children may not fall below the minimum or rise above

the maximum arity limit.

• Of course, parent and child constraints also have to be considered.

• The structure complexity given in the problem representation (regarding

height and size of structure trees) may not be exceeded.

• Variable indices are chosen according to variable availabilities, sample offsets

are initialized according to minimum and maximum sample offsets defined by

the problem instance.

• Coefficients of terminal nodes are initialized according to parameter settings

defined in the terminal definition.

7.4.2.2 Crossover

The most frequently used crossover operator is the single-point subtree exchanging

crossover already described in detail in Section 3.2.1.3. Subtrees are exchanged and

new formulae are formed, the references to the function and terminal definitions are

copied into the new solution candidate, Figure 7.2 illustrates this mechanism.

Of course, all constraints defined by the functional basis have to be satisfied

here, too. Especially child and parent relations of the new combinations have to be

checked and invalid constellations avoided. The complexity limitation requirements

given by the problem instance also have to be fulfilled.

In fact, we have implemented and use three different types of crossover operators:

106 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

• The standard crossover variant chooses subtrees without considering their size.

• The low level crossover variant tries to exchange rather small subtrees of height

1 or 2, e.g.

• The high level crossover variant tries to exchange rather big subtrees as for

example the roots’ children.

Functional Basis

Func 1

Func 2

Func 3

Term 1

Term 2

parent 1 parent 2

child

Figure 7.2: Structure tree crossover and the functional basis.

7.4.2.3 Mutation

Finally, mutating a structure tree can be done in several different ways. Some

structural as well as parametric mutation variants are as follows:

• A sub-tree could be deleted or replaced by a randomly re-initialized sub-tree.

7.5. SOLUTION EVALUATION 107

• A function node could for example change its function type or turn into a

terminal node.

• A terminal node representing a variable could for example change its index

and thus in the following refer to another variable.

• A terminal node representing a constant could be multiplied with a factor. A

good choice for the distribution of these multiplicative mutation factors could

be a Gaussian distribution with average 1.0 so that the probability of smaller

changes is greater than the probability of larger modification.

Up to now we have always stressed the fact that complexity limitations are given

in the problem representation of the concrete system identification problem at hand.

In fact, complexity limitations can also be defined by crossover and mutation opera-

tors; these operators can be parameterized so that they produce models by crossing

parents or mutating formulas that fulfill size or height restrictions independently

of the settings given in the problem. These limitations can for example also be

modified during the execution of the GP process.

7.5 Solution Evaluation

7.5.1 Standard Solution Evaluation Operators

The primary task of an evaluation operator estimating the fitness of a system identi-

fication solution candidate is surely to measure how well the values calculated using

the model fit the original target values. Numerous different evaluation functions

are possible and have been reported on in the literature; in principle, the estimated

values e (calculated evaluating the model on the given data basis) are compared to

the original target values o. In this context it is for the function irrelevant whether

the model is evaluated on training, validation, test or any other data partition.

Here we describe three rather simple functions that have also been implemented as

evaluation operators for HeuristicLab:

• The mean squared errors function (MSE) has in fact already been described;

the function returns the average value of the squared residuals of e and o:

MSE(e, o) =
1

N

N∑
i=1

(ei − oi)
2;N = |e| = |o| (7.4)

108 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

• The coefficient of determination (R2) function can be used for measuring the

proportion of a variable’s variability that is accounted for by the model that

tries to explain it; it can also be seen as the ratio of the variability of the

modeled target values to the variability of the original target values. R2 of

original and modeled target values, o and e, respectively, is defined as

R2(e, o) = 1 − SSE

SST
; (7.5)

SSE =

N∑
i=1

(oi − ei)
2, SST =

N∑
i=1

(oi − ō)2, (7.6)

ō =
1

N

N∑
i=1

oi, N = |e| = |o| (7.7)

where SSE stands for the explained sum of squares and SST for the total sum

of squares of the original values. The better a model is, the more the R2 value

converges to 1.

• The variance accounted for (V AF) function is defined as the fraction of the

variances of the residuals and the original target values:

V AF (e, o) = 1 − var(o− e)

var(o)
; (7.8)

var(x) =
1

N

N∑
i=1

(xi − x̄), x̄ =
1

N

N∑
i=1

xi, N = |x| (7.9)

The variance of the residuals, i.e. the differences between the original and

modeled values, is so divided by the original values’ variance; the smaller the

residuals’ variance is, the nearer the calculated value converges towards 1.

This main difference of this evaluation function compared to other ones as

for example mse or R2 is that it does not punish constant residuals; only the

variance of the residuals is taken into account and might decrease a model’s

quality.

In the implementations of these evaluation functions we have introduced a pa-

rameter for limiting the maximum contribution of a single sample’s error to the

total evaluation. The residual of each specific sample can so be limited in relation

to the original target values’ range; this is supposed to help to cope with outliers

and invalid values calculated by division by 0, e.g.

7.5. SOLUTION EVALUATION 109

7.5.2 Combined Solution Evaluation

Several advanced evaluation concepts are also realized in an advanced evaluation

operator for HeuristicLab. Again, for the explanations given in this section let o

be the original and e the estimated target values, and N the number of samples

analyzed; furthermore, let range(o) be the range of the original target values:

range(o) = max(o) −min(o) (7.10)

First, instead of mean squared errors we use the mean exponentiated error func-

tion; the residuals are raised to the power of n, a parameter of this particular

evaluation function, and the mean value of these exponentiated errors is calculated:

MEE(o, e, n) =
1

N

N∑
i=1

|ei − oi|n;N = |e| = |o| (7.11)

Additionally, this operator is able to combine the evaluation functions given in

the previous section; a combined fitness value is calculated as a linear combination

of the three separate fitness values.

First, the fitness values MEE(o, e, n), R2(o, e) and V AF (o, e) have to be scaled so

that they have comparable ranges. The exponentiated errors are scaled by dividing

them by a fourth of the target values’ range, so for calculating the scaled fitness value

MSEE ′(o, e, n), MSE(o, e, n) is divided by a fourth of the target data’s range raised

to the power of n since

MEE ′(o, e, n) =
1

N

N∑
i=1

(
|ei − oi|
range(o)

4

)n

;N = |e| = |o| (7.12)

MEE ′(o, e, n) =
1

N

(
1

range(o)
4

)n N∑
i=1

|ei − oi|n (7.13)

MEE ′(o, e, n) = MEE(o, e, n) ∗
(

1
range(o)

4

)n

(7.14)

where n is the exponent chosen for raising the errors to the power of n.

The scaled values R2′(o, e) and V AF ′(o, e) are calculated as simply as

R2′(o, e) = 1 − R2(o, e), V AF ′(o, e) = 1 − V AF (o, e) (7.15)

since the range of the R2 and V AF functions is [0,1], anyway.

110 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

The minimum and maximum residuals rmin(o, e) and rmax(o, e) can also be con-

sidered; before using them in the combined fitness function, they are scaled in the

same way as the MEE values:

r = e− o; rmin(o, e) = min(r), rmax(o, e) = max(r) (7.16)

rmin
′(o, e) = rmin(o,e)

range(o)
4

, rmax
′(o, e) = rmax(o,e)

range(o)
4

(7.17)

All these scaled partial fitness contribution values are multiplied with coefficients

c1, c2, c3, c4, c5, summed and the result divided by the sum of coefficients; the result

is returned as the combined fitness value COMB(o, e, n, c):

a1 = c1 ∗MEE ′(o, e, n) (7.18)

a2 = c2 ∗R2′(o, e, n) (7.19)

a3 = c3 ∗ V AF ′(o, e, n) (7.20)

a4 = c4 ∗ rmin
′(o, e) (7.21)

a5 = c5 ∗ rmax
′(o, e) (7.22)

COMB(o, e, n, c) =
a1 + a2 + a3 + a4 + a5

c1 + c2 + c3 + c4 + c5
(7.23)

There are, in fact, even more sophisticated evaluation operators to be described,

namely a time series analysis specific one as well as a classification specific one.

These are about to be discussed in Sections 8.1 and 8.2.

7.5.3 Adjusted Solution Evaluation

A modification of the coefficient of determination function R2 is the so-called ad-

justed R2; when evaluating a model m, then this extension of the R2 function de-

scribed above also takes into account the number of explanatory terms of the model.

Let N be the sample size, t the number of terms in m, and o and e again the original

and estimated target values, so R2
adj(o, e) is calculated as

R2
adj(o, e) = 1 − (1 − R2(o, e))

N − 1

N − t− 1
(7.24)

This add-on3 increases the calculated quality value only if the addition of a new

term to the model improves the model’s performance more than what would be

expected by chance; unlike R2 it can even become a negative value.

3Of course, calling this modification an “add-on” may sound a bit misleading as it is no additive
but rather a multiplicative one. The reader is asked to be so kind as to forgive this slight rhetorical
incorrectness.

7.5. SOLUTION EVALUATION 111

We have adapted this concept in a slightly modified manner so that it is appli-

cable to the partial R2 and V AF evaluations of the combined evaluator COMB

described in Section 7.5.2. These partial evaluation results can be optionally cor-

rected using the factor N−1
N−s−1

where s is the model’s size, i.e. the number of nodes

of the structure tree solution representing the model which is to be evaluated. So,

the adjusted evaluation results R2
adj and V AFadj are calculated as

q =
N − 1

N − s− 1
(7.25)

R2
adj(o, e) = 1 − (1 − R2(o, e)) ∗ q (7.26)

V AF adj(o, e) = 1 − (1 − V AF (o, e)) ∗ q (7.27)

7.5.4 Runtime Consumption Considerations

As we have now described all basic genetic operators for data based system iden-

tification using genetic programming, we can try to estimate their relative runtime

consumption.

The initialization of structure trees is not just called only once, it is also relatively

cheap in terms of runtime consumption. This is because nodes, which are relatively

small entities, are created according to the rules and limitations given in the problem

instance and the functional basis; the connection between nodes is established by

references (pointers) from parent to child nodes.

Crossover and mutation are in our case also very inexpensive with respect to

runtime and memory consumption. Nodes and references are copied and parameters

are modified; only in case of the creation of invalid structure trees it could happen

that repair routines have to be used which could, if implemented in a sub-optimal

way, cost significant runtime.

Anyway, it boils down to the fact that most of the runtime of a GP based system

identification process is consumed by the evaluation of solution candidates. This is

because models have to be evaluated on the training (and maybe also validation)

data, i.e. on possibly hundreds or thousands of samples. Collecting these values

and then calculating the fitness value can be again relatively cheap (with respect

to runtime consumption) when using rather simple evaluation functions as those

summarized in the Sections 7.5.1, 7.5.2 and 7.5.3. Still, especially when using more

complex functions as for example time series analysis or classification specific ones

given in Section 8.1 and 8.2, then this part of the evaluation also might cause

noticeable runtime consumption.

112 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

In HeuristicLab, for instance, we have measured that even when using a graphical

user interface with results display and solution protocolling, more than 99.5 % of

the algorithm’s runtime are consumed by evaluation operators.

7.5.5 Early Stopping of Model Evaluation

So, what can we do to counteract this problem of high computational costs of GP-

based structure identification? The simplest answer would be to decrease the size

of the training (and validation) data partitions. Of course this is not a generally

applicable way to do this; training data should include as much information as

possible in a preferably efficient way - it should be as small as possible, but at the

same time also as extensive as necessary.

Sampling, i.e. evaluating the models not on the total training / validation data

sets but only on certain selected samples seems to be a better idea: By only eval-

uating the models for a number of (at best randomly) selected sample indices, the

total quality is estimated. This on the one hand surely decreases runtime consump-

tion and on the other hand also might help to avoid overfitting as the models are

evaluated on different samples at each evaluation step (so that they cannot be fit

too closely to a set of samples). Still, the quality measurement might so become

somehow instable; a model might be assigned completely different quality values

each time it is evaluated because the samples chosen are likely to differ.

When using offspring selection as described in Chapter 4.2 there is even a pos-

sibility how to speed up the evaluation without decreasing the quality of the fitness

estimation method:

During the offspring selection phase, solution candidates are compared to their

parents, i.e. their quality values are compared to their parents’ fitness values. In the

case of applying most restrictive settings, i.e. when the success ratio is set to 1.0,

then models are inserted into the next generation’s population only if they fulfill the

quality requirements given by the parent’s quality values and the comparison factor;

there is no pool of possible lucky losers, solution candidates that do not fulfill the

given fitness criterion are discarded. In this case the evaluation of a model can be

aborted as soon as it is clear that the fitness value will surely not satisfy the fitness

criterion even if the rest of the evaluation produces no additional errors.

The issue, then, is how to detect when the evaluation of a model can be aborted

without decreasing the quality estimation’s accuracy with respect to the total GP

process. We introduce a relative calculation interval size (rcis) which is a value

7.5. SOLUTION EVALUATION 113

in the interval [0,1] (normally a value as for example 0.1, 0.2 or 0.5) used in the

following way:

Let m be a model which is to be evaluated for a system identification problem

p; furthermore let p1 and p2 be the parents of m, and qp1 and qp2 their respective

quality values. The given comparison factor cf is then used for calculating the

comparison value cv depending on whether p is a maximization or a minimization

problem:

qmin = min(qp1, qp2); qmax = max(qp1, qp2) (7.28)

qrange = |qp1 − qp2| (7.29)

cv =

{
qmin + qrange ∗ cf : isMaximizationProblem(p)

qmax − qrange ∗ cf : isMinimizationProblem(p)
(7.30)

In system identification we normally deal with minimization problems when using

theMSE, MEE or COMB evaluation operator as smaller fitness values are favored;

when using the R2 or V AF operator, p can be considered a maximization model

since better models are assigned higher fitness values.

Let us now assume that N samples are to be evaluated; o then is array storing

the N original target values, and the calculation samples interval csi is calculated

as

csi = N ∗ rcis (7.31)

The vector of estimated target values e is initialized as a copy of o; the model’s

quality qm is initially set to the worst possible fitness value (-maxV al for maxi-

mization, maxV al for minimization problems), and the indices i1 and i2 are set to

14.

As long as qm is “better” than cv (i.e., smaller if p is a minimization and greater

if p is a maximization problem), the following evaluation steps are executed:

1. The index i2 is set to i1 + csi− 1; if i2 > N , then i2 := N .

2. The estimated values ej are calculated for j = [i . . . i2]; these replace the values

at the respective indices in e so that

e = [e1, . . . , ei2, oi2+1, . . . , oN] (7.32)

4In this description we again use one-based indexing; in most modern programming languages
as C, C++, Java or C#, zero-based indexing would be used instead.

114 CHAPTER 7. GP BASED SYSTEM IDENTIFICATION

3. qm is calculated using the given fitness function f :

qm = f(o, e) (7.33)

4. Now there are several ways how the evaluation is continued:

(a) If i2 is equal to N , i.e. if all samples have been considered, then m is

assigned the fitness value qm.

(b) Otherwise, if qm is no more “better” than cv, then the evaluation of m

can be aborted and m can be assigned the worst possible fitness value

(maxV al for maximization, −maxV al for minimization problems).

As an alternative, we can also assign m an extrapolated fitness value: If

p is a minimization problem and the optimal possible fitness value 0, as

it is the case if we use the MSE, MEE or COMB operator, then we

can assign m the extrapolated fitness value qm ∗ N
i2

.

(c) Otherwise, go back to step 1 and continue the evaluation of m.

By rearranging the evaluation as described above we guarantee that the quality

of models that fulfill the given offspring selection criterion is accurate and calculated

in the same way as when using the standard procedure. For models that perform

worse than demanded and are therefore not about to fulfill the offspring selection

criterion, the evaluation is aborted as soon as it is clear that the evaluation will

result in such a “bad” fitness value.

Thus, a lot of runtime can be saved. For the sake of completeness we of course

have to admit that the runtime consumption is increased slightly for models that

are evaluated on all samples since intermediate fitness values are calculated; still,

this minor drawback is accepted since the advantages outweigh it by far.

115

Chapter 8

Application Domains of Data

Based Structure Identification

8.1 Regression, Time Series Analysis and the De-

sign of Virtual Sensors

8.1.1 Regression

In general, modeling numerical data consisting of one (or more) target variables

(also called dependent or response variables) using one or more independent vari-

ables (also often referred to as explanatory or input variables) is called regression

analysis; dependent variables are modeled as functions of the independent variables,

corresponding parameters (constants) and an error (noise) term.

This concept of mathematical regression has in principle already been discussed

in Chapter 6: What we want to get is a function f that models a target variable t

using explanatory variables x and a set of coefficients w such that

t = f(x, w) + ε (8.1)

where ε represents the error (noise) term.

In other words, the main principle can be formulated in the following way: For

a given target variable T storing the values T(1), . . . , T(n) and a given set of variables

X1, . . . , XN we search for a model that describes T as

T(t) = f(X1(t), . . . , XN(t)) + εt (8.2)

116 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

where εt is an error term.

Applying this procedure we assume that a model can be created with which

it will also be possible to predict correct outputs for other data examples (test

sample); from the training data we want to generalize to situations not known (or

allowed to analyze) during the training phase. Detailed discussions of theoretical and

practical aspects of regression analysis can be found in [Här90], [Fox97] and [DS98],

for example.

8.1.2 Time Series Analysis

Whenever (input or output) data of any kind of system are recorded over time and

compiled in data collections as sequences of data points, then these sequences are

called time series; typically, these data points are recorded at time intervals which

are often, but not always uniform. The collection of methods and approaches which

are used for trying to understand the underlying mechanisms that are documented

in time series is called time series analysis; but not only do we want to know what

produced the data, but what we are also interested in is to predict future values, i.e.

we want to develop models that can be used as predictors for the system at hand.

There is a lot of literature on theory and different approaches to time series

analysis. One of the most famous approaches is the so-called Box-Jenkins ap-

proach as described in [BJ76] and [And76], e.g., which includes separate model

identification, parameter estimation and model checking steps. Detailed discus-

sions of other methods and their mathematical and statistic background can be

found for example in [And71], [Ken73], [Pan83], [KO90], [Pan91], [BD91], [Ham94]

and [BD96]; more recent research and applications are for example given

in [PTT01], [Cha01], [Dei04], [Wei06] and [MJK07].

The main principle can be formulated in the following way: For a given target

time series T storing the values T(1), . . . , T(n) and a given set of variables X1, . . . , XN

we search for a model that describes T as

T(t) = f(X1(t), X1(t−1), . . . , X1(t−tmax),

. . . ,

XN(t), XN(t−1), . . . , XN(t−tmax)) +εt

where tmax is the maximum number of past values, and εt is an error term. If the tar-

get variable’s values are also allowed to be considered, then a so-called autoregressive

8.1. REGRESSION AND TIME SERIES ANALYSIS 117

part is added so that we search for a model so that

T(t) = f(X1(t), X1(t−1), . . . , X1(t−tmax),

. . . ,

XN(t), XN(t−1), . . . , XN(t−tmax),

T(t−1), . . . , T(t−tmax)) + εt

The field of applications of time series analysis (as well as of regression, of course)

is huge and includes for example astronomy, sociology, economics or the analysis of

physical systems. Of course it is not at all natural that any physical system, may it

be technical or not, can be represented by a simple and easily understandable model.

In this context the author strongly recommends reading Eugene P. Wigner’s article

“The Unreasonable Effectiveness of Mathematics in the Natural Sciences” [Wig60].

In this article Wigner points out that, although so many natural phenomena such

as e.g. gravitation or planetary motion can be described by astoundingly simple

equations, it is not at all natural that “laws of nature” exist and even much less

that man is able to discover them.

Especially in the context of analyzing physical systems, the models which are

to be created for describing a system can be seen as so-called virtual sensors: The

goal is to develop models of sufficient quality so that these models (functions) can

be used instead of real sensors, i.e. they are virtual sensors. Of course, these virtual

sensors can be used in various ways, for example also in addition to real sensors

enabling fault detection.

8.1.3 Time Series Specific Evaluation

In this section we shall concentrate on time series analysis with genetic programming:

GP is used for evolving models that describe target time series using other data

time series collections. Of course we in principle use the GP methods for structure

identification described in the previous sections, but some time series specific details

are to be described here, especially a time series specific evaluation operator.

In principle there is no reason why one should not use mean squared errors or any

other of the evaluation functions already presented for evaluating time series models

produced by GP. Still, in time series we do not only want to produce models that

approximate the given target values, but also the dynamics of the underlying system

that are represented in the measured data. Thus, we also want to estimate a model’s

quality with respect to the local changes in the data as well as the accumulated

118 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

values.

This can be done by calculating the differential and integral values. For a given

time series x, the differential of order o is defined as diff(x, o) and the integral as

int(x):

diff(x, o)i = xi − xi−o (8.3)

int(x)i =
∑i

i=1 xi (8.4)

for each index i ∈ [1; |x|].

For evaluating a time series model m on the basis of target values o we calculate

all respective values e by evaluating m and then calculate the combined fitness

values (as described in Section 7.5.2) for the plain values, the differential (of a

predefined order o) and the integral values. These partial results are weighted using

the coefficients c1, c2 and c3, and the final result in the following way:

TS(o, e, o, n, cplain, cdiff , cint, c1, c2, c3) :

a1 = COMB(o, e, n, cplain) (8.5)

a2 = COMB(diff(o, o), diff(e, o), n, cdiff) (8.6)

a3 = COMB(int(o), int(e), n, cint) (8.7)

TS(o, e, o, n, cplain, cdiff , cint, c1, c2, c3) =

∑3
i=1 ai · ci∑3

i=1 ci
(8.8)

with cplain, cdiff and cint being the coefficients needed by the combined evalu-

ation function for weighting the partial MEE, V AF and R2 results as well as the

maximum negative and positive errors.

Of course, early stopping of model evaluations as described in Section 7.5.5 is

also possible for this time series evaluation function.

8.2 Classification

8.2.1 Introduction

Classification is understood as the act of placing an object into a set of categories,

based on the object’s properties. Objects are classified according to an (in most cases

8.2. CLASSIFICATION 119

hierarchical) classification scheme also called taxonomy. Amongst many other pos-

sible applications, examples of taxonomic classification are biological classification

(the act of categorizing and grouping living species of organisms), medical classifi-

cation and security classification (where it is often necessary to classify objects or

persons for deciding whether a problem might arise from the present situation or

not). A statistical classification algorithm is supposed to take feature representa-

tions of objects and map them to a special, predefined classification label. Such

classification algorithms are designed to learn (i.e. to approximate the behavior

of) a function which maps a vector of object features into one of several classes;

this is done by analyzing a set of input-output examples (“training samples”) of

the function. Since statistical classification algorithms are supposed to “learn” such

functions, we are dealing with a specific area of machine learning and, more gener-

ally, artificial intelligence.

In a more formal way, the classification problem can be formulated in the follow-

ing way: Let the data consist of a set of samples, each containing k feature values

xi1, . . . , xik and a class value yi. So, what we look for is a function f that maps a

sample xi to one of the c classes available:

f : X → C; (8.9)

∀(x ∈ X) : f(x) = f(x1, . . . , xk) = y; y ∈ {C1, . . . , Cc} (8.10)

where X denotes the feature vector space and C the set of classes.

There are several approaches which are nowadays used for solving data min-

ing and, more specifically, classification problems. The most common ones are (as

for example described in [Mit00]) decision tree learning, instance-based learning,

inductive logic programming (such as Prolog, e.g.) and reinforcement learning.

8.2.2 Real-Valued Classification Using Genetic Program-

ming

In this section we shall concentrate on GP based classification. In fact, we here

restrict ourselves to real-valued classification tasks, i.e.

X ⊂ R
k, C ⊂ R (8.11)

Thus, we can apply the GP based system identification approach described in the

previous sections; especially the representations of the problems, the solution can-

didates and the genetic operators can be used without any restrictions.

120 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

The only critical aspect is that the evaluation and the quality estimation of classifiers

have to be modified: Evaluating a model m on a set of input features (x1, . . . , xk)

will lead to a target value y ∈ R, but y does not necessarily have to be exactly one

certain class value, i.e. we might get y /∈ C. The exact mapping of feature vectors

and their respective target values to class values is done using sets of thresholds

t1, . . . , tc−1 placed between the class values C1, . . . , Cc:

∀(i ∈ [1; c− 1]) : Ci < ti < Ci+1 (8.12)

Based on a set of thresholds T we can classify a sample for which the target value

y has been calculated as belonging to class ct using the mapping function f ′:

f ′ : {R,R} → C ; ct = f ′(ct, T) (8.13)

y < t1 ⇒ f ′(ct, T) = C1 (8.14)

y > tc−1 ⇒ f ′(ct, T) = Cc (8.15)

∀(i ∈ [1; c− 2]) : ti < y < ti+1 ⇒ f ′(ct, T) = Ci+1 (8.16)

Figure 8.1 exemplarily shows a graphical representation of the evaluation of

classification target data compared to the estimated values calculated. In this case,

3 target values are given (“1”, “2”, and “3”), and each sample is assigned a class

value; for each sample an estimated value is calculated using the trained model

(in this case, a formula was trained using GP) and by applying thresholds we can

classify each sample as belonging to one of the given classes. The chart is later again

shown as Figure 15.2; please see Section 15 for background information about the

data set and the GP strategy that has been used here.

8.2.3 Analyzing Classifiers

8.2.3.1 Classification Rates and Confusion Matrices

When it comes to analyzing classifiers, the most important aspect is of course how

many samples are classified correctly. For each feature vector sample x we have an

original classification y, and by applying the classifier which is to be evaluated we

get the predicted class y′. As described before, this classification of x is done using

a classification model yielding y = f(x) and an optional post-processing step using

thresholds T yielding y = f ′(y, T).

Let us assume that we analyze n samples x1...n (classified into c classes C1 . . . Cc)

with their respective original classifications y1...n; by applying a classification model

8.2. CLASSIFICATION 121

m we get the respective predicted classifications y′1...n as described above. The ratios

of correctly classified samples for all classes or each class separately is calculated as

cc and cci, respectively:

cc =
|j : j ∈ [1;n] & yj = y′j|

n
(8.17)

∀(i ∈ [1; c]) : cci =
|j : j ∈ [1;n] & yj = y′j & yj = Ci|

|j : j ∈ [1;n] & yj = Ci|
(8.18)

For more detailed analysis, confusion matrices [KP98] contain information about

actual and predicted classifications done by classification systems. In general, a con-

fusion matrix cm is a table containing c× c cells that states how many samples of

each given class are classified as belonging to a specific class; for example, each col-

umn of the matrix can represent the instances of a predicted class while each row

0 6480 7200
Samples

Training Test

3

2

1

Original /
Estimated

Values

Figure 8.1: Classification example: Graphical representation of a result obtained for

the Thyroid data set, comparison of original and estimated class values. Original

values are drawn as blue spots, estimated values as green spots on training data and

red ones for the test data partition; optimal class thresholds (calculated based on

the training data performance) are depicted as horizontal yellow lines.

122 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

represents the instances in the original (actual) class (or vice versa). So, the value

cmi,j stores the number of samples of class i that are classified as class j.

An example is given in Table 8.1 in which each row of the matrix represents the

instances in a predicted class while each column represents the instances in the orig-

inal (actual) class; additionally, the numbers of samples not classified (nc1 . . . ncc)

are also given as well as the total rate of correct classifications. Please note that the

sum of all cells has to be equal to the number of samples n, i.e.

c∑
i=1

c∑
j=1

cmi,j +

c∑
i=1

nci = n (8.19)

Table 8.1: Exemplary confusion matrix with three classes

Actual Class

“1” “2” “3”

Estimated “1” cm1,1 cm2,1 cm3,1

Class “2” cm1,2 cm2,2 cm3,2

“3” cm1,3 cm2,3 cm3,3

Not classified nc1 nc2 nc3

Correct Classifications Ratio
∑c

i=1 cmi,i

n

The special case of binary classification into two classes (i.e., c = 2) is frequently

found as it is in many applications necessary to decide for given samples whether or

not some given condition is fulfilled. There are the four different possible outcomes

of a single predicted (estimated) classification in the case of binary classification into

classes “positive” (“yes”, “1”, “true”) and “negative” (“no”, “0”, “false”):

• A false positive classification is done when a sample is incorrectly classified as

“positive” which is in fact “negative”,

• a false negative classification is done when a sample is incorrectly classified as

“negative” which is in fact “positive”, and

• true positive as well as true negative classifications are respective correct clas-

sifications.

A typical “positive / negative” example is given in Table 8.2:

In this case,

8.2. CLASSIFICATION 123

Table 8.2: Exemplary confusion matrix with two classes

Actual Class

Positive Negative

Estimated Positive a (true positive) b (false positive)

Class Negative c (false negative) d (true negative)

• the accuracy is defined as ACC = a+d
a+b+c+d

,

• the true positive rate (also called sensitivity) as TP = a
a+c

,

• the true negative rate (also called specificity) as TN = d
b+d

,

• the false positive rate as FP = b
b+d

(which is in fact the probability of classi-

fying a sample as “positive” when it is actually “negative”),

• the false negative rate as FN = c
a+c

(which is in fact the probability of classi-

fying a sample as “negative” when it is actually “positive”), and finally

• the precision as P = a
a+b

.

8.2.3.2 Receiver Operating Characteristic (ROC) Curves

Receiver Operating Characteristic (ROC) analysis provides a convenient graphical

display of the trade-off between true and false positive classification rates for two

class problems [FE05]. Since its introduction in the medical and signal processing

literatures ([HM82], [ZC93]), ROC analysis has become a prominent method for

selecting an operating point; for a recent snapshot of applications and methodologies

see [FBF+03] and [HOFLF04]. ROC analysis often includes the calculation of the

area under the ROC curve (AUC).

In the context of two class classification, ROC curves are calculated in the fol-

lowing way: For each possible threshold value discriminating two given classes (e.g.,

0 and 1, “true” and “false” or “positive” and “negative”), the numbers of true and

false classifications for one of the classes are calculated. For example, if the two

classes “true” and “false” are to be discriminated using a given classifier, a fixed set

of equidistant thresholds is tested and the true positives (TP) and the false positives

(FP) are counted for each of them. Each pair of TP and FP values produces a point

of the ROC curve; examples are graphically shown in Figure 8.2. Slightly different

versions are also often used, for example the positive predictive value (= TP / (TP

124 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

Figure 8.2: Two exemplary ROC curves and the respective areas under these curves

(AUCs).

+ FP)) or the negative predictive value (= TN / (FN + TN)) could be displayed

instead.

The most common quantitative index describing a ROC curve is the area under

it. The bigger the area under a ROC curve is, the better the discriminator model is;

if the two classes can be ideally separated, the ROC curve goes through the upper

left corner and thus, the area under it reaches its maximal possible value which is

exactly 1.0.

This method is very useful for analyzing the quality of two class classifiers, but

unfortunately it is not directly applicable for more than two classes. When it comes

to measuring or graphically illustrating the quality of multi-class classifiers, one

possibility is to define symmetric areas around the original class values; for each

class values Ci the corresponding area is defined as [Ci − r, Ci + r]. Successively

increasing the parameter value r from 0 to Ci+1−Ci

2
and calculating the numbers

of correct and incorrect classifications for each r yields a set of pairs of FP/TP

values. Jiang and Motai [JM05], for example, use this technique for illustrating and

analyzing the classification performance in the context of automatic motion learning.

Although this method can be used very easily, it is not generally applicable

because it is restricted to symmetric areas. Emerson and Fieldsend [FE05] propose

a different approach and define the ROC surface for the Q-class problem in terms

of a multi-objective optimization problem in which the goal is to simultaneously

minimize misclassification rates when the misclassification costs and parameters

8.2. CLASSIFICATION 125

governing the classifier’s behavior are unknown. The problem with this approach

is that the estimated Pareto fronts presented in [FE05] can be illustrated and used

for graphical interpretation for classification problem involving not more than three

classes. This is why we here in the following section propose the use of sets of ROC

curves for each class separately.

8.2.3.3 Sets of Receiver Operating Characteristic Curves and their Use

in the Evaluation of Multi-Class Classification

In this section we present an extension to ROC analysis making it possible to mea-

sure the quality of classifiers for multi-class problems. Unlike other multi-class-ROC

approaches which have been presented more or less recently (see [FE05] or [Sri99],

e.g.) we propose a method based on the theory of ROC curves that creates sets of

ROC curves for each class that can be analyzed separately or in combination. Thus,

what we get is a convenient graphical display of the trade-off between true and false

classifications for multi-class problems. We have developed a generalization of this

AUC analysis for multi-class problems which gives the operator the possibility to

see not only how accurately, but also how clearly classes can be separated from each

other.

The main idea presented here is that for each given class Ci the numbers of true

and false classifications are calculated for each possible pair of threshold between

the classes Ci−1 and Ci as well as between Ci and Ci+1. This is in fact done under

the assumption that the c classes are ordered and that Ci < Ci+1 holds for every

i ∈ [1, (n− 1)] (with c being the number of classes).

For a given class Ci the corresponding TP and FP values (on the basis of the N

original values o and estimated values e) are calculated as:

∀(〈ta, tb〉|(Ci−1 < ta < Ci) & (Ci < tb < ci+1)) : (8.20)

TP (ta, tb) = |{ej : (ta < ej < tb) & (ta < oj < tb)}| (8.21)

FP (ta, tb) = |{ej : (ta < ej < tb) & (oj < ta ∨ oj > tb)}| (8.22)

This approach has been published first in [WAW06d] and then described in detail

(including application examples) in [WAW07a].

The resulting tuples of (FP,TP) values are stored in a matrix which can be

plotted as is exemplarily illustrated in Figure 8.3: On the basis of synthetic data

126 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

102 = 100 ROC points for 10 thresholds between the chosen class Ci and Ci−1 as

well as between Ci and Ci+1 were calculated. This obviously yields a set of points

which can be interpreted analog to the interpretation of “normal” ROC curves: the

closer the points are located to the left upper corner, the higher is the quality of the

classifier at hand.

For getting sets of ROC curves instead of ROC points, the following change

is introduced: An arbitrary threshold ta between the classes Ci−1 and Ci is fixed

and the FP and TP values for all possible thresholds tb between Ci and Ci+1 are

calculated. What we get is one single ROC curve; this calculation is executed for

all possible values of ta (i.e., for all possible threshold between Ci−1 and Ci). This

procedure also has to be executed the other way around, i.e. also has to choose an

arbitrary threshold tb between Ci and Ci+1, calculate all corresponding ROC points

and repeat this for all values for all possible values of ta.

Finally, what we get is a set of ROC curves; an example showing 10 ROC curves

is given in Figure 8.3.

False Positive Classifications

T
ru

e
P

os
iti

ve
 C

la
ss

ifi
ca

tio
ns

Figure 8.3: An exemplary graphical display of a multi-class ROC (MROC) matrix.

Of course this procedure cannot be executed in exactly this way for the classes

C1 and Cn. For c1 it is only possible to calculate the ROC points (and therefore

the ROC curve) for all possible thresholds between C1 and C2, for Cc this is done

analogically with all possible thresholds between Cc−1 and Cc. This is why sets of

ROC curves can be calculated for the classes C2 . . . Cc−1 whereas only simple ROC

curves can be produced for C1 and Cc.

8.2. CLASSIFICATION 127

As already mentioned in the previous section, the area under the ROC curve

(AUC) is a very common quantitative index describing the classifier’s quality. In

the context of multi-class ROC (MROC) curves the two following values can be

calculated assuming that all m ROC curves for a given class have already been

calculated:

• The maximum AUC (MaxAUC) is the maximum of all areas under the ROC

curves calculated for a specific class. It measures how exactly this class is

separated from the others using the best thresholds parameter setting.

MaxAUC = max
i=1..m

AUC(ROCi)

• The average AUC (AvgAUC) is calculated as the mean value of all areas

under the ROC curves for a specific class. It measures how clearly this class

is separated from the others since it takes into account all possible thresholds

parameter settings.

AvgAUC =

∑
i=1..mAUC(ROCi)

m

Thus, what we get is a simple, but surely very useful and intuitive approach

extending ROC analysis so that it can be used also in the context of multi-class

classification. In addition to a graphical display, the average as well as the maximum

area under the resulting ROC curves can be considered for evaluating multi-class

classifiers.

In the following we shall see how this can be used in the evaluation of classifiers

evolved by GP.

8.2.4 Classification Specific Evaluation in GP

Of course, there is on the one hand no reason why standard evaluation functions

such as the MSE / MEE, V AF or R2 functions could not be used for estimating

the quality of classification model during the GP process. The reason for this is

that we here, similar to when dealing with regression or time series analysis, want

the identification algorithm to produce a model that is able to reproduce the given

target data as well as possible.

Still, on the other hand the evaluation of classification models may also include

several aspects for which the standard evaluation functions are not suitable. This is

128 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

why we shall describe several aspects that may contribute to a classification specific

evaluation function for GP solution candidates in the context of real-valued learning

of classifiers with genetic programming.

8.2.4.1 Preprocessing of Estimated Target Values

Before we compare original and estimated class values we suggest the following

classification specific preprocessing step:

The errors of predicted values that are lower than the lowest class value or greater

than the greatest class value should not have a quadratic or even worse, but rather

partially only linear contribution to the fitness of a model. To be a bit more precise:

Given n samples with original classifications oi divided into c classes C1, ..., Cc (with

C1 being the lowest and Cc the greatest class value), the so preprocessed estimated

values preproc(ei) shall be calculated as follows:

∀(i ∈ [1, n]) :

(ei < C1) ⇒ preproc(ei, x) = C1 − (C1 − ei)
1
x (8.23)

(ei > Cc) ⇒ preproc(ei, x) = Cc + (ei − Cc)
1
x (8.24)

with x being an exponential parameter which depends on the evaluation function

that uses these preprocessed values. For example, when using the mean squared

error or any other function that incorporates the use of squared differences between

original and estimated value, x is to be set to 2, whereas when using the MEE

function it has to be set to the chosen exponent.

The reason for this is that values that are greater than the greatest class value

or below the lowest value are anyway classified as belonging to the class having the

greatest or the lowest class number, respectively; using a standard evaluation func-

tion without preprocessing of the estimated values would punish a formula producing

such values more than necessary.

8.2.4.2 Considering Standard Evaluation Functions

For quantifying the quality of classifiers we can use all functions described in Sec-

tion 7.5; in contrast to standard applications, we can also apply these functions for

each class individually.

In the standard case, all n values are evaluated using the MEE, V AF and R2

values as well as the minimum and maximum errors errormin and errormax; these

8.2. CLASSIFICATION 129

can optionally be calculated using the preprocessed values preproc(ei) instead of ei

for all i ∈ [1;n]. Thus, we get partial values mee, vaf and r2, errormin and errormax

which can be weighted using the factors wmee, wvaf , wr2 , werrmin
and werrmax.

This approach of course does not consider the distribution of samples to the

classes; for example, if 98% of the samples belong to class 0 and only 2% to class 1,

then the evaluation of a model classifying all samples as 0 will be fairly good when

using these standard evaluation functions even though this classifier is more or less

useless.

In order to overcome this problem we could for example sample the data so that

all classes are represented by the same number of samples; we instead here describe

the application of these evaluation functions to the classes given separately:

The sets of estimated values ec1 . . . ecc contain the values estimated for each class

C1 . . . Cc, and in analogy to this the sets oc1 . . . occ are sets of the corresponding class

values:

∀(i ∈ [1;n]) : oi = k ⇒ ei ∈ eck, oi ∈ ock (8.25)

Additionally, we also need class weights w1 . . . wc (with w =
∑c

i=1wi) and can so

calculate the partial fitness values as

mee =
1

w

c∑
i=1

mee(oci, eci, n) · wi (8.26)

r2 =
1

w

c∑
i=1

r2(oci, eci) · wi (8.27)

vaf =
1

w

c∑
i=1

(
1 − var(oci − eci)

var(o)

)
· wi (8.28)

errormin =
1

w

c∑
i=1

rmin(oci, eci) · wi (8.29)

errormax =
1

w

c∑
i=1

rmax(oci, eci) · wi (8.30)

Again, these values can optionally be calculated using the preprocessed values

preproc(ei) instead of ei for all i ∈ [1;n]. Of course, the adjusted functions de-

scribed in Section 7.5.3 can be used instead of the standard functions.

130 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

C1

C2

C3

Estimated Values

Original Class Values

cr1

cr2

cr3

t11

t12

t13

t14

t15

t21

t22

t23

t24

t25

Figure 8.4: Classification example: Original class values, estimated target values

and class ranges.

8.2.4.3 Considering Classification Specific Aspects

We propose the consideration of the following classification specific aspects in the

evaluation of classifier models:

• The range of the values estimated for each of the given classes,

• how well the classes are separated correctly from each other depending on the

choice of appropriate thresholds, and

• the area under ROC curves or, in the case of multi-class classification, the area

under sets of MROC curves.

Class Ranges

For calculating the class ranges cr1 . . . crc we definitively need the sets of esti-

mated values for each class, ec1 . . . ecc:

∀(i ∈ [1; c]) : cri = max(eci) −min(eci) (8.31)

8.2. CLASSIFICATION 131

and can so calculate the class ranges’ contribution cr as

cr =
c∑

i=1

cri · wi (8.32)

Figure 8.4 exemplarily displays several samples with original class values C1, C2

and C3; the class ranges result from the estimated values for each class and are

indicated as cr1, cr2 and cr3.

Thresholds Analysis

As is indicated in Figure 8.4 we do not only want to consider class ranges but

also a more classification-like approach. Between each pair of contiguous classes we

set m equally distributed temporary thresholds:

∀(i ∈ [1; c− 1])∀(k ∈ [1;m]) : ti,k = Ci + k · Ci+1 − Ci

m+ 1
(8.33)

Then, for each threshold we count the numbers of samples which are classified in-

correctly; here we also consider a given matrix storing misclassification punishments

mcp for each pair of classes giving the misclassification punishment for classifying a

sample of class a as class b as mcpa,b for all a and b in [1; c]:

∀(i ∈ [1; c− 1])∀(k ∈ [1;m])∀(j ∈ [1;n]) :

p(i, k, j) =

⎧⎪⎨
⎪⎩

mcpi,i+1 · 1
freqoj

: oj < ti,k &ej > ti,k

mcpi+1,i · 1
freqoj

: oj > ti,k &ej < ti,k

0 : else

(8.34)

p(i, k) =
∑n

j=1 p(i, k, j) (8.35)

assuming that a sample j is (temporarily) classified as class (i + 1) if ej > ti,k and

as class i if ej < ti,k; freqa is the frequency of class a, i.e. the number of samples

that are originally classified as belonging to class a.

The thresholds’ contribution to the classifier’s fitness, thresh, can be now calcu-

lated in two different ways: We can consider the minimum sum of punishments for

each pair of contiguous classes as

thresh =

c−1∑
i=1

mink∈[1;m]p(i, k) (8.36)

or consider all thresholds which are weighted using threshold weights tw1...m as

thresh =

c−1∑
i=1

1∑m
k=1 twk

m∑
k=1

p(i, k) · twk (8.37)

132 CHAPTER 8. STRUCTURE IDENTIFICATION APPLICATIONS

Normally, we define the threshold weights tw using minimum and maximum weights,

weighting the thresholds at near to the original class values minimally and those in

the “middle” maximally:

tw1 = twmin, twm = twmin; twrange = twmax − twmin (8.38)

m mod 2 = 0 ⇒

⎧⎪⎪⎨
⎪⎪⎩

l = m/2

twl = twl+1 = twmax

∀(i ∈ [2; l − 1]) : twi = twmin + twrange

l−1
· (i− 1)

∀(i ∈ [l + 1;m− 1]) : twm−i+1 = twi

(8.39)

m mod 2 = 1 ⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l = (m+ 1)/2

twl = twmax

∀(i ∈ [2; l − 1]) : twi = twmin + twrange

(m−1)/2
· (i− 1)

∀(i ∈ [l + 1;m− 1]) : twm−i+1 = twi

(8.40)

(M)ROC Analysis

Finally, we also consider the area under the (M)ROC curves as described in

Section 8.2.3.3: For each class we calculate the AUC values for ROC curves and

sets of MROC curves (with a given number of thresholds checked for each class),

and then we can either use the average AUC or the maximum AUC for each class

weighted with the weighting factors already mentioned before:

auc =

{ ∑c
i=1AvgAUC(Ci) · wi : consider average AUCs∑c
i=1MaxAUC(Ci) · wi : consider maximum AUCs

(8.41)

8.2.4.4 Combined Classifier Evaluation

As we have now compiled all information needed for estimating the quality of a

classifier model in GP, CLASS, we calculate the final overall quality using respective

weighting factors:

a1 = mee · c1 (c1 = wmee)

a2 = vaf · c2 (c2 = wvaf)

a3 = r2 · c3 (c3 = wr2)

a4 = errormin · c4 (c4 = werrmin
)

a5 = errormax · c5 (c5 = werrmax)

a6 = cr · c6 (c6 = wcr)

a7 = thresh · c7 (c7 = wthresh)

a8 = auc · c8 (c8 = wauc)

CLASS(o, e) =
∑8

i=1 ai·ci∑8
i=1 ci

(8.42)

133

Chapter 9

Incorporation of A Priori

Knowledge as Partial Models

9.1 Introduction: A Priori Knowledge and GP

In this section we shall discuss the incorporation of a priori knowledge about the

analyzed system into data based system identification using genetic programming.

“A priori” is a term frequently used in statistics as well as in philosophy; it

is mostly used to refer to knowledge that is not derived from measurements and

experiments. In contrast to this, knowledge that is not known generally but has

to be retrieved from experiments is referred to as “a posteriori” knowledge. Both

terms’ origin is Latin: “A priori” can be translated as “from [what comes] before”,

“a posteriori” as “from [what comes] later”. Thus, everything that is known before

experiments is a priori, information that has to be derived from experiments is

gained a posteriori.

A lot of research work has already been done regarding the use of already existing

knowledge and known constraints in evolutionary system identification. Keijzer and

Babovic ([KB99], [BK00]), for example, describe the design of dimensionally aware

GP; here, the fact that physical measurements are generally accompanied by their

units of measurement is utilized leading to an extension of GP that considers the

information given by the units of measurement. This is done because it is in general

not possible for standard GP to guarantee dimensional consistency: Given the units

associated to the given data (variables), the model describing the target variable

should be a well-formed dimensioned expression; one should not, for example, add

134 CHAPTER 9. INCORPORATION OF A PRIORI KNOWLEDGE

meters and seconds [SS01]. In standard GP, of course, also models can be formed

that fulfill these dimensional constraints, but obviously the set of dimensionally

consistent models is only a very small fraction of the total models space. The

introduction of syntactic constraints into GP is for example described in [Gru96],

an application of constrained-syntax GP to the search of rules in medical data can

be found for example in [BLFM04].

Grammar guided GP, as for example summarized in [SS01], [RS01] and [RS03],

can be seen as an approach for coping with syntactic constraints in GP by combining

GP with Backus Naur Form (BNF) grammars [Knu64]: BNF grammars use a start

symbol S, sets of terminals and non-terminals (T and N , respectively) and a set

of production rules P that state how non-terminals are to be rewritten into one of

their possible derivations until the expression finally only contains terminals1.

In the following section we shall discuss strategies for the incorporation of spe-

cific instead of general knowledge about a system. This means that we summarize

strategies for the introduction of (partial) models into the GP based modeling pro-

cess.

9.2 Introduction of Partial Models into GP Based

System Identification

In many modeling problem situations there is at least partial knowledge available

about the system’s structure. If the whole structure was known, then we would not

necessarily need a structural system identification method as GP; but, as already

insinuated, we often only know something about a certain part of the system at

hand, but not the total system’s structure. Examples are shown in Figure 9.1:

(a) In the rather simple case, a sub-system can be modeled using input variables

that are all included in the data basis available for the modeling algorithm.

I.e., the subsystem’s inputs are a subset of the total system’s inputs.

The example given in the left part (a) of Figure 9.1 shows the block diagram

1Please note that in this case the terms terminal and non-terminal means something than in
the mathematical, system identification oriented way used otherwise in this thesis: In BNF, non-
terminals are rewritten until only terminals are left in order to produce correct expressions; in the
case of describing mathematical models, non-terminals are functions that expect input values and
return values that are calculated using the given inputs, and terminals are terms that do not take
any inputs.

9.2. INTRODUCTION OF PARTIAL MODELS INTO GP 135

of a subsystem that is modeled as a function of input variables X1, X3 and

X5; its output, calculated as (X1 + X3)/X5, is then used as input for other

functions in the description of the total system.

(b) In the more complex case, a part of the system can be modeled using not only

system input variables. In this case we have to consider subsystem descriptions

that take inputs which are outputs of other parts of the system.

The example given in the right part (b) of Figure 9.1 shows the block diagram

of a subsystem that is modeled in the following way: First, the system’s inputs

X1 and X3 and some third system variable are added, and then the result of

this addition is divided by some other system variable. This division’s result

is returned as the subsystem’s output and serves as the system’s output or as

input for other data processing units.

+

X1

X3

X5

/
…

(a) (b)

+X3

??

??
/

…

X1

Figure 9.1: A priori knowledge about the structure of a system.

Three possibilities how a priori knowledge can be incorporated into genetic pro-

gramming based system identification are to be described in the following, namely

(1) the introduction of synthetic variables, (2) the intentional seeding of parts of the

population, and (3) the introduction of particular terminal and function definition

in the functional basis of the GP process.

1. Introduction of synthetic variables:

The most simple way to handle case 1 is to introduce an additional variable

into the data base; this new variable’s values are calculated according to the

subsystem’s model. The modeling process is thus able to incorporate this

synthetic variable into models for the total system. This procedure is of course

applicable and frequently used for any modeling approach.

Still, subsystems as described in modeling case 2 cannot be handled using this

approach since not all inputs for the modeled unit are known.

136 CHAPTER 9. INCORPORATION OF A PRIORI KNOWLEDGE

2. Seeding parts of the population:

A genetic programming specific possibility to handle case 2 is to model the

known part of the subsystem as a GP model (formula) m and to inject it into

the population intentionally. This injection can be done during the population

initialization phase as well as in any other phase of the GP process; in any case

a certain number of individuals in the population or of the models created by

crossover or mutation has to be replaced by m.

For the particular example given in the right part (b) of Figure 9.1 this model

could be for example /(+(X1, X3, 0), 1); the rest of m’s inputs has to be

modeled by the evolutionary process, the placeholder terminals 0 and 1 should

then be replaced by appropriate subsystem representations. Furthermore, this

partial model can be (by crossover) inserted into other models and so become

a part of the total system’s model. This model is shown in the left part (a) of

Figure 9.2.

Still, this approach comes with two major drawbacks:

• The models inserted into the population could be assigned very low fitness

values and might thus be eliminated out of the population immediately.

• The models inserted into the population could be assigned very high

fitness values, especially when the core of the system is modeled very

accurately. The problem here is that these super-individuals could be

so dominant in comparison to all other models, and this could have the

effect that the population immediately converges to a local optimum so

that premature convergence could happen.

3. Introduction of particular definitions in the functional base:

The most flexible possibility is surely to introduce particular functions and

terminals with appropriate parent and child relationship definitions. For mod-

eling a subsystem ss with a set of inputs that are included in the total system’s

inputs, i1, and a set of remaining inputs, i2:

• Each variable included in i1 is modeled as a specific terminal definition

that refers to the respective variable and enables the GP process to set

the respectively allowed sample offsets and coefficients. These specific

terminal definitions, in the following referred to as ti, have to be param-

eterized with respect to their valid parent definition so that only that

functions are allowed as parent functions that are explicitly supposed to

use these terminals.

• ss is then modeled as a function that is programmed according to the

knowledge available. The child restrictions are to be set so that only

9.2. INTRODUCTION OF PARTIAL MODELS INTO GP 137

correct terminals of ti are used as inputs at the respective input indices;

for all other inputs no specific restrictions have to be defined.

By doing so, any given subsystem can be modeled with optional references to

system inputs; by using the respective functions in the genetic programming

process, the so modeled a priori knowledge can be incorporated.

This procedure might seem to be a bit cumbersome as it would be easier to

program functions that have direct access to the data and to use the variables’

values directly without needing additional terminals. Still, we have chosen to

stick strictly to the original definition of functions as units processing results of

other functions or terminals; this is why this approach has been implemented

in this manner in HeuristicLab even though there would not have been a

technical reason not to provide functions with access to the data basis.

(a) (b)

+

X1 X3 0

1

/ F1*

T1** T3***

* F1 = (args[1]+args[2]+args[3])/args[4]
** T1 = X1

*** T3 = X3

Figure 9.2: Models representing a priori knowledge given in Figure 9.1.

In Section 18 we report on tests incorporating these strategies and their effects

on solution quality and population dynamics.

138 CHAPTER 9. INCORPORATION OF A PRIORI KNOWLEDGE

139

Chapter 10

Local Adaptation Embedded in

Genetic Programming

In general, genetic algorithms and genetic programming are considered global opti-

mization methods, i.e. their aim is to search the whole search space in an intelligent

way in order to find the (or an) optimal solution. In contrast to this, local opti-

mization methods are local search algorithms, which means that they move from

solution to solution and so search the search space until a solution considered op-

timal is found (or a time-out condition is fulfilled). Well known examples for local

search algorithms are the hill climbing algorithm and tabu search, please see [RN03]

and [GL97] for respective explanations and discussions.

In biology, an organism’s positive characteristic that has been favored by nat-

ural selection is called adaptation [SG99]. This is, in fact, the central concept in

evolutionary biology and of course also in evolutionary computation.

In this section we shall summarize local adaptation concepts we have introduced

into the genetic programming process, namely parameter optimization as well as

model structure pruning.

10.1 Parameter Optimization

Parameter estimation has already been mentioned in connection with classical sys-

tem identification: After determining and fixing the structure of a model, appropri-

ate parameters have to be estimated on the basis of empirical data.

140 CHAPTER 10. LOCAL ADAPTATION IN GP

In GP, the genetic process is supposed to identify the set of relevant variables, the

formula structure and appropriate parameters automatically; there are no explicit

parameter estimation phases planned in the standard GP process. Furthermore,

GP is very flexible regarding function and terminal definitions as well as formula

structures; it is not easy to formulate general parameter optimization methods for

arbitrary nonlinear model structures.

Still, in GP we have to face the problem that often models with good structures

are assigned bad fitness values due to disadvantageous parameters such as coefficients

or time lags. This is the reason why we have implemented a parameter optimization

method based on evolution strategy (ES) concepts.

Basics of evolution strategies have already been summarized in Section 6.5; here

we shall only repeat the main feature of this optimization technique that are relevant

in the context of parameter optimization:

In each generation of the execution of an ES, λ individuals (children) are (by mu-

tation and optimal recombination) created out of μ individuals of the current pop-

ulation. Depending on the chosen strategy, the μ members of the new generation’s

population are selected from all μ+λ candidates (which is referred to as the (μ+λ)-

ES) or only from the λ children (which is also called the (μ, λ)-ES model). This

procedure is repeated until termination criterion is reached, normally a maximum

number of iterations or a state in which no more improvement can be reached.

In Section 6.2 we have shown the general form of a polynomial model which is

characterized by its order and coefficients:

y = a0 + a1x+ a2x
2 + . . .+ anx

n (10.1)

In this case, the optimization of the model’s parameters is the task of finding ap-

propriate coefficients a0 . . . an. In the much more general point of view in our GP

based approach, the parameters of a model contain a lot more; in fact, all parame-

ter settings of the terminal nodes included in the model are also parameters for the

formula which can be optimized without changing the model’s structure.

For each terminal the following parameters are to be considered:

• The variable index, i.e. the number of the variable which is referenced.

• The coefficient, a value which can be used for multiplying the referenced vari-

able’s value with a given constant; this constant can be either real-valued or

integral, and its distribution either uniform (defined by minimum and maxi-

mum) or Gaussian (defined by mean and standard deviation).

10.1. PARAMETER OPTIMIZATION 141

• The time offset, a value which can be used for referencing to the variable’s

values shifted by a certain number of samples.

Thus, when it comes to optimizing a model m containing t terminal nodes, we have

to consider 3∗ t parameters that could be manipulated by the optimization method.

As mutation is (besides selection) the most important factor in ES, we shall

now discuss how mutation with respect to a model’s parameters can be applied. As

is explained in further detail in Section 6.5, a parameter σ is used for controlling

the strength of mutation; we here see σ simply as the standard deviation of the

modification added to the model’s parameter values. Thus, each parameter of the

model’s parameters is modified, where again smaller modifications are more likely

than bigger ones; variable index changes are also to be applied rather seldom (for

20% of the terminals, e.g.).

So, the whole parameter optimization procedure we have implemented for opti-

mizing a given model m using the parameters λ and σ is executed in the following

way:

1. Collect all terminals of m in t.

2. Create λ copies of m, in the following called mutants.

3. Mutate all λ mutants individually; for each terminal of the mutant models

• mutate the coefficient,

• mutate the time offset, and

• with a rather small probability mutate the variable index.

4. Evaluate all λ mutants.

5. Optionally adjust σ according to Rechenberg’s success rule.

6. If any of the mutants is assigned a better quality value than m, then m is

replaced by the best mutant, and

• If the number of iterations has reached a given limit (itmax), the algorithm

is terminated and m is returned as the optimized version of the originally

given formula.

• Otherwise, the procedure is repeated starting again at step 1.

142 CHAPTER 10. LOCAL ADAPTATION IN GP

7. Otherwise, we consider this iteration a failure. If a predefined number of

consecutive failures cfmax is reached by performing unsuccessfully for cfmax

times in a row or the number of iterations has reached the given limit itmax,

then the algorithm is terminated; otherwise the procedure is repeated starting

again at step 1.

As we here always work on one particular model which is to be optimized and

create λ mutants, this algorithm can be seen as a variant of the (1 + λ) − ES

algorithm.

Obviously, the main advantage of this algorithm is that it can be applied to any

kind of model structure without any restrictions regarding its structure or the given

data basis. But, of course the major drawback of this procedure is its immense

runtime consumption due to the high number of models that have to be evaluated

for improving the parameters of one single model of the GP population. The use

of a smaller data set (or the validation set which is normally also smaller than the

training data sample) for evaluating the models can help to fight this problem, but

still the use of this parameter optimization concept has to be thought out well and

the parameters (σ, λ, itmax and cfmax) set so that the runtime consumption will

not get out of hand completely. This parameter optimization method does not have

to be applied in every round of the GP process, and also not to all models in the

population; partial use can help to control the additional runtime consumption and

still use the significant benefits of this procedure.

10.2 Pruning

10.2.1 Basics and Method Parameters

Whenever gardeners and orchardists talk about pruning, then they most probably

refer to the act of cutting out dead, diseased or for any other reason unwanted

branches of trees or shrubs. Even though this might harm the natural form of

plants, pruning is supposed to improve the plants’ health in the long run.

In informatics and especially machine learning, this term is used in analogy

to describe the act of systematically removing parts of decision trees; regression

or classification accuracy is decreased intentionally and thus traded for simplicity

and better generalization of the model evolved. Approaches and benefits of the

techniques used can be found for example in [Min89], [BB94], [HS95] or [Man97].

10.2. PRUNING 143

Obviously, the concept of removing branches of a tree can be eas-

ily transferred to GP, especially when we deal with tree-based genetic pro-

gramming. Several pruning operators have already been presented for GP,

see for example [ZM96], [FP98], [MK00], or more recent publications such

as [dN06], [EKK04], [DH02], [FPS06], [GAT06]. In GP, pruning is often considered

valuable because it helps to find more general and not over-parameterized programs;

it is also referred to as an appropriate anti-bloat technique as described in Section

3.6 or [LP02], e.g.

In the case of fixed functional bases, pruning can also include the detection of

really ineffective code or introns, i.e. code fragments that do not contribute to the

program’s (or, as in our case, model’s) evaluation. For example, simply by using

basic algebraic analysis, a simplification mechanism for formulas would be able to

detect that -(+(x;4);4) is equal to +(+(x;4);-4) due to basic knowledge about

subtraction and addition, and that this is again equal to +(x;4;-4). This then

can be easily simplified to x as it is easy to implement a simplification program

“knowing” that the addition of any value x and its negative counterpart −x is

always 0, and that 0 is the neutral element of the addition function.

But, as soon as such a fixed functional basis is not available anymore, things

start to become a lot more complicated. We shall here describe pruning methods

suitable for use in combination with a flexible and parameterizable set of function

and terminal definitions as described in Section 7.3. We hereby try to consider

the gain of simplicity as well as the deterioration of the model’s quality caused by

pruning it:

• The gain of simplicity with respect to the pruning of a model can be calculated

by comparing its original tree complexity and the complexity of the pruned

structure tree. The complexity of a model m, c(m)m, can hereby be equal to

the size or the height of the tree structure representing m.

So, we calculate the model complexity decrease mcd(m,mp) of a model m and

a pruned version of m, mp, as

mcd(m,mp) =
c(m)

c(mp)
(10.2)

Pruning a model by deleting sub-trees will therefore always result in a mcd

value greater than 1 as the original model’s complexity (in terms of size or

height of the tree structure) will always be greater than the pruned model’s

complexity.

• The deterioration of a model caused by pruning (det(m,mp)) can be measured

by calculating the ratio of the pruned model’s quality q(mp) and the quality

144 CHAPTER 10. LOCAL ADAPTATION IN GP

of the original formula q(m) as

det(m,mp) =
q(mp)

q(m)
(10.3)

Thus, if for example the pruned model’s fitness value is 10% higher, i.e. worse

than the original model’s quality with respect to a given evaluation operator,

then the resulting deterioration coefficient will be equal to 1.1.

Please note that this approach yields reasonable results only when using a

minimization approach, i.e. if better models are assigned smaller quality values

as it is for example the case with theMSE function. If the evaluation operator

applied behaves reciprocally, i.e. if for example theR2 or V AF function is used,

then the reciprocal value of det(m,mp), i.e. 1
det(m,mp)

is to be used instead.

These measures for the effect of pruning, namely the complexity reduction as well

as the quality deterioration, are now used for parameterizing the effective pruning

of models:

As we have mentioned already, accuracy is traded for simplicity, and now we

are able to quantify this trading aspect. By giving an upper bound for the relation

between the coefficients expressing the complexity deterioration and the simplifica-

tion effects, the pruning mechanism can be limited; we call this composed coefficient

cp(m,mp) and define an upper bound cpmax for cp(m,mp) by demanding that

det(m,mp)

mcd(m,mp)
= cp(m,mp) ≤ cpmax (10.4)

Thus, we demand that the decrease with respect to the model’s quality should not

be worse than the simplicity gain multiplied with a certain factor cpmax.

Still, there is one major problem with this approach as tremendous loss of quality,

as for example an increase of the mean squared error by a factor of 50, might be

compensated by replacing a formulam1 consisting of 60 nodes by one single constant,

i.e. a model m2 with only one node:

cp(m1, m2) =
det(m1, m2)

mcd(m1, m2)
=

q(m2)
q(m1)

c(m1)
c(m2)

=
50
60
1

=
50

60
< 1 (10.5)

So, in order to cope with this potential problem – it is in fact really a problem

since we do not want to replace all models with constant terminals – we give a

10.2. PRUNING 145

second parameter for the pruning method which limits the quality deterioration,

detmax, and so demand that

det(m,mp) =
q(mp)

q(m)
≤ detmax ⇔ q(mp) ≤ detmax ∗ q(m) (10.6)

10.2.2 Pruning a Structure Tree

The actual pruning of a model (with respect to one particular part of the model) in

GP is rather easy as it simply consists of removing a sub-tree from the tree structure

representing the formula. In the case of pruning the root node the model thereafter

is simply a terminal representing the constant 0, otherwise the sub-tree resected is

to be replaced by a constant representing the respective parent’s neutral element

for the respective input index. For example, pruning inputs of an addition results

in the replacement of these branches by zeros, whereas children of multiplication

functions have to be replaced by constants representing 1.0.

Furthermore, pruning could also include the excision of certain parts of the

model, i.e. a part of a tree could be simply cut out and replaced by one of its

descendants.

Simple examples are shown in Figure 10.1: In the left part (a) we schematically

show the replacement of the second input of an addition resulting in the insertion of

the constant 0, in the middle (b) we see the replacement of a multiplication’s first

input by the constant 1, and in the right part (c) we see possible effects of excising

two nodes and replacing them by either of their two descendants.

So, we now know how models are pruned in general as well as what we want

a pruning method to achieve. Thus, we here describe two pruning methods we

have designed and implemented as operators for HeuristicLab: The first one is an

exhaustive implementation that systematically tries to prune the model as much

as possible, whereas the second one is inspired by evolution strategies for reducing

runtime.

10.2.2.1 Exhaustive Pruning

When applying exhaustive pruning to a given model m we have to proceed in the

following way: For each possible subtree up to a given height h1 we create a copy ofm

and remove the respective branch. Furthermore, for each internal model fragment

(tree) up to a given height h2 we create a copy of m and cut out the respective

146 CHAPTER 10. LOCAL ADAPTATION IN GP

-

ex

+

2.6*X5t 0.7*X4t-2

+

ex +

2.6*X5t 0.7*X4t-2 1.1*X2t-1

+

ex

1.1*X2t-1

?

+

ex

1.1*X2t-1

0

(a) (c)

6*X1t

*

ex +

2.6*X5t 0.7*X4t-2 1.1*X2t-1

*

ex

1.1*X2t-1

?

*

ex

1.1*X2t-1

1

(b)

-

2.6*X5t 6*X1t

-

0.7*X4t-2 6*X1t

Figure 10.1: Simple examples for pruning in GP.

fragment. After doing so, the resulting pruned models’ qualities are calculated and

their complexities are checked; if a pruned model meets the requirements regarding

maximum deterioration and maximum coefficient of simplification and deterioration,

then we go on with the procedure using this pruned formula. This routine is repeated

until no more pruned model that meets the given requirements can be produced by

deleting branches.

Finally, the algorithm’s result is either the minimal model meeting the given

requirements, or that model for which the minimal cp coefficient is calculated. This

decision is controlled by the parameter minimizeModel denoting whether the mini-

mal formula is to be returned or, if this flag is set false, the model with the minimal

cp value is to be considered the result of pruning m.

In a more formal way this exhaustive pruning algorithm is defined in Algorithm 3.

Exhaustive pruning is of course an extremely expensive method with respect

to runtime consumption. As an alternative, a general pruning method inspired by

evolution strategies is described in the following section.

10.2. PRUNING 147

Algorithm 3 Exhaustive pruning of a model m using the parameters h1, h2,

minimizeModel, cpmax and detmax.
Initialize mcurr as clone of m,
Evaluate m, store calculated fitness in f

Calculate complexity of m, store result in c

Initialize abort = false

while not(abort) do
Initialize set of pruned models M

Initialize structure tree t as tree representation of mcurr

for each branch b of t with height(b) < h1 do
Initialize mtmp as clone of mcurr

Remove b′, the corresponding branch to b in mtmp

Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧ mcd ≤ cpmax then
Insert mtmp to M

end if
end for
for each internal sub-tree st of t with height(st) < h2 do

for each descendant d of st do
Initialize mtmp as clone of mcurr

Replace st′, the corresponding part to st in mtmp, by d

Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧ mcd ≤ cpmax then
Insert mtmp to M

end if
end for

end for
if M is empty then

return mcurr

else
if minimizeModel then

Set mcurr to that model in M with minimum complexity value c

else
Set mcurr to that model in M with minimum mcd coefficient

end if
end if

end while

148 CHAPTER 10. LOCAL ADAPTATION IN GP

10.2.2.2 ES-Inspired Pruning

As a less runtime consuming pruning method we have designed an ES-inspired prun-

ing method: For pruning a model m, we create λ clones of m and prune those

randomly; again, we use parameters h1 and h2 that limit the size of the branches

and internal subtrees that are excised. All of the so created λ pruned mutants are

checked and those, that fulfill the given requirements regarding maximum deteriora-

tion and maximum coefficient of simplification and deterioration, are collected. This

procedure is then repeated with the best pruned mutant, whereas the best pruned

model is again selected as the minimal model or that showing the best coefficient of

simplification and deterioration. As soon as this procedure is executed without any

success for a given number in a row, the algorithm is terminated.

Algorithm 4 describes this (1+λ)-ES-inspired pruning method in a more formal

way.

10.2. PRUNING 149

Algorithm 4 ES-inspired pruning of a model m using the parameters λ,

maxUnsuccRounds, h1, h2, minimizeModel, cpmax and detmax.
Initialize mcurr as clone of m,
Evaluate m, store calculated fitness in f

Calculate complexity of m, store result in c

Initialize UnsuccessfulRounds := 0
Initialize abort := false

while not(abort) do
Initialize set of pruned models M

Initialize structure tree t as tree representation of mcurr

for i = 1 : λ do
Set r to random number in [0; 1[
Initialize mtmp as clone of mcurr

if r < 0.5 then
Remove b, a branch of mtmp with height(b) < h1

else
Select st, an internal subtree of t with height(st) < h2,
replace st by a randomly chosen descendant of d

end if
Evaluate mtmp, store calculated fitness in ftmp

Calculate complexity of mtmp, store result in ctmp

Calculate model complexity decrease mcd = c/ctmp

Calculate quality deterioration det = f/ftmp

if det ≤ detmax ∧ mcd ≤ cpmax then
Insert mtmp to M

end if
end for
if M is empty then

Increase UnsuccessfulRounds

if UnsuccessfulRounds = maxUnsuccRounds then
return mcurr

end if
else

Set UnsuccessfulRounds := 0
if minimizeModel then

Set mcurr to that model in M with minimum complexity value c

else
Set mcurr to that model in M with minimum mcd coefficient

end if
end if

end while

150 CHAPTER 10. LOCAL ADAPTATION IN GP

151

Chapter 11

Similarity Measures for GP

Solutions

Genetic diversity and population dynamics are very interesting aspects when it

comes to analyzing GP processes. Measuring the entropy of a population of trees can

be done for example by considering the programs’ scores (as explained in [Ros95b],

e.g.); entropy is there calculated as −
∑

k pk · log(pk) (where pk is the proportion of

the population P occupied by population partition k). In [McK00] the traditional

fitness sharing concept from the work described in [DG89] is applied to test its

feasibility in GP.

In this section we present more sophisticated measures which we have used for

estimating the genetic diversity in GP populations as well as among populations of

multi-population GP applications. What we use as basic measures for this are the

following two functions that calculate the similarity of GP solution candidates or, a

bit more specific, in our case formulas represented as structure trees:

• Evaluation based similarity estimation compares the sub-trees of two GP for-

mulas with respect to their evaluation on the given training or validation data.

The more similar these evaluations are with respect to the squared errors or

linear correlation, the higher is the similarity for these two formulas.

• Structural similarity estimation directly compares the genetic material of two

solution candidates: All possible pairs of ancestor and descendant nodes in

formula trees are collected and these collections compared for pairs of formulas.

So we can determine how similar the genetic make-up of formulas is without

considering their evaluation.

152 CHAPTER 11. SIMILARITY MEASURES FOR GP SOLUTIONS

11.1 Evaluation Based Similarity Measures

The main idea of our evaluation based similarity measures is that the building

blocks of GP formulas are subtrees that are exchanged by crossover and so form new

formulas. So, the evaluation of these branches of all individuals in a GP population

can be used for measuring the similarity of two models m1 and m2:

For all sub-trees in the structure-tree of model m, collected in t, we collect the

evaluation results by applying these sub-formulas to the given data collection data

as

∀(sti ∈ t)∀(j ∈ [1;N]) : ei,j = eval(sti, data) (11.1)

where N is the number of samples included in the data collection, no matter if

training or validation data are considered.

The evaluation based similarity of models m1 and m2, es(m1, m2), is calculated

by iterating over all subtrees of m1 (collected in t1) and, for each branch, picking

that subtree of t2 (containing all sub-trees of m2) whose evaluation is most “similar”

to the evaluation of that respective branch. So, for each branch ba in t1 we compare

its evaluation ea with the evaluation eb of all branches bb in t2, and the “similarity”

can be calculated using the sum of squared errors (sse) or the linear correlation

coefficient:

• When using the sse function, the sample-wise differences of the evaluations of

the two given branches are calculated and their sum of squared differences is

divided by the total sum of squares tss of the first branch’s evaluation. This

results in the similarity measure s for the given branches.

e1 =
1

N

N∑
j=1

ea[j] (11.2)

sse =

N∑
j=1

(ea[j] − eb[j])
2; tss =

N∑
j=1

(ea[j] − ea)
2 (11.3)

ssse(ba, bb) = 1 − sse

tse
(11.4)

• Alternatively the linear correlation coefficient can be used:

ea =
1

N

N∑
j=1

ea[j]; eb =
1

N

N∑
j=1

eb[j] (11.5)

11.2. STRUCTURAL SIMILARITY MEASURES 153

slc(ba, bb) = |
1

n−1

∑N
j=1(ea[j] − ea)(eb[j] − eb)√

1
n−1

∑N
j=1(ea[j] − ea)2

√
1

n−1

∑N
j=1(eb[j] − eb)2

| (11.6)

No matter which approach is chosen, the calculated similarity measure for the

branches ba and bb, sim(ba, bb), will always be in the interval [0; 1]; the higher this

value becomes, the smaller is the difference between the evaluation results.

As we can now quantify the similarity of evaluations of two given subtrees, we

can for each branch ba in ta elicit that branch bx in tb with the highest similarity to

ba; the similarity values s are collected for all branches in ta and their mean value

finally gives us a measure for the evaluation based similarity of the models ma and

mb, es(ma, mb).

Optionally we can force the algorithm to select each branch in tb not more than once

as best match for a branch in ta for preventing multiple contributions of certain parts

of the models.

Finally, this similarity function can be parameterized by giving minimum and

maximum bounds for the height and / or the level of the branches investigated. This

is important since we can so control which branches are to be compared, be it the

rather small ones, rather big ones or all of them.

Algorithm 5 summarizes this evaluation based similarity measure approach.

11.2 Structural Similarity Measures

Structural similarity estimation is, unlike the evaluation based described before,

independent of data; it is calculated on the basis of the genetic make-up of the

models which are to be compared.

Koza [Koz92] used the term variety to indicate the number of different programs

in populations by comparing programs structurally and looking for exact matches.

The Levenshtein distance [Lev66] can be used for calculating the distance between

trees, but it is considered rather far from ideal ([Kei96], [O’R97], [LP02]); in [EN00]

an edit distance specific to genetic programming parse trees was presented which

considered the cost of substituting between different node types.

A very comprehensive overview of program tree similarity and diversity measures

has been given for instance in [BGK04]. The standard tree structures representation

in GP makes it possible to use more fine grained structural measures that consider

154 CHAPTER 11. SIMILARITY MEASURES FOR GP SOLUTIONS

Algorithm 5 Calculation of the evaluation based similarity of two models m1 and

m2 with respect to data base data

Collect all subtrees of the tree structure of m1 in B1

Collect all subtrees of the tree structure of m2 in B2

Initialize s := 0

for each branch bj in B1 do evaluate bj on data, store results in e1,j

for each branch bk in B2 do evaluate bk on data, store results in e2,k

for each branch bj in B1 do

Initialize smax := 0, index := −1

if |B2| > 0 then

for each branch bk in B2 do

Calculate similarity stmp as similarity of bj and bk using e1,j , e2,k

and similarity function ssse or slc

if stmp > smax do smax := stmp; index = k

end for

if PreventMultipleContribution do remove bindex from B2

end if

s := s+ smax

end for

return s/|B1|

nodes, subtrees, and other graph theoretic properties (rather than just entire trees).

In [Kei96], for example, subtree variety is measured as the ratio of unique subtrees

over total subtrees and program variety as a ratio of the number of unique individuals

over the size of the population; [MH99] investigated diversity at the genetic level by

assigning numerical tags to each node in the population.

When analyzing the structure of models we have to be aware of the fact that of-

ten structurally different models can be equivalent. Let us for example consider the

formulas *(+(2,X2),+(X3) and +(*(X2,X3),*(X3,2)): As we know about distribu-

tivity we know that these formulas can be considered equivalent, but any structure

analysis approach taking into account size, shape or parent / child relationships in

the structure tree would assign these models a rather low similarity value. This

is why we have designed and implemented a method that systematically collects

all pairs of ancestor and descendant nodes and information about the properties of

these nodes. Additionally, for each pair we also document the distance (with respect

to the level in the model tree) and the index of the ancestor’s child tree containing

the descendant node. The similarity of two models is then, in analogy to the method

described in the previous section, calculated by comparing all pairs of ancestors and

descendants in one model to all pairs of the other model and averaging the similarity

11.2. STRUCTURAL SIMILARITY MEASURES 155

of the respective best matches.

Figure 11.1 shows a simple formula and all pairs of ancestors and descendants

included in the structure tree representing it; the input indices as well as the level

differences (“level delta”) are also given. Please note: The pairs given on the right

side of Figure 11.1 are shown intentionally as they symbolize the pairs of nodes with

level difference 0, i.e. nodes combined with themselves.

+

ex 0.7*X4t-2

1.1*X2t-1

+ ex

1.1*X2t-1 +

+ 0.7*X4t-2

ex 1.1*X2t-1

Index: 1
Level Delta: 1

Index: 1
Level Delta: 2

Index: 2
Level Delta: 1

Index: 1
Level Delta: 1

1

2

3

4

1

2

3

4

+

1.1*X2t-1

+

0.7*X4t-2

ex

1.1*X2t-1

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

Index: -
Level Delta: 0

0.7*X4t-2

ex

Figure 11.1: Simple formula structure and all included pairs of ancestors and de-

scendants (genetic information items).

We define a genetic item as a 6-tuple storing the following information about the

ancestor node a and descendant node d:

• typea, the type of the ascendant a

• typed, the type of the descendant d

• δl, the level delta

• index, the index of the child branch of a that includes d

• npa, the node parameters characterizing a

• npd, the node parameters characterizing d

where the parameters characterizing nodes are represented by tuples containing the

following information:

• var, the variant (of functions)

• coeff, the coefficient (of terminals)

156 CHAPTER 11. SIMILARITY MEASURES FOR GP SOLUTIONS

• to, the time offset (of terminals)

• vi, the variable index (of terminals)

Now we can define the similarity of two genetic items gi1 and gi2, sim(gi1, gi2),

as follows:

Most important are the types of the definitions referenced by the nodes; if these

are not equal, then the similarity is 0 regardless of all other parameters:

∀(gi1, gi2) : gi1.typea �= gi2.typea ⇒ sim(gi1, gi2) = 0 (11.7)

∀(gi1, gi2) : gi1.typed �= gi2.typed ⇒ sim(gi1, gi2) = 0 (11.8)

If the types of the nodes correspond correctly, then the similarity of gi1 and gi2
is calculated using the similarity contributors s1 . . . s10 of the parameters of gi1 and

gi2 weighted with coefficients c1 . . . c10.

The differences regarding input index, variant and variable index are not in

any way scaled or relativized, their similarity contribution is 1 in the case of equal

parameters for both genetic items and 0 otherwise. The differences regarding level

difference, coefficient and time offset, on the contrary, are indeed scaled:

• The level difference is divided by the maximum tree height heightmax,

• the difference of coefficients is divided by the range of the referenced termi-

nal definition (in case of uniformly distributed coefficients) or divided by the

standard deviation σ (in case coefficients are normally distributed), and

• the difference of the time offsets is divided by the maximum time offset allowed

offsetmax.

∀(gi1, gi2 : gi1.typea = gi2.typea & gi1.typed = gi2.typed) :

s1 = 1 − |gi1.δl − gi2.δl|
heightmax

, s2 =

{
gi1.index �= gi2.index : 0

gi1.index = gi2.index : 1
(11.9)

s3 =

{
gi1.npa.var �= gi2.npa.var : 0

gi1.npa.var = gi2.npa.var : 1
(11.10)

s4 =

{
gi1.npd.var �= gi2.npd.var : 0

gi1.npd.var = gi2.npd.var : 1
(11.11)

11.2. STRUCTURAL SIMILARITY MEASURES 157

δca = |gi1.npa.coeff − gi2.npa.coeff| (11.12)

s5 = 1 −
{

isUniform(gi1.typea) : δca

gi1.typea.max−gi1.typea.min

isGaussian(gi1.typea) : δca

gi1.typea.σ∗4
(11.13)

δcd = |gi1.npd.coeff − gi2.npd.coeff| (11.14)

s6 = 1 −
{

isUniform(gi1.typed) : δcd

gi1.typed.max−gi1.typed.min

isGaussian(gi1.typed) : δcd

gi1.typed.σ∗4
(11.15)

s7 = 1 − |gi1.npa.to − gi2.npa.to|
offsetmax

(11.16)

s8 = 1 − |gi1.npd.to − gi2.npd.to|
offsetmax

(11.17)

s9 =

{
gi1.npa.vi �= gi2.npa.vi : 0

gi1.npa.vi = gi2.npa.vi : 1
(11.18)

s10 =

{
gi1.npd.vi �= gi2.npd.vi : 0

gi1.npd.vi = gi2.npd.vi : 1
(11.19)

Finally, there are two possibilities how to calculate the structural similarity of

gi1 and gi2, sim(gi1, gi2): On the one hand this can be done in an additive way, on

the other hand in a multiplicative way.

• When using the additive calculation, which is the obviously more simple way,

sim(gi1, gi2) is calculated as the sum of these similarity contributions s1...10

weighted using the factors c1...10 and, for the sake of normalization of results,

divided by the sum of the weighting factors:

sim(gi1, gi2) =

∑10
i=1 si · ci∑10

i=1 ci
(11.20)

• Otherwise, when using the multiplicative calculation method, we first calculate

a punishment factor pi for each si (using weighting factors ci, 0 ≤ ci ≤ 1 for

i ∈ [1, 10]) as pi = (1 − si) · ci and then get the temporary similarity result as

simtmp(gi1, gi2) =

10∏
i=1

(1 − pi). (11.21)

In the worst case scenario we get si = 0 for all i ∈ [1, 10] and therefore the

worst possible simtmp is

simworst =

10∏
i=1

(1 − ((1 − si) · ci)) =

10∏
i=1

(1 − ci). (11.22)

158 CHAPTER 11. SIMILARITY MEASURES FOR GP SOLUTIONS

As simworst is surely greater than 0 we linearly scale the results to the interval

[0, 1]:

sim(gi1, gi2) =
simtmp(gi1, gi2) − simworst

1 − simworst
. (11.23)

In fact, we prefer this multiplicative similarity calculation method since it

allows more specific analysis: By setting a weighting coefficient cj to a rather

high value (i.e., near or even equal to 1.0) the total similarity will become very

small for pairs of genetic items that do not correspond with respect to this

specific aspect, even if all other aspects would lead to a high similarity result.

Based on this similarity measure it is easy to formulate a similarity function

that measures the similarity of two model structures. In analogy to the approach

presented in the previous section, for comparing models m1 and m2 we collect all

pairs of ancestors and descendants (up to a given maximum level difference) in

m1 and m2 and look for the best matches in the respective opposite model’s pool

of genetic items, i.e. pairs of ancestor and descendant nodes. As we are able to

quantify the similarity of genetic items, we can elicit for each genetic item gi1 in the

structure tree of m1 exactly that genetic item gix in the model structure m2 with

the highest similarity to gi1; the similarity values s are collected for all genetic items

contained in m1 and their mean value finally gives us a measure for the structure

based similarity of the models m1 and m2, ss(m1, m2).

Optionally we can force the algorithm to select each genetic item of m2 not more

than once as best match for an item in m1 for preventing multiple contributions of

certain components of the models.

This function is defined in a more formal way using pseudo-code in Algorithm 6.

Obviously, it is possible that some model exactly contains all pairs of genetic

items that are also incorporated in another model, but not vice versa. Thus, this

similarity measure ss(m1, m2) is not symmetric, i.e. ss(m1, m2) does not necessarily

return the same result as ss(m2, m1) for any pair of models m1 and m2.

Of course, this similarity concept for GP individuals cannot be the basis of the-

oretical concepts comparable to those based on GP (hyper)schemata, for example;

we do here not want to give any statements about the probability of certain parts of

formulas to occur in a given generation. In the presence of mutation or other struc-

ture modifying operations (as for example pruning) we are interested in measuring

the structural diversity in GP populations; using this structural similarity measure

we are able to do so.

11.2. STRUCTURAL SIMILARITY MEASURES 159

Algorithm 6 Calculation of the structural similarity of two models m1 and m2

Collect all genetic items m1 in GI1
Collect all genetic items m2 in GI2
Initialize s := 0

for each branch gij in GI1 do

Initialize smax := 0, index := −1

if |B2| > 0 then

for each genetic item gik in GI2 do

Calculate similarity stmp as similarity of gij and gik
if stmp > smax do smax := stmp; index = k

end for

if PreventMultipleContribution do remove giindex from GI2
end if

s := s+ smax

end for

return s/|GI1|

160 CHAPTER 11. SIMILARITY MEASURES FOR GP SOLUTIONS

161

Chapter 12

Population Dynamics in Genetic

Programming

There are several aspects of dynamics in GP populations that can be observed and

analyzed. In this section we shall describe those aspects which we have concentrated

on and which will also be analyzed for evaluating different algorithmic GP settings

on various problem instances:

• In Section 12.1 we describe how we analyze which individuals of the population

succeed in passing their genetic information on to the next generation.

• The analysis of variables diversity during the execution of the GP process is

described in Section 12.2. Hereby we distinguish between the occurrences of

references to variables, i.e. the frequencies of variables in the population, and

the impact of variables, i.e. we measure how strongly the evaluation of models

is altered when temporarily removing information of variables.

• The diversity of populations with respect to the frequencies of function and

terminal definitions is described in Section 12.3.

• In Section 12.4 we finally give a summary of approaches for analyzing the

diversity among GP populations using the similarity measures described in

Chapter 11. We use these concepts to measure how diverse the individuals

of populations are as well as how similar populations of multi-population GP

processes become during runtime.

162 CHAPTER 12. POPULATION DYNAMICS

12.1 Parents Analysis

In the context of conventional GAs, parent selection is normally responsible for

selecting fitter individuals more often than those that are less fit. Thus, fitter

individuals are supposed to pass on their genetic material to more members of the

next generation’s population.

When using offspring selection, several additional aspects have to be considered.

As only those children survive this selection step that perform better than their

parents to a certain degree, we cannot guarantee that fitter parents succeed more

often than less fit ones.

This is why we document the parent indices of all successful offspring for each

generation step. So we can analyze whether all parts of the population are considered

for effective propagation of their genetic information, if only better ones or rather

bad ones are successful.

Formally, in parent analysis we analyze the genetic propagation of parents P to

their children C calculating the propagation count pc for each parent as the number

of successful children it was able to produce by being crossed with other parents or

mutation:

isParent(p, c) =

{
1 : p ∈ c.Parents

0 : otherwise
(12.1)

∀(p ∈ P) : pc(p) =
∑
c∈C

isParent(p, c) (12.2)

In addition, we can optionally weight the propagation count for each potential

parent by weighting it with the similarity of the parent and its children (supposing

the availability of a similarity function sim which can be used for calculating the

similarity of solution candidates):

∀(p ∈ P) : pc′(p) =
∑
c∈C

isParent(p, c) ∗ sim(p, c) (12.3)

12.2. VARIABLES DIVERSITY 163

12.2 Variables Diversity

For measuring the genetic diversity in GP populations with respect to the variables

used we have developed the following features that are able to measure the genetic

diversity within a population:

• A very simple approach is to calculate an occurrence feature for each data

variable (in the case of time series analysis also considering each possible time

offset) as the number of models that include the respective variable. Obvi-

ously, this approach can easily be transferred to function definitions as well as

terminal definitions.

• As a first extension to this approach, the qualities of the models have to

be incorporated into this calculation model as for example by multiplying

the occurrence values with a weighting factor (which depends on the model’s

quality in relation to the qualities of all other models which are included in

the current generation’s population).

• The most informative (and, unfortunately, also most run-time consuming)

calculation model takes into account the impact of variables by evaluating all

models assuming that all information included in the respective data variables

was deleted temporarily. There are several possibilities how to remove infor-

mation from a variable, for example by replacing all values by the mean value

of the respective training data samples or a given constant, by using linear re-

gression for calculating the variables’ trend (again using the respective training

data samples) or by adding a synthetic Gaussian noise.

In a first step, the relevance rel for each variable with respect to each model of

the current population has to be calculated; this is done either by frequency analysis

or by measuring its impact by evaluating it on modified data bases.

12.2.1 Frequency Based Relevance of Variables

The relevance of a variable (at index i) with respect to a given model m can either be

defined as the number of references in this model (calculated using function freq1)

to this variable or simply as 1 if there is a reference to this variable and 0 if not

(freq2). All terminals t in the model are considered for this.

freq1(i,m) = |{t : t ∈ m.terminals ∧ t.V arIndex = i}| (12.4)

164 CHAPTER 12. POPULATION DYNAMICS

freq2(i,m) =

{
1 : ∃t : (t ∈ m.terminals ∧ t.V arIndex = i)

0 : otherwise
(12.5)

In the case of time series analysis this variable frequency analysis can be extended

to the analysis of time lags as variables are possibly referenced using time offsets (as

for example in f(x) = ut−2 ∗vt−1). Thus, we calculate the frequency based relevance

of a variable (at index i) with time offset t with respect to a model m as follows:

freq1(i, t,m) =
|{t : t ∈ m.terminals∧
t.V arIndex = i ∧ t.T imeOffset = t}| (12.6)

freq2(i, t,m) =

⎧⎨
⎩

1 : ∃t : (t ∈ m.terminals ∧ t.V arIndex = i

∧t.T imeOffset = t)

0 : otherwise

(12.7)

12.2.2 Impact Based Relevance of Variables

For estimating a variable’s impact to the evaluation of a model we temporarily

replace the values of exactly this variable and evaluate the model on the basis of

the resulting manipulated data base. Thus, first replacement strategies have to be

designed; we here present methods using averaging, constants, linear regression and

additive Gaussian noise:

A given variable (at index i) is replaced without changing any other part of the

data basis; we transfer the original data basis Data consisting of N variables with n

samples each to a manipulated data basis Data i with manipulated variable number

i using a given replacement function r as

∀(i ∈ [1;N]) : Data i(r) = [Data1, . . . , Datai−1, r(Datai), Datai+1, . . . , DataN]

(12.8)

The replacement functions introduced here realize the replacement of a given

variable using a given constant value (rconst), its mean value (rmean), its linear trend

(rlinreg) and the addition of Gaussian noise (ragn). Whereas the first two methods are

rather straightforward (12.9, 12.10), the other two are more complex: For replacing a

variable with its linear trend, we calculate the parameters needed for linear regression

using the method of minimizing the sum of squared errors [DS98] (12.11 – 12.15),

and a random number generator is needed for adding Gaussian noise together with

the respective variable’s range and a scaling factor σ (12.16, 12.17).

12.2. VARIABLES DIVERSITY 165

The following equations express this formally for an arbitrary, but fixed variable

number i:

∀(j ∈ [1, n]) : [rconst(Datai, c)]j = c (12.9)

∀(j ∈ [1, n]) : [rmean(Datai, c)]j =
1

n

n∑
j=1

Datai[j] (12.10)

j̄ =
1

n

n∑
j=1

j =
n+ 1

2
(12.11)

∀(j ∈ [1;n]) : yj = [Datai]j ; ȳ =
1

n

n∑
j=1

[Datai]j =
1

n

n∑
j=1

yj (12.12)

b =
1
n

∑n
j=1(j − j̄)(yj − ȳ)

1
n

∑n
j=1(j − j̄)2

=

∑n
j=1(j − j̄)(yj − ȳ)∑n

j=1(j − j̄)2
(12.13)

a = ȳ − b · j̄ (12.14)

∀(j ∈ [1;n]) : [rlinreg(Datai)]j = a+ b · j (12.15)

rangei = max(Datai) −min(Datai) (12.16)

∀(j ∈ [1;n]) : [ragn(Datai, RG, σ)]j = [Datai]j + rangei · RG.next() · σ (12.17)

Now it is possible to calculate the variable’s impact with respect to the model

m by evaluating the model on the manipulated data set Data i and measuring the

resulting difference between the original output values and those calculated on the

manipulated data. This measurement can be done on the basis of the average abso-

lute difference function impactmad, the mean squared difference function impactmsd,

impactcc using the correlation coefficient and impactff using a (predefined) external

fitness function FF .

The first two functions measure the sample-wise difference between the evalua-

tions on the original and manipulated data, respectively:

impactmad(i,m) =
1

n

n∑
j=1

|[eval(m,Data i)]j − [eval(m,Data i)]j | (12.18)

impactmsd(i,m) =
1

n

n∑
j=1

([eval(m,Data i)]j − [eval(m,Data i)]j)
2 (12.19)

166 CHAPTER 12. POPULATION DYNAMICS

The correlation coefficient cc is a non-dimensional measure for the linear inter-

relationship between two variables. Its domain is [−1; +1] with cc = +1 indicating

a perfect positive and cc = −1 a perfect negative linear relation between the sig-

nals investigated; if the correlation coefficient equals 0, the variables show no linear

correlation at all.

Thus, the correlation based method impactcc for calculating the impact of a

variable i with respect to a given model m can be calculated in the following way:

The model is on the one hand evaluated on the (whole) manipulated data set yielding

X and on the other hand on the original data set yielding Y ; within the analysis

approach presented here the absolute value of the correlation coefficient of X and

Y is returned as the resulting impact value:

∀(j ∈ [1;n]) : Xj = [eval(m,Data i)]j ;Yj = [eval(m,Data)]j (12.20)

cc(X, Y) =
1

n−1

∑n
i=1(Xi − X̄)(Yi − Ȳ)√

1
n−1

∑n
i=1(Xi − X̄)2 ·

√
1

n−1

∑n
i=1(Yi − Ȳ)2

(12.21)

impactcc(i,m) = 1 − |cc(X, Y)| (12.22)

Finally, it also seems to be a good idea to calculate the impact of a variable i with

respect to a given fitness function FF . The main idea here is that (for example in

the context of evaluating classifier models) it is well possible that the manipulation

of a certain variable results in significant changes of the output values of models, but

the evaluation using some given fitness measure does not change to the same extent

(for example because the ratio of correctly classified samples is not changed). So,

again the manipulated as well as the original data set are evaluated using the given

model m1; the resulting output values are compared to the original target values

stored in the data base, and the impact factor is calculated using the ratio between

the original evaluation and the evaluation on the basis of the manipulated data set:

∀(j ∈ [1;n]) : Xj = [eval(m,Data i)]j ;Yj = [eval(m,Data)]j ;Tj = [Datai]j
(12.23)

q = eval(T,X, FF)/eval(T, Y, FF) (12.24)

impactff (i,m, FF) =

{
1 − 1

q
: q ≥ 1

1 − q : q < 1
(12.25)

1Of course, here the following issue has to be kept in mind: If the system’s target variable
is to be analyzed and therefore manipulated, the evaluation of the model using the given fitness
function still has to be done on the original (not manipulated) values of this variable.

12.3. FUNCTIONS AND TERMINALS DIVERSITY 167

12.2.3 Weighting of Variables Relevance Estimations

Before calculating the overall relevance of a variable with respect to a population of

models M it is possible to calculate weighting factors for each model depending on

its quality:

∀(j ∈ [1, |M |]) : qj = quality(mj);mj ∈M (12.26)

qmin = minj∈[1,|M |](qj); qmax = maxj∈[1,|M |](qj) (12.27)

∀(j ∈ [1, |M |]) : weighting(mj) = 1 − qj − qmin

qmax − qmin
(12.28)

12.2.4 Calculating the Relevance of Variables in Popula-

tions

Finally, for each variable the (potentially weighted) relevance values calculated for

each model are summarized and so give a measure for the overall relevance of this

specific signal. By calculating this relevance measure for all variables we finally get

an analysis for the genetic diversity within the given population. So, on the basis

of all relevance values for each variable (with index i) on each model m (12.29) and

after possibly weighting them (12.30) we calculate the relevance of a variable with

index i with respect to a whole population P as given in (12.31):

rel(i,m) =

{
freq(i,m) : frequencyBasedAnalysis

impact(i,m) : otherwise
(12.29)

rel′(i,m) =

{
rel(i,m) · weighting(m) : weightingActivated

rel(i,m) : otherwise
(12.30)

rel(i, P) =
∑
m∈P

rel′(i,m) (12.31)

12.3 Functions and Terminals Diversity

Another possibility to measure the diversity in GP populations in the context of

data based structure identification is to monitor the frequency or the impact of

function and terminal definition on the models of the population. For doing so we

have designed the following features:

168 CHAPTER 12. POPULATION DYNAMICS

• A very simple approach is to calculate occurrences of each function or terminal

definition as the number of models that include respective references.

• As a first extension to this approach, the qualities of the models have to

be incorporated into this function or example by multiplying the occurrence

values with a weighting factor (which again depends on the models’ quality in

relation to the quality of all other models which are included in the current

generation’s population).

• The most informative (and, unfortunately, also most run-time consuming)

calculation model takes into account the impact of functions and terminals

by evaluating all models after systematically replacing function and terminal

definitions by dummy values or randomly chosen other definitions of the same

kind.

12.3.1 Frequency Based Relevance of Functions and Termi-

nals

The relevance of a function or terminal definition d with respect to a given model

m can either be defined as the number of references in this model (calculated using

function freq1) to this definition or simply as 1 if there is a reference to it and 0 if

not (freq2). All nodes n in the model are considered for this.

freq1(d,m) = |{n : n ∈ n.nodes ∧ n.def = d}| (12.32)

freq2(d,m) =

{
1 : ∃n : (n ∈ m.nodes ∧ n.def = d)

0 : otherwise
(12.33)

12.3.2 Impact Based Relevance of Functions and Terminals

Estimating the impact of a certain function or terminal definition d to a model

m is not as straight-forward as for example estimating the relevance of a variable

for a model. The main idea of the approach presented here is that the definition

is temporarily removed from the model and the model is re-tested; the more this

changes the evaluation of the model, the higher is the impact of the temporarily

removed definition.

In principle, there are two possibilities how to remove a definition d from a model:

12.3. FUNCTIONS AND TERMINALS DIVERSITY 169

• First, each node referencing d could be neutralized, i.e. replaced by a constant

node representing the node’s parent’s neutral element (for the respective input

index). In case of neutralizing the root node, the constant 0 is chosen for

replacing the node. We call the modified version of m, in which all nodes

referencing d are replaced by neutral constants, rn(m, d):

m′ = rn(m, d) :

∀(n ∈ m′) : (n.def = d) ⇒ n.def := const,

n.coeff =

{
n.parent.neutral : n.paren �= null

0 : otherwise
(12.34)

• Secondly, all references to d could be replaced by randomly chosen other defi-

nitions of the same kind, i.e. a terminal definition is replaced by a randomly

chosen other terminal and a function by a randomly chosen other function def-

inition. We call the modified version of m, in which all nodes referencing d are

modified so that they reference randomly chosen other functions or terminals,

rrcod(m, d):

m′ = rn(m, d) :

isTerminal(d) ⇒ ∀(n ∈ m′) :

(n.def = d) ⇒ n.def := term, isTerminal(term), d �= term (12.35)

isFunction(d) ⇒ ∀(n ∈ m′) :

(n.def = d) ⇒ n.def := func, isFunction(func), d �= func (12.36)

Please note that this modification can have the effect that a node might ref-

erence too few or too many child nodes because the new function definition’s

arity parameters might differ from those of the function used formerly. In this

case children of the respective node have to be removed from or added to the

respective node so that structural integrity is assured before evaluating the

modified model.

After modifying m we can compare the values calculated by the original model

to those calculated using m′; similar to the approaches described in Section 12.2.2

this measurement can be done on the basis of the average absolute difference func-

tion impactmad, the mean squared difference function impactmsd, impactcc using the

correlation coefficient and impactff using a (predefined) external fitness function

FF .

170 CHAPTER 12. POPULATION DYNAMICS

Let us now assume that the modified model’s evaluation on the data basis data

(storing n samples) yields values stored in X, and that the original model’s evalua-

tion yields values stored in Y :

∀(j ∈ [1;n]) : Xj = [eval(m′, data)]j ;Yj = [eval(m, data)]j (12.37)

The first two functions measure the sample-wise difference between the evalua-

tions on the original and manipulated data, respectively:

impactmad(d,m) =
1

n

n∑
j=1

|[Yj −Xj | (12.38)

impactmsd(d,m) =
1

n

n∑
j=1

(Yj −Xj)
2 (12.39)

Using Equation 12.21 we can calculate the correlation coefficient based impact of

definition d as

impactcc(d,m) = 1 − |cc(X, Y)| (12.40)

Finally, it also seems to be a good idea to calculate the impact of a definition d with

respect to a given fitness function FF . The main idea here is again that it is well

possible that the manipulation of a certain variable results in significant changes of

the output values of models, but the evaluation using some given fitness measure

does not change to the same extent. So, again the manipulated as well as the

original models are evaluated using the given data; the resulting output values are

compared to the original target values stored in the data base, and the impact factor

is calculated using the ratio between the original evaluation and the evaluation on

the basis of the manipulated data set:

∀(j ∈ [1;n]) : Xj = [eval(m′, data)]j;Yj = [eval(m, data)]j ;Tj = [datatarget]j
(12.41)

q = eval(T,X, FF)/eval(T, Y, FF) (12.42)

impactff (d,m, FF) =

{
1 − 1

q
: q ≥ 1

1 − q : g < 1
(12.43)

where datatarget is the target variable.

12.3.3 Calculating the Relevance of Functions and Termi-

nals

Finally, for each function or terminal definition the (potentially weighted) relevance

values calculated for each model are summarized and so give a measure for the

12.4. GENETIC DIVERSITY 171

overall relevance of this specific definition. By calculating this relevance measure

for all definitions we finally get an analysis for the genetic diversity within the given

population; we then use the relevance values for each definition di on each model

m (12.44) and optionally weight them (12.45) using the weighting equations (12.26)

and (12.28). Finally, we calculate the relevance of a definition di with respect to a

whole population P as given in (12.46).

rel(d,m) =

{
freq(d,m) : frequencyBasedAnalysis

impact(d,m) : otherwise
(12.44)

rel′(d,m) =

{
rel(d,m) · weighting(m) : weightingActivated

rel(d,m) : otherwise
(12.45)

rel(d, P) =
∑
m∈P

rel′(d,m) (12.46)

12.4 Genetic Diversity

In this section we finally describe the measures which we use to monitor the diversity

and population dynamics with respect to the genetic make-up of solution candidates.

We hereby use the similarity measures described in Chapter 11; either the evaluation

based similarity function es or the structural similarity function ss can be used:

sim(m1, m2) :

⎧⎨
⎩

sim(m1, m2) := es(m1, m2) [11.1]

∨
sim(m1, m2) := ss(m1, m2) [11.2]

(12.47)

As both of these similarity functions are not symmetric, we can alternatively

use the mean value of the two possible similarity calls and so define a symmetric

similarity measurement:

symmetricAnalysis⇒ sim(m1, m2) =
sim(m1, m2) + sim(m2, m1)

2
(12.48)

12.4.1 In Single-Population GP

In the context of single-population GP we are mainly interested in the similarity

among the individuals of the population: For each model m of the population P

172 CHAPTER 12. POPULATION DYNAMICS

we calculate the mean and the maximum similarity with all other individuals in the

population:

meanSim(m,P) =
1

|P | − 1

∑
m2∈P,m2�=m

sim(m,m2) (12.49)

maxSim(m,P) = max(m2∈P,m2�=m)(sim(m,m2)) (12.50)

The mean values of all individuals’ similarity values are used for calculating the

mean and maximum similarity measures for populations:

meanSim(P) =
1

|P |
∑
m∈P

meanSim(m,P) (12.51)

maxSim(P) =
1

|P |
∑
m∈P

maxSim(m,P) (12.52)

12.4.2 In Multi-Population GP

The concepts of parallel evolution of populations in genetic algorithms, which have

been summarized in Chapter 5, can of course also be used in data based modeling

with genetic programming. In this context we can apply the population diver-

sity analysis for each population separately; in the following we describe a multi-

population specific diversity analysis.

Basically, a model m is compared to all models in another population P ′ which

does not include m, and multiPopSim(m,P ′) is equal to the maximum of the so

calculated similarity values:

m /∈ P ′ ⇒ multiPopSim(m,P ′) = max(m2∈P ′)(sim(m,m2)) (12.53)

So we can calculate the multi-population similarity of a model with respect to a

set of populations PP as the average multiPopSim of the model to all populations

except for the “own” one:

m ∈ P&P ∈ PP ⇒ PP ′ = P ′ : P ′ ∈ PP&P ′ �= P, (12.54)

multiPopSim(m,PP) =
1

|PP ′|
∑

P ′∈PP ′
multiPopSim(m,P ′), (12.55)

Finally, a population’s multiPopSim value is equal to all its models’ multi-

population similarity values with respect to the whole set of populations:

multiPopSim(P, PP) =
1

|P |
∑
m∈P

multiPopSim(m,PP) (12.56)

173

Chapter 13

GP in Volatile Environments:

On-Line and Sliding Window GP

13.1 On-Line GP Based System Identification

Thanks to the fact that the GP process is executed periodically, the insertion of an

additional stage can be designed and implemented quite easily. As is graphically

shown in Figure 13.1, we have added an additional phase to the standard GP cycle:

Before the next generation of solution candidates is produced, possibly available

new data are collected from a predefined data source (e.g., a file as in the case of

our prototypical implementation).

One of the major advantages of this approach is that the benefits of evolutionary

computation (namely the combination of directed and undirected search strategies

as well as the use of a certain amount of randomness) are combined with concepts

of on-line knowledge discovery and data mining. As described in further detail in

this section, this modeling method can be used as an alternative to existing on-line

modeling and identification methods that are for example used in industrial fault

detection and identification programs.

With respect to the measured data, the algorithm is able to adapt its behavior

as new identification data are available: Since all individuals of a GP algorithm’s

population have to be evaluated every generation, the corresponding data set can

be modified after every generation step. This of course means a change of the

algorithm’s environment and is likely to influence the GP process in several (maybe

unforeseen) ways. But since structural identification anyway assumes an underlying

174 CHAPTER 13. GP IN VOLATILE ENVIRONMENTS

Knowledge
about the Model

GP Algorithm

GP Results

Expert Analysis,
Validation

Experimental Design,
Data Collection

GP Function
Library

Fetch New Data
if Available

Figure 13.1: Workflow of the on-line GP process.

concept of the investigated system, this changing of environment is expected to have

rather positive than negative effects.

Last, but surely not least we strongly take advantage of the fact that instead

of using standard implementations of the genetic algorithm as underlying GP algo-

rithm, GP using offspring selection (as described in Section 4.2) is applied. This hy-

brid GA/GP variant (in our older publications often referred to as the SASEGASA

whose most important features have been explained in Section 5.1.6) uses an en-

hanced selection model which is designed to directly control genetic drift within the

population by advantageous self-adaptive selection pressure steering. Additionally,

this new selection model makes it possible to detect and hopefully avoid premature

convergence which is generally quite a critical issue in GAs.

As already explained in Section 4.2, a very essential question about the general

performance of GAs and especially GP is, whether or not good parents are able to

produce children of comparable or even better fitness. In natural evolution, this

is almost always true. For GAs, this property is not so easy to guarantee and

for GP it is a matter of principle that many crossover and mutation results cause

counterproductive solution candidates. In order to overcome this drawback, the

basic idea of OS is to consider not only the fitness of the parents in order to produce

13.1. ON-LINE GP BASED SYSTEM IDENTIFICATION 175

a child for the ongoing evolutionary process: Additionally, the fitness value of the

evenly produced child is compared to the fitness values of its own parents; basically

the child is accepted as a candidate for the further evolutionary process if and only

if the reproduction operator was able to produce a child that could outperform

the fitness of its own parents. This strategy guarantees that evolution is continued

mainly with crossover results that were able to mix the properties of their parents in

an advantageous way which is a very essential aspect for the preservation of essential

genetic information stored in many individuals (which might not be the fittest in

the sense of individual fitness).

Evolutionary techniques (especially GAs and GP) have often been and are still

considered not suitable for on-line identification: “For an off-line process, a genetic

programming method could be utilized to ’evolve’ the function that best represents

the system dynamics. This is an attractive approach because the actual structure

of the dynamic equations would be revealed (and the parameters optimized in the

process). Unfortunately, evolutionary programming techniques are ill-suited for on-

line learning.” [Ell98] As we demonstrate in Chapter 16, this widespread opinion

has to be reconsidered since the proposed GP-based method is indeed able to evolve

suitable models (at least for mechatronical systems) on-line.

Nevertheless, the authors are aware of the fact that the proposed method cannot

operate “real-time” in the sense of responding to stimuli within some small upper

limit of response time (as, e.g., milli- or microseconds). Due to the fact that the

acquisition of new measured data can only be performed after completing a whole

generation step of the GP process1, any GP based method can respond to inputs

surely not within milli- or microseconds, but at least within seconds (depending on

the time needed to compute a whole generation step).

This approach has been originally presented in [WEA+05], [WAW05a]

and [WEA+06].

1This is simply because otherwise individuals that have to be compared to each other always
have to be evaluated on the basis of the same environmental conditions, i.e. the same target and
input signal values.

176 CHAPTER 13. GP IN VOLATILE ENVIRONMENTS

13.2 Sliding Window Behavior in GP

13.2.1 Basics

The idea of sliding window behavior in computer science is not novel; in machine

learning, drifting concepts are often handled by moving the scope (of either fixed or

adaptive size) over the training data (see for example [WK96] or [HSD01]). The main

idea is the following: Instead of considering all training data for training models (in

the case of GP, for evaluating the models produced), the algorithm initially only

considers a part of the data. Then, after executing learning routines on the basis

of this part of the data, the range of samples under consideration is shifted by a

certain offset. Thus, the window of samples considered is moved, it slides along the

training data; this is why we are talking about sliding window behavior.

When it comes to GP based structure identification, sliding window approaches

are not all too common; in general, the method is seen as a global optimization

method working on a set of training samples (which are completely considered by the

algorithm within the evaluation of solution candidates). On the contrary, GP is often

even considered as an explicitly off-line, global optimization technique. Nevertheless,

during research activities in the field of on-line system identification described in the

previous section, we discovered several surprising aspects. In general, on-line GP

was able to identify models describing a diesel engine’s NOx emissions remarkably

fast ([WEA+05], [WAW05a]); the even more astonishing fact was that these models

were even less prone to overfitting than those created using standard methods. After

further test series and reconsidering the basic algorithmic processes, these facts did

not seem to be surprising to us anymore: On the one hand, especially the fact

that the environment, i.e. the training data currently considered by the algorithm,

is not constant but rather changing during the execution of the training process,

contributes positively to the models’ quality, it obviously decreases the threat of

overfitting. On the other hand, the interplay of a changing data basis and models

created using different data also seems to be contributing in a positive way. As

the on-line algorithm evaluates models using (new) current training data forgetting

samples that were recorded in the beginning, those “old” data are really forgotten

from the algorithm’s point of view, but the models created on the basis of these old

data are still present. The behavior that results out of this procedure is more or

less that several possible models that explain the first part of the data are created,

and as the scope is moved during the algorithm’s execution, only those models are

successful that are also able to explain “new” training data.

So, the most self-evident conclusion was that these benefits of online training

13.2. SLIDING WINDOW BEHAVIOR IN GP 177

should be transferred to off-line training using GP. Obviously, this directly leads us

to sliding window techniques.

13.2.2 Selection Pressure as Window Moving Trigger

One of the most important problem independent concepts used in our implementa-

tion of GP-based structure identification is offspring selection, an enhanced selection

model that has enabled genetic algorithms and genetic programming implementa-

tions to produce superior results for various kinds of optimization problems.

As in the case of conventional GAs or GP, offspring are generated by parent

selection, crossover, and mutation. In a second (offspring) selection step (as it

is used in our GP implementation), only those children become members of the

next generation’s population that outperform their own parents, all other ones are

discarded. The algorithm therefore repeats the process of creating new children

until the number of successful offspring is sufficient to create the next generation’s

population. Within this selection model, selection pressure is defined as the ratio of

generated candidates to the population size:

SelectionPressure =
| Solution candidates created |

| Successful solution candidates |

The higher this value becomes, the more models have to be created and evaluated

in order to produce a sufficient number of models that are supposed to form the next

generation’s population. In other words, this selection pressure is a value giving

a measure of how hard it is for the algorithm to produce a sufficient number of

successful solution candidates.

The proposed idea is to initially reduce the amount of data that is available for

the algorithm as identification data. As the identification process is executed, better

and better models are created which leads to a rise of the selection pressure; as soon

as the selection pressure reaches a predefined maximum value, the limits of the

identification data are shifted and the algorithm goes on considering another part

of the available identification data set. This procedure is then repeated until the

actual training data scope has reached the end of the training data set available for

the identification algorithm, i.e. when all data have been considered. By doing so,

the algorithm is (following the considerations formulated in the previous section)

even less exposed to overfitting, and due to the fact that the models created are

evaluated on much smaller data sets we also expect a significant decrease of runtime

178 CHAPTER 13. GP IN VOLATILE ENVIRONMENTS

consumption.

In Algorithm 7 we give a sketch of the sliding window GP based structure identi-

fication process incorporating offspring selection. The standard GP parameters (as,

for example, population size, mutation rate and crossover operator combinations) are

hereby omitted; we only describe the sliding window specific process modifications.

The WindowStartSize parameter gives the initial size of the current data window;

as soon as the current selection pressure reaches MaximumSelectionPressure1, the

window is moved byWindowStepSize samples; theMaximumWindowSize param-

eter specifies the maximum size of the current training data scope. This procedure

is repeated until the end of the data set is reached; in the end, the process stops as

soon as the second maximum selection pressure parameter value is reached (which

does not necessarily have to be the same as the first maximum selection pressure

value).

Algorithm 7 The sliding window based GP structure identification process.

function Model = SlidingWindowGPStructId (TrainingData, FunctionalBasis,

WindowStartSize, WindowStepSize, MaximumWindowSize,

MaximumSelectionPressure1, MaximumSelectionPressure2)

index1 = 1, index2 = WindowStartSize− 1

InitializeModelsPool

while index2 <= Data.Length do

while CurrentSelectionPressure <= MaximumSelectionPressure1 do

Perform GP-based structure identification using the given TrainingData

in the interval [index1; index2]

end while

index2 = Min((index2 +WindowStepWidth), Data.Length)

index1 = Max((index2 −MaximumWindowSize + 1), 0)

end while

index2 = Data.Length

index1 = Max((Data.Length −MaximumWindowSize + 1), 0)

while CurrentSelectionPressure <= MaximumSelectionPressure2 do

Perform GP-based structure identification using the given TrainingData

in the interval [index1; index2]

end while

return Current best model

This approach has been originally presented in [WAW07b]; test results are to be

summarized and analyzed in Chapter 16.

179

Part II

Empirical Studies

181

Chapter 14

Time Series Analysis

14.1 Designing Virtual Sensors for Emissions of a

Diesel Engine

The first research work of the Heuristic and Evolutionary Algorithms Laboratory

in the area of system identification using GP was done in cooperation with the

Institute for Design and Control of Mechatronical Systems (DesCon) at JKU Linz,

Austria. The framework and the main infrastructure was given by DesCon who

maintain a dynamical motor test bench (manufactured by AVL, Graz, Austria)

shown in Figure 14.1. A BMW diesel motor is installed on this test bench, and

a lot of parameters of the ECU (engine control unit) as well as engine parameters

and emissions are measured; for example, air mass flows, temperatures and boost

pressure values are measured, nitric oxides (NOx, to be described later) are measured

using a Horiba Mexa 7000 combustion analyzer, and an opacimeter is used for

estimating the opacity of the engine’s emissions (in order to measure the emission

of particulate matters, i.e. soot).

During several years of research on the identification of NOx and soot emissions,

members of DesCon have tried several modeling approaches, some of them being

purely data based as for example those using artificial neural networks (ANNs).

Due to rather unsatisfactory results obtained using ANNs, the ability of GP to

produce reasonable models was investigated in pilot studies; we a are here once

again thankful to Prof. del Re for initiating these studies.

In this context, our goal is to use system identification approaches in order to

create models that are designed to replace or support physical sensors; we want to

182 CHAPTER 14. TIME SERIES ANALYSIS

Figure 14.1: Dynamic diesel engine test bench at the Institute for Design and Control

of Mechatronical Systems, JKU Linz.

have models that can be potentially used instead of these physical sensors (which

can be damageable or simply expensive). This is why we are here dealing with the

design of so-called virtual sensors.

14.1.1 Designing Virtual Sensors for Nitric Oxides (NOx)

In general, being able to predict NOx emissions on-line (i.e., during engine operation)

would be very helpful for low emissions engine control. While NOx formation is

widely understood (see for example [dRLF+05] and the references given therein),

the computation of NOx turns out to be too complex and - at the moment - not

easy to be used for control. The reason for this is that in theory it would be

possible to calculate the engine’s NOx emissions if all relevant parameters (pressures,

temperatures, . . .) of the combustion chambers were known, but (at least at the

moment) we are not able to measure all these values.

As already mentioned above, ANNs have been used for data based modeling of

NOx emissions of a BMW diesel engine. These results were not very satisfying, as is

for example documented in [dRLF+05]: Even though modeling quality on training

data was very good, the model’s ability to predict correct values for operating points

14.1. VIRTUAL SENSORS FOR DIESEL ENGINE EMISSIONS 183

not included in the training data was very poor.

We therefore designed and implemented a first GP approach based on Heuris-

ticLab 1.0, preliminary results were published in [WAW04a] and [WAW04b].

In [WAW04b] we documented the ability of GP using offspring selection to pro-

duce reasonable models for NOx, including lots of statistics showing that the results

obtained applying rigid offspring selection were significantly better than those ob-

tained without using OS or even OS with less strict parameter settings, i.e. lower

success ratio and comparison factor parameters.

NOx values were recorded by DesCon members following the standard procedure

defined by the Federal Test Procedure (FTP); a whole standardized test run is there-

fore called a FTP cycle. FTP tests were executed on the DesCon test bench in two

different ways as it is possible to activate or to deactivate exhaust gas recirculation

(EGR). In principle, recirculating a portion of an engine’s exhaust gas back to the

engine cylinders is called EGR; the incoming air is intermixing with recirculated

exhaust gas, which lowers the adiabatic flame temperature and reduces the amount

of excess oxygen (at least in diesel engines). Furthermore, the peak combustion

temperature is decreased; since the formation of NOx progresses much faster at high

temperatures, EGR can also be used for decreasing the generation of NOx. Further

information about EGR and its effects on the formation of NOx can for example be

found in [Hey88] and [vBS04].

We shall therefore here take a closer look at the following two modeling tasks:

• Situation (1): Use data recorded with deactivated EGR;

• Situation (2): Use data recorded with activated EGR.

In both cases the data were recorded at 20 Hz, the execution of the cycles took

approximately 23 minutes. In total, 33 variables are recorded; we do here not give

a total overview of the statistic parameters of these variables but rather restrict

ourselves to the linear correlation of the input variables to the target variable: All

linear correlations1 of the potential input variables and the target variable NOx are

summarized in Table 14.1; all variables were filtered using a median filter of order

52 before calculating the correlation coefficients.

1We here use the same standard formula for calculating linear correlation coefficients of time
series as described in Section 11.1.

2Applying a median filter means that a moving window is shifted over the data and all samples
are replaced by the median value of their respective data environment. For calculating the filtered
value yi using median filtering of order 5 we collect the original values xi−2, xi−1, xi, xi+1 and

184 CHAPTER 14. TIME SERIES ANALYSIS

Table 14.1: Linear correlation of input variables and the target values (NOx).
Variable Correlation Coefficient Variable Correlation Coefficient

Situation (1) Situation (2) Situation (1) Situation (2)

time -0.141 -0.129 alpha 0.437 0.462

CO2 0.477 0.941 COH 0.099 0.259

COL 0.222 0.390 KW V AL 0.763 0.853

M T01F 0.414 0.515 ME MES1 0.408 0.416

ME MES2 0.460 0.488 ME MES3 0.043 0.054

ME MES4 0.000 0.000 ME MES5 -0.024 -0.007

ME MES6 0.000 0.000 ME MES7 -0.092 0.015

ME MES8 0.492 0.451 ME MES9 0.660 0.592

ME MES10 0.135 -0.133 ME MES11 0.449 0.532

ME MES12 0.253 0.321 ME MES13 -0.052 0.376

ME MES14 0.091 0.101 ME MES15 0.364 0.314

ME MES16 0.392 0.478 ME MES17 -0.438 -0.470

N MOTOR 0.404 0.413 OPA OPAC 0.248 0.419

T EXH 0.347 0.474 T LLNK 0.133 0.004

T LLV K 0.531 0.315 T OIL 0.096 -0.181

THC V K -0.074 0.205 TWA 0.149 0.064

Obviously, activating EGR significantly increases the correlation of NOx and all

exhaust variables such as CO2 or THC, for example.

So, in addition to this, the next question is whether to incorporate gas emissions as

for example CO2 in the modeling process; of course, estimating NOx is a lot easier if

CO2 is known since there is a high correlation (especially when EGR is activated),

but NOx models that do not need CO2 information are more useful as they can

be applied without having to measure other emission values. Furthermore, we also

excluded the variables alpha, COH , COL, THC, M T01F , ME MES01 − 07,

ME MES10, ME MES14 and ME MES17 from the set of valid input variables

for building models that do not incorporate exhaust information.

We applied GP using populations of 700 individuals for modeling the measured

NOx data; 1-elitism was applied, the mutation rate was set to 0.07, and rigid off-

spring selection was applied (maximum selection pressure: 300). The first 3,000

samples (representing 2.5 minutes) of the data sets were neglected; in strategy (1)

the samples 3,001 – 10,000 were used as training data, in strategy (2) the samples

3,001 – 13,000. The rest of the data was used as validation / test samples.

Amongst other tests, we attacked modeling situation (1) without using exhaust

information (hereafter called test strategy (1)), and modeling situation (2) using

exhaust information (test strategy (2)); both test strategies were executed 5 times

independently leading to the mean squared errors on training data summarized in

Table 14.2.

Let us now have a closer look at the best models (with respect to training data)

produced for these test scenarios; their evaluations are both displayed in Figures 14.2

xi+2; after sorting these values we get x′
i,j for j ∈ [1, 5] with x′

i,j < x′
i,j+1 for j ∈ [1, 4]. yi is then

set to the median value of x′
i, i.e. yi = x′

i,3.

14.1. VIRTUAL SENSORS FOR DIESEL ENGINE EMISSIONS 185

Table 14.2: Mean squared errors on training data for the NOx data set.

Test Strategy (1) Test Strategy (2)

Average 49.867 13.454

Minimum 43.408 11.259

Maximum 58.126 18.432

and 14.3, respectively.

NOx (no AGR, no CO2)

-20

0

20

40

60

80

100

120

150 250 350 450 550 650 750 850 950 1050 1150 1250

time [s]

N
O

x
(n

or
m

)

Original

Estimated

Training Test

NOx_vK(t) = ((([0,950183*T_OEL(t-21)]^(([1,145998*T_LLVK(t-38)]-[1,023461*ME_MES17(t-28)])/([1,065444*ME_MES10(t-18)]+[0,951174*N_MOTOR(t-20)])))-((([0,825300*
 ME_MES9(t-27)]+([0,871124*ME_MES9(t-22)]/[0,933514*ME_MES9(t-13)]))/([1,006088*N_MOTOR(t-21)]/[0,991764*ME_MES9(t-26)]))*((([0,891293*
 ME_MES9(t-15)]/[0,705167*N_MOTOR(t-26)])/([0,947497*N_MOTOR(t-25)]/[1,136678*ME_MES11(t-8)]))/(([1,082096*N_MOTOR(t-1)]+[1,286062*T_LLVK(t-37)])/
 -9,654))))+((([1,205990*T_OEL(t-30)]+[0,937356*T_OEL(t-10)])^([1,065581*T_LLVK(t-40)]/([0,928334*T_OEL(t-6)]+[1,184806*ME_MES7(t-12)])))-([0,888947*
 ME_MES9(t-14)]*((([1,181614*ME_MES9(t-28)]/[0,666162*N_MOTOR(t-25)])/([0,631016*N_MOTOR(t-24)]/[1,301366*ME_MES11(t)]))/(([0,867211*
 N_MOTOR(t-40)]+[1,049105*T_LLVK(t-34)])/-7,628)))))

Figure 14.2: Evaluation of the best model produced by GP for test strategy (1).

The best model for test strategy (1) has a worse fit on test data (msetest(best1) =

60.636 opposed to msetraining(best1) = 43.408); the best model for test strategy (2)

surprisingly even has a better fit on test data (msetest(best2) = 5.809) than on

training data (msetrain(best2) = 11.259).

These research results were indeed promising, but still not completely satisfac-

tory; in fact, these results started a series of data based approaches using GP in the

context of mechatronical systems. The design of virtual sensors for NOx is to be

again discussed in Chapter 16 and in Chapter 18 on the incorporation of physical

knowledge about the formation of NOx in the GP process.

186 CHAPTER 14. TIME SERIES ANALYSIS

NOx (AGR, CO2)

-20

0

20

40

60

80

100

120

150 250 350 450 550 650 750 850 950 1050 1150 1250

time [s]

N
O

x
(n

or
m

)

Original

Estimated

Training Test

NOx_vK(t) = (((([0,838023*CO2_vK(t-6)]-([0,985178*T_LLVK(t-3)]/9,329))+(([1,096131*ME_MES13(t-14)]-9,835)/([1,075515*ME_MES13(t-2)]+1,117)))+(((9,269-[1,034379*THC_vK(t-8)])-
 ([1,033333*T_ABGAS(t-13)]+[COL_vK(t-17)]))/((-7,819+[0,908894*N_MOTOR(t-14)])*[1,216018*ME_MES13(t-15)])))-(([0,768676*CO2_vK(t-10)]-[0,899741*
 ME_MES13(t-3)])/((([1,089508*ME_MES3(t-9)]/([1,200488*N_MOTOR(t-9)]*[1,150031*ME_MES9(t-6)]))+([0,724729*CO2_vK(t-4)]+-1,733))+8,329)))

Figure 14.3: Evaluation of the best model produced by GP for test strategy (2).

We also tested standard GP without offspring selection, but with proportional

as well as tournament (k = 3) parents selection, 1000 individuals, 2000 iterations,

7% mutation rate and the same data base as the one described previously.

Especially the use of proportional selection did not yield reasonable results, the

evaluation of the best model for test strategy (1) returned mean squared error 110.23

on training data, and for the best for test strategy (2) the mean squared error was

21.34. The results obtained using tournament selection, which is anyway suggested

in GP literature (as for example in [KKS+03b] or [LP02]), were a lot better, but still

not as good as those produced by extended GP: The best model for test strategy (1)

showed mean squared error 61.92 on training data, and the best for test strategy (2)

showed mean squared error 14.33. These results were no surprise, especially as we

had seen on synthetic data sets that GP using rigid OS and gender specific parents

selection performs a lot better than standard GP ([WAW04b], [Win04]).

All these results encouraged us to enforce research on the use of extended GP in

the identification of mechatronical systems.

14.1. VIRTUAL SENSORS FOR DIESEL ENGINE EMISSIONS 187

14.1.2 Designing Virtual Sensors for Particulate Emissions

(Soot)

A lot of research work was done by DesCon members on the identification of par-

ticulate emissions of a BMW diesel engine. The main results have been published

in [AdRWL05] and [LAWdR05], we shall here only summarize these results in a

rather compact way.

In short, first attempts to use GP for producing models for soot were not very

successful; GP did not produce any useful solution without restriction of the search

space. Therefore, a two step approach was used: “In a first step, a statistical

analysis was done on the basis of steady state measurements. Expert knowledge

was combined with statistical correlations to yield an accurate steady state model.

The advantage of steady state analysis is the secure validation of the model; any

delay time or sensor dynamics are irrelevant. However, such a model could never

meet the requirements of estimating the highly dynamical process of an IC engine.

Therefore the steady state model is used as origin for the genetic programming

cycle.” (Copied from [AdRWL05] where this static model is given in detail.)

Using this static model, an additional variable was calculated and inserted into

the set of potential input variables; this so enhanced variables set was then used as

basis for data based identification of soot. In fact, this approach is equivalent to one

of the possibilities for including a priori knowledge into the GP process as described

in Section 9.

This extended data basis was used by two modeling approaches, namely a neural

network training algorithm as well as GP; the best results for the ANN approach were

achieved using a network structure with 2 hidden layers and 25 hidden nodes per

layer, the parameters of the GP based training algorithm were set to our standard

GP settings (1000 individuals, 10% mutation rate, rigid OS, 1-elitism). Again,

the data were measured during a standard FTP engine test lasting approximately

23 minutes; the first approximately 8 minutes were taken as training, the rest as

validation / test data set.

Figure 14.4 shows a detail of the evaluation of the models produced by GP and

ANN on validation data: As we see clearly, both virtual sensors do not capture the

behavior completely correctly, but the GP model’s fit seems to be better than the

one of the ANN model. This suspicion becomes clearer by analyzing the distribution

of errors which is shown in Figure 14.5: The errors caused by the evaluation of the

188 CHAPTER 14. TIME SERIES ANALYSIS

model produced by GP are more symmetric than those of the ANN3 which can be

considered an indication for a rather good model. The cumulative errors of these

models are shown in 14.6, and we here see that the model produced by GP is able

to reproduce the engine’s cumulated soot emissions quite well.

Figure 14.4: Evaluation of models for particulate matter emissions of a diesel engine

(snapshot of the evaluation on validation / test samples), copied from [AdRWL05].

Again, these results were by far not completely satisfactory; of course, the ANN

model could be improved by changing the network structure or the number of train-

ing iterations, and the GP process was not enhanced with local optimization or

pruning operations. Still, again, these results sustained our confidence in GP’s abil-

ity to produce reasonable models for mechatronical systems.

14.2 NOx Data Sets Used for Further Tests

The NOx data set described in Section 14.1 was used for several research activities

of DesCon members as well as in our project investigating GP for the design of

virtual sensors. Nevertheless, during the execution of our research project several

other measurements were recorded and used for research; two of them were also used

for test series that will be reported on in the following chapters. This is why we

describe and characterize these data set here in Sections 14.2.1 and 14.2.2.

3In addition to GP and ANN, an auto-regressive moving-average with exogenous inputs (AR-
MAX) modeling approach was also calculated for reasons of comparison; the distribution of the
errors caused by the evaluation of this model are also shown in Figure 14.5. Please see [BJ76] for
explanations and application examples of ARMA(X) models.

14.2. NOX DATA SETS USED FOR FURTHER TESTS 189

Figure 14.5: Distribution of errors caused by models for particulate matter emissions,

copied from [AdRWL05].

Figure 14.6: Cumulative errors caused by models for particulate matter emissions,

copied from [AdRWL05].

190 CHAPTER 14. TIME SERIES ANALYSIS

14.2.1 NOx Data Set II

Recorded in 2006 by members of the Institute for Design and Control of Mecha-

tronical Systems at JKU Linz at the test bench already mentioned, this NOx data

set includes the variables listed in Table 14.3. The data set available in this context

again contains measurements taken from a 2 liter 4 cylinder BMW diesel engine.

Again, several emissions (including NOx, CO and CO2) as well as several other

engine parameters were recorded at 100 Hz and downsampled to 20 Hz. 22 signals

were recorded over approximately 18 minutes, but only 9 variables were considered

in further identification test series.

Several variables were measured over approximately 30 minutes at 100 Hz record-

ing frequency; they have been downsampled to 20 Hz, so that the resulting data set

includes ∼36,000 samples. From the variables recorded several have been removed

(as for example CO, CO2 and time) due to irrelevance or high correlations with

the target variable Nox true; the 10 remaining variables are characterized in Ta-

ble 14.3, Figure 14.7 shows a graphical representation of the target values over the

whole recording time.

The variable NOx Can represents values given by a quick, but also rather imprecise

estimation for the NOx emissions; the actual NOx emissions were again measured

using a Horiba Mexa 7000 combustion analyzer, the respective values are stored in

variable Nox true.

Table 14.3: Statistic features of the identification relevant variables in the NOx data

set II.
Variable Minimum Maximum Mean Variance

(0) Eng nAvg 0.00 3,311.00 1,618.80 413,531.96

(1) AFSCD mAirPerCyl -44.56 1,161.36 453.12 60,952.03

(2) V SACD rOut 5.00 96.00 33.59 1,706.83

(3) NOx CAN -0.30 6.72 1.52 2.87

(4) T OEL 78.68 100.83 87.57 31.05

(5) (T) Nox true 62,46 1,115.23 225.25 60,673.98

(6) InjCrv qP il1Des 0.00 1.40 0.88 0.10

(7) InjCrv qMI1Des 0.00 57.93 12.63 122.73

(8) InjCrv phiMI1Des -3.86 10.61 2.80 18.70

(9) BPSCD pF ltV al 986.20 2,318.00 1214.89 104,434.00

All pairwise linear correlations4 are summarized in Table 14.4; again, all vari-

4We here use the same standard formula for calculating linear correlation coefficients of time

14.2. NOX DATA SETS USED FOR FURTHER TESTS 191

Figure 14.7: Target NOx values of NOx data set II, recorded over approximately

30 minutes at 20Hz recording frequency yielding ∼36,000 samples.

ables were filtered using a median filter of order 5 before calculating the correlation

coefficients. Obviously, there is a rather high linear correlation between the tar-

get variable and the input variables BPSCD pF ltV al and NOx CAN ; the values

stored in AFSCD mAirPerCyl and InjCrv qMI1Des are also remarkably corre-

lated to the designated target values.

14.2.2 NOx Data Set III

During the time in which we were doing the research work reported on in this thesis,

maintenance work was repeatedly done at the DesCon test bench; amongst other

aspects, several sensors were removed or replaced by newer ones.

series as described in Section 11.1.

192 CHAPTER 14. TIME SERIES ANALYSIS

Table 14.4: Linear correlation coefficients of the variables relevant in the NOx

identification task II.
(0) (1) (2) (3) (4) NOx (6) (7) (8) (9)

(0) Eng nAvg 1.00 0.80 0.52 0.70 0.61 0.65 0.59 0.65 0.68 0.75

(1) AF SCD mAirPerCyl 0.80 1.00 0.78 0.90 0.80 0.91 0.60 0.88 0.63 0.95

(2) V SACD rOut 0.53 0.78 1.00 0.73 0.77 0.78 0.38 0.77 0.63 0.81

(3) NOx CAN 0.70 0.90 0.73 1.00 0.74 0.93 0.63 0.86 0.58 0.94

(4) T OEL 0.61 0.80 0.77 0.74 1.00 0.78 0.51 0.75 0.49 0.81

(5) (T) NOx true 0.65 0.91 0.78 0.93 0.78 1.00 0.61 0.90 0.60 0.95

(6) InjCrv qPil1Des 0.59 0.60 0.38 0.63 0.51 0.61 1.00 0.70 0.03 0.62

(7) InjCrv qMI1Des 0.65 0.88 0.77 0.86 0.75 0.90 0.70 1.00 0.50 0.87

(8) InjCrv phiMI1Des 0.68 0.63 0.63 0.58 0.49 0.60 0.03 0.50 1.00 0.66

(9) BPSCD pF ltV al 0.75 0.95 0.81 0.94 0.81 0.95 0.61 0.87 0.66 1.00

The third NOx data set was recorded in 2007 by members of DesCon; again, several

variables were measured at the motor engine test bench while testing a 2 liter 4

cylinder BMW diesel engine (simulated vehicle: BMW 320d Sedan). The mean

engine speed was set to 2,200 revolutions per minute (rpm), and in each engine

cycle 15mg fuel were injected.

Once again, several emissions (including NOx, CO and CO2) as well as several other

engine parameters were recorded; this time the measurements were recorded over

approximately 18.3 minutes at 100 Hz and then downsampled to 10 Hz, yielding a

data set containing ∼11,000 samples. The target values (the engine’s NOx emissions

measured by a Horiba combustion analyzer) are stored in variable HoribaNOx.

In Chapter 18 we report on tests in which we have used this data set for testing

the ability of GP to incorporate physical knowledge. For this purpose we also use a

synthetic variable HFM∗:

HFM∗ =
HFM

N
· 1000

60
(14.1)

This synthetic variable is also included in thisNOx data set III; detailed explanations

regarding the meaning of this additional variable can be found in Chapter 18.

Figure 14.8 visualizes all target HoribaNOx values available (in total approx-

imately 11,000 samples); Figure 14.9 shows a detail of these data, namely the

HoribaNOx of samples 6000 – 7000.

In detail, Table 14.5 summarizes the main statistic parameters of the variables

relevant in this identification task. Again, all pairwise linear correlations have also

been calculated, the results are summarized in Table 14.6; all variables were again

filtered using a median filter of order 5 before calculating the correlation coefficients.

As we see in this table, there are no remarkably high correlations except for the

obvious one between HFM and HFM∗; the correlation coefficient of HFM∗ and

the target, HoribaNOx, is above average (0.72), but not high enough to build a

14.2. NOX DATA SETS USED FOR FURTHER TESTS 193

Figure 14.8: Target HoribaNOx values of NOx data set III.

Figure 14.9: Target HoribaNOx values of NOx data set III, samples 6000 – 7000.

reasonable model only using this variable as input.

The results of the correlation analysis is also graphically displayed in Fig-

ure 14.10(a): Each correlation coefficient for variables V ari and V ark is represented

in cell (i, k), where lower values are represented by blue cells and red cells indicate

high correlation values.

As there could be correlations between variables and time-delayed values of

other variables, we additionally collected all variables with time delays in

194 CHAPTER 14. TIME SERIES ANALYSIS

Table 14.5: Statistic features of the identification relevant variables in the NOx data

set III.
Variable Minimum Maximum Mean Variance

(0) (T) HoribaNOx 0.011 0.670 0.171 0.011

(1) qMI 8.010 21.960 15.232 16.992

(2) pMI -0.727 8.016 3.424 6.525

(3) qPI 0.000 2.480 0.929 0.627

(4) tiP I 0.018 6.690 4.425 1.358

(5) pRAIL 487.900 927.400 709.355 13,334.040

(6) N 1,906.000 2,507.000 2,208.384 27,668.381

(7) pBOOST 981.000 1906.000 1209.841 28,618.435

(8) HFM 15.148 241.628 101.290 1,226.203

(9) HFM∗ 0.105 1.627 0.763 0.062

Table 14.6: Linear correlation coefficients of the variables relevant in the NOx

identification task III.
HoribaNOx qMI pMI qPI tiPI pRAIL N pBOOST HF M HF M∗

(0) (T) HoribaNOx 1.00 0.01 0.15 -0.13 0.61 -0.05 -0.14 0.25 0.59 0.67

(1) qMI 0.01 1.00 0.03 0.04 -0.39 -0.04 -0.05 0.37 0.29 0.32

(2) pMI 0,15 0.03 1.00 -0.03 -0.11 0.01 0.18 -0.05 -0.06 -0.10

(3) qPI -0.13 0.04 -0.03 1.00 -0.14 -0.10 0.02 0.11 0.01 0.00

(4) tiPI 0,61 -0.39 -0.10 -0.14 1.00 -0.01 0.11 0.37 0.66 0.68

(5) pRAIL -0.05 -0.04 0.01 -0.10 -0.01 1.00 -0.02 -0.05 -0.02 -0.02

(6) N -0.14 -0.05 0.18 0.02 0.11 -0.02 1.00 0.14 0.30 0.08

(7) pBOOST 0.25 0.37 -0.05 0.11 0.37 -0.05 0.14 1.00 0.73 0.73

(8) HF M 0.59 0.29 -0.06 0.01 0.66 -0.02 0.30 0.73 1.00 0.97

(9) HF M∗ 0.67 0.32 -0.10 0.00 0.68 -0.02 0.08 0.73 0.97 1.00

the range [1; 20]; thus, what we get is a temporary set of variables X =

{V 0t−20, V 0t−19, . . . , V 0t, V 1t−20, . . . , V 1t, . . . , V 9t−20, . . . , V 9t} where N is the num-

ber of variables (in our case 10) and V jt−k(i) = V j(i−k) for j ∈ [0; 9]. For all these

(temporary) time shifted variables we calculate a full linear correlation analysis.

The results are graphically displayed in Figure 14.10(b), where the correlation of

(temporary) variables Xi and Xj is shown in cell (i, j) (i, j ∈ [0; 210]); obviously,

there are no more remarkable correlations additional to those already mentioned

before.

14.2. NOX DATA SETS USED FOR FURTHER TESTS 195

HoribaNOx

qMI

phiMI

qPI

tiPI

pRAIL

N

pBOOST

HFM

HFM*

HoribaN qMI phiMI qPI tiPI pRAIL N pBOOST HFM HFM*

(a) Correlations of variables included in the NOx data set
III.

HoribaNOx

qMI

phiMI

qPI

tiPI

pRAIL

N

pBOOST

HFM

HFM*

HoribaN qMI phiMI qPI tiPI pRAIL N pBOOST HFM HFM*

(b) Correlations of variables (delayed up to 20 samples)
included in the NOx data set III.

Figure 14.10: Correlations of variables included in the NOx data set III.

196 CHAPTER 14. TIME SERIES ANALYSIS

14.3 Modeling High Pressure Differences in a

Tractor Gearbox

In this section we discuss the test results obtained analyzing data provided by Hofer

Forschungs- und Entwicklungs-GmbH & CoKG 5 at Garsten, Upper Austria. We

are especially thankful to Ing. Reinhard Flachs, Dipl.-Ing. Heinz Aizetmüller and

Dipl.-Ing. Roland Gerbis who provided the data base and gave important hints

during discussions about the data.

14.3.1 The Gearbox Data Set

The data set provided by Hofer contains data recorded during a test run of a trac-

tion engine; the data contains gearbox signals, one of them being the “Hochdruck-

differenz” (difference of high pressure values, hereafter denoted as the target variable

V ar10) which is the target variable for future modeling experiments. 20,001 samples

of 11 variables are included in this data set (hereafter referred to as the Gearbox

data set), the data were recorded at 100 Hz sampling frequency.

In detail, Table 14.7 summarizes the main statistic parameters of the variables

relevant in this identification task. All pairwise linear correlations6 are summarized

in Table 14.8; again, all variables were filtered using a median filter of order 5 before

calculating the correlation coefficients. As we see in this table, there are in some

cases high correlations, but none of the potential input variables has a strong (linear)

correlation to the target variable. Figure 14.11 graphically shows this correlation

analysis by displaying a color representation of the correlation between each pair of

signals i and j in cell (i, j) (i ∈ [0; 10] and j ∈ [0; 10]).

14.3.2 Modeling Methods Used for Analyzing the Gearbox

Data Set

In the context of larger data analysis projects and automated data analysis pro-

cesses, there are normally several data processing steps that are to be executed

5The webpage of Hofer Powertrain GmbH can be found at http://www.hofer.de/,
detailed information about the company’s subsidiary at Garsten, Steyr on
http://www.hofer.de/de/Kontakt Standorte Steyr.html.

6We here use the same standard formula for calculating linear correlation coefficients of time
series as described in Section 11.1.

14.3. PRESSURE DIFFERENCES IN A TRACTOR GEARBOX 197

Table 14.7: Statistic features of the relevant variables in the Gearbox data set.
Variable Minimum Maximum Mean Variance

V ar00 (time) 0.010 199.990 100.000 3,333.833

V ar01 -0.893 0.999 0.363 0.243

V ar02 -0.944 1.038 0.346 0.250

V ar03 -3,278.000 2,700.250 -912.481 1,916,915.678

V ar04 28.750 35.250 32.747 1.115

V ar05 48.750 2,855.500 1,622.801 361,949.240

V ar06 0.000 5,279.250 2,167.383 2,186,999.143

V ar07 0.000 2,075.999 1,344.028 414,557.048

V ar08 0.000 2,898.500 1,866.742 799,737.150

V ar09 875.250 2,387.500 1,841.324 59,035.060

V ar10 (target) -88.078 300.266 98.838 2,029.311

Table 14.8: Linear correlation coefficients of relevant variables in the Gearbox iden-

tification task.
V ar00 V ar01 V ar02 V ar03 V ar04 V ar05 V ar06 V ar07 V ar08 V ar09 V ar10

V ar00 1.00 -0.44 -0.45 0.37 0.32 0.45 0.27 0.61 0.61 0.48 0.21

V ar01 -0.44 1.00 1.00 -0.99 0.00 0.02 -0.61 -0.50 -0.50 -0.13 -0.07

V ar02 -0.45 1.00 1.00 -0.99 -0.01 0.02 -0.61 -0.50 -0.50 -0.15 -0.09

V ar03 0.37 -0.99 -0.99 1.00 -0.12 -0.10 0.59 0.44 0.44 0.01 0.02

V ar04 0.32 0.00 -0.01 -0.12 1.00 0.54 0.20 0.43 0.43 0.95 0.48

V ar05 0.45 0.02 0.02 -0.10 0.54 1.00 0.03 0.85 0.85 0.52 -0.13

V ar06 0.27 -0.61 -0.61 0.59 0.20 0.03 1.00 0.34 0.34 0.25 0.12

V ar07 0.61 -0.50 -0.50 0.44 0.43 0.85 0.34 1.00 1.00 0.48 -0.11

V ar08 0.61 -0.50 -0.50 0.44 0.43 0.85 0.34 1.00 1.00 0.48 -0.11

V ar09 0.48 -0.13 -0.15 0.01 0.95 0.52 0.25 0.48 0.48 1.00 0.53

V ar10 0.21 -0.07 -0.09 0.02 0.48 -0.13 0.12 -0.11 -0.11 0.53 1.00

before applying modeling methods. E.g., data downsampling, correlation analysis

and variable selection methods are some of the most common preprocessing steps;

modeling is usually done on basis of the data produced by these preprocessing steps.

Here, indeed, we have intentionally restricted the data analysis process to merely

splitting the data into a training- and a test-data set (the first 10,000 samples are

used as training data) and training models using these test samples. The follow-

ing modeling methods have been tested: Linear regression modeling (Lin), artificial

neural networks (ANNs) and genetic programming (GP).

Since it seems to be useful to create models that use information about the

signals’ past values for estimating the target values, an extended data set has also

been created in order to be able to use also other modeling approaches than GP;

this extended data base includes the same signals, but also duplicates shifted by 1,

198 CHAPTER 14. TIME SERIES ANALYSIS

Figure 14.11: Graphical display of linear correlations among variables included in

the Gearbox data set.

2, . . . and 20 samples. This of course has the effect that the number of potential

input signals is multiplied by 21 when using this extended data set.

14.3.2.1 Linear Modeling

Given a data collection including m input features storing the information about N

samples, a linear model is defined by the vector of coefficients θ1...m. For calculating

the vector of modeled values e using the given input values matrix u1...m, these input

values are multiplied with the corresponding coefficients and added:

e = u1...m ∗ θ (14.2)

The coefficients vector can be computed by simply applying matrix division.

For conducting the test series documented here we have used the matrix division

function provided by MATLAB c©:

theta = InputValues \ TargetValues; (14.3)

14.3. PRESSURE DIFFERENCES IN A TRACTOR GEARBOX 199

If a constant additive factor is to be included into the model (i.e., the coefficients

vector), this command has to be extended:

r = size(InputValues,1); (14.4)

theta = [InputValues ones(r,1)] \ TargetValues; (14.5)

Theoretical background of this approach can be found in [Lju99].

14.3.2.2 Neural Networks

For training artificial neural network (ANN) models, three-layer feedforward neural

networks with one output neuron were created using the Levenberg-Marquardt train-

ing method. Theoretical background and details can be found in [Nel01] (Chapter

11, “Neural Networks”), [Mar63], [Lev44] or [GMW82] (“The Levenberg-Marquardt

method”, pp. 136–137). The ANN training framework used to collect the results

reported here is the NNSYSID20 package, a neural network toolbox for MATLAB c©

implemented by Magnus Nørgaard at the Technical University of Denmark [Nør00].

14.3.2.3 Genetic Programming Based Structure Identification

Finally, we also used GP based structure identification as described in the first part

of this thesis for identifying a model for the given training data. Gender specific

selection and strict offspring selection (as described in Sections 4.1 and 4.2) as

well as additional optimization stages (including periodical pruning and parameters

optimization applied to 20% of the population in each 5th iteration) have been

applied.

14.3.3 Test Results

Each modeling method (except linear modeling which does not include any stochas-

tic elements) was executed several times, also trying different sets of parameter

settings. All constellations of algorithmic approaches and parameter settings were

executed independently at least 3 times; we shall here report on the best results

(with respect to modeling quality on training data) obtained for each constellation.

200 CHAPTER 14. TIME SERIES ANALYSIS

14.3.3.1 Linear Modeling

A linear model obtained was calculated in MATLAB c© using the first 10,000 samples

as training data, the result being the parameters vector θ:

θ = [1.30; 379.04; −324.08; −0.09; −1.56; −0.49; 0.004; 0.14; 0.21; 0.13; −63.33]

(14.6)

As we had expected, the result is not satisfying since the model does not seem

to reproduce the target data properly. This can be seen in the mean squared errors

(MSE):

MSEtraining(lin1) = 911.99, MSEtest(lin1) = 15, 947.19

Since standard linear regression is not able to consider a history of the given

signals, the linear modeling process has also been tested on the extended data set

(of course producing a much bigger model, it is therefore not stated here). Obvi-

ously, here the result is better than before (at least on training data, but not on the

test samples set), but still not satisfying since the model does not seem to repro-

duce the target data properly. This can be also seen in the mean squared errors:

MSEtraining(lin2) = 369.11, MSEtest(lin2) = 112, 135.94

In Figure 14.12 we graphically show the full original data as well as predicted

target data (the first 10,000 samples being training, the rest test data) using the

model built on the extended data set.

14.3.3.2 Neural Networks

There are several parameters that can influence the neural network produced by

a NN-based modeling process; the most important ones are the number of hidden

nodes (NHN) and the number of iterations (IT) (we have restricted our experiments

to network structures working with one layer of hidden nodes). Increasing the

number of nodes and iterations will in most cases lead to models that perform

better on training data, but might also lead to overfitting and so to models that

perform worse on test data. So we have tried several different parameter settings

and document the results of the respective experiments in Table 14.9.

Since standard neural network implementations are also not able to consider a

history of the given signals, the NN-based modeling process has also been tested on

the extended data set. Again, we have tried several different parameter settings and

document the results of the respective experiments:

14.3. PRESSURE DIFFERENCES IN A TRACTOR GEARBOX 201

Linear Model
(extended data base)

-150

-100

-50

0

50

100

150

200

250

300

350

400

1 20001

Original

Modeled (Training)

Modeled (Test)

TESTTRAINING

Figure 14.12: Graphical display of the evaluation of a linear model calculated for

the extended Gearbox data set.

Table 14.9: Network parameters and evaluation of the best NN models for the

Gearbox data set.
NN Variant NHN IT MSEtraining MSEtest

(1) 1 200 856.08 7,149.86

(2) 2 800 405.45 2,777.45

(3) 3 1000 348.81 12,936.49

(4) 5 2000 184.99 2,277.82

14.3.3.3 Genetic Programming Based Structure Identification

Finally, we have tested advanced GP-based modeling using the parameter settings

summarized in Table 14.11.

Especially with respect to the performance on test data, it has to be stated that

the results obtained using GP are obviously the best of all models created during

this data analysis studies. Even though NNs were able to train models that perform

a lot better on training data, the formulae produced by GP show a significantly

lower error on test data samples.

202 CHAPTER 14. TIME SERIES ANALYSIS

Table 14.10: Network parameters and evaluation of the best NN models for the

Gearbox data set.
NN Variant NHN IT MSEtraining MSEtest

(5) 1 50 375.93 10,567.40

(6) 1 200 453.46 1,085.67

(7) 3 50 98.79 2,402.16

(8) 3 500 189.66 3,120.62

(9) 5 50 100.67 2,973.30

(10) 5 1000 49.09 6,141.64

(11) 8 50 237.24 4,977.87

(12) 8 200 34.74 718.35

(13) 8 500 30.49 1,127.74

NN Model (13)
(extended data base)

-150

-100

-50

0

50

100

150

200

250

300

350

1 20001

Original

Modeled (Training)

Modeled (Test)

TESTTRAINING

Figure 14.13: Graphical display of the evaluation of the NN model (13) calculated

for the extended Gearbox data set.

The best model produced by GP (with respect to training data fit) is shown

in Figure 14.14, a graphical representation of this model’s evaluation is given in

Figure 14.15.

In Figure 14.16 we give comparative charts displaying the original target values

vs. the estimated values: Each sample is represented by one point in the chart; each

14.3. PRESSURE DIFFERENCES IN A TRACTOR GEARBOX 203

Table 14.11: Algorithmic parameters and evaluation results for enhanced GP based

modeling applied to the Gearbox data set.

Parameter Status Notes
Population Size 1000
Mutation Rate 0.15 Parametric as well as structural
Parental Selection Gender Specific Random & proportional
Offspring Applied Success Ratio: 1.0
Selection Maximum Selection Pressure: 100
Elitism 1-Elitism
Max. Time Offset 20
Max. Tree Height 8
Max. Tree Size 255
Max. Time Offset 20
Pruning Applied Full (1+λ)-ES based pruning

after each 7th generation
Maximum deterioration: 1.5
Maximum deterioration coefficient: 1.0
α: 10, maximum number of rounds: 50

Parameter Applied Full parameter optimization
Optimization after each 5th generation

λ: 10, maximum number of rounds: 50

Rounds 68 - 72
Effort ∼ 5,000,000 Including evaluations during pruning

evaluations and parameters optimization

MSEtraining

min 530.76
max 610.98

average 590.12
MSEtest

min 353.58
max 631.53

average 673.23

point’s x value is set to the respective sample’s original target value, the y value to

the respective sample’s estimated target value. In the charts given in Figure 14.17

we finally show the error distribution of the result achieved using the GP machine

learning approach (evaluated on training as well as on test data).

For the comparing these results with those produced by conventional GP we

204 CHAPTER 14. TIME SERIES ANALYSIS

Figure 14.14: Graphical display of the best model produced by GP for the Gearbox

data set.

Model Created Using GP

-150

-100

-50

0

50

100

150

200

250

300

350

1 20001

Original

Modeled (Training)

Modeled (Test)

TESTTRAINING

Figure 14.15: Evaluation of the best model produced by GP for the Gearbox data

set.

have also tested standard GP using the settings summarized in Table 14.12; again,

5 independent test runs were executed. As we see in Table 14.12, the results using

14.3. PRESSURE DIFFERENCES IN A TRACTOR GEARBOX 205

-100 -50 0 50 100 150 200 250 300 350
-100

-50

0

50

100

150

200

250

300

350
Training Data

Original Values

E
st

im
at

ed
 V

al
ue

s

-50 0 50 100 150 200 250
-50

0

50

100

150

200

250

Original Values

E
st

im
at

ed
 V

al
ue

s

Test Data

 Figure 14.16: Original vs. estimated values, calculated using the evaluating best

model for the Gearbox data set produced by GP. Training data are displayed in the

left, test data in the right chart.

Figure 14.17: Error distributions of the best model produced for the Gearbox data

set, evaluated on training and test data (shown in the left and the right part, re-

spectively).

standard GP are comparable to those using extended GP, but not quite as good; in

one case, a model with better fit on training data was produced, but the evaluation

on test shows worse results for these models than those for extended GP stated in

Table 14.11. Anyway, the result obtained using standard GP are still clearly better

than those produced by NNs and linear modeling.

14.3.4 Conclusion

In this section we have described the results of system identification case study based

on a data set provided by Hofer at Garsten, Upper Austria. We have applied several

modeling methods, namely linear modeling, artificial neural networks and genetic

programming; all methods were used for building dynamic models, i.e. formulas

206 CHAPTER 14. TIME SERIES ANALYSIS

Table 14.12: Algorithmic parameters and evaluation results for standard GP mod-

eling applied to the Gearbox data set.

Parameter Status Notes

Population Size 2000

Mutation Rate 0.15 Parametric and structural
Parental Selection Tournament Selection (k = 3)

Elitism 1-Elitism

Max. Time Offset 20

Max. Tree Height 8

Max. Tree Size 255

Max. Time Offset 20

Rounds 3000

Effort 6,000,000

evaluations

MSEtraining

min 412.83

max 730.12

average 494.56

MSEtest

min 612.76

max 737.22

average 693.23

that use past and current information of input variables for estimating the target

variable’s values.

As we have summarized in this section, linear modeling was not able to produce a

satisfying model; neural networks perform a lot better and can be used for producing

nearly optimal models for the given training data, i.e. models that reproduce the

given data almost perfectly. Still, obviously these NN models tend to become worse

on test data as they are more and more optimized to fit given training data.

Especially with respect to the performance on test data, the results obtained

using enhanced genetic programming are obviously the best of all models created

during this data analysis studies. Even though NNs were able to train models

that perform a lot better on training data, the formulae produced by GP show a

significantly lower error on test data samples.

207

Chapter 15

Classification

In this chapter we summarize the results of empirical studies in the context of solv-

ing various data based classification tasks. In Section 15.1 we summarize results of

classification studies using medical benchmark data sets, and Section 15.2 summa-

rizes research results in the context of quality pre-assessment in steel industry using

data based estimators.

15.1 Medical Data Analysis

15.1.1 Benchmark Data Sets

For testing GP-based training of classifiers here we have picked the following data

sets: The Wisconsin Breast Cancer, the Melanoma and the Thyroid data sets.

• The Wisconsin data set is a part of the UCI machine learning repository1.

In short, it represents medical measurements which were recorded while in-

vestigating patients potentially suffering from breast cancer. The number of

features recorded is 9 (all being continuous numeric ones); the file version we

have used contains 683 recorded examples (by now, 699 examples are already

available since the data base is updated regularly).

• The Thyroid data set represents medical measurements which were recorded

while investigating patients potentially suffering from hypo- or hyperthy-

1http://www.ics.uci.edu/~mlearn/

208 CHAPTER 15. CLASSIFICATION

roidism; this data set has also been taken from the UCI repository. In short,

the task is to determine whether a patient is hypothyroid or not. Three classes

are formed: Euthyroid (the state of having normal thyroid gland function),

hyperthyroid (overactive thyroid) and hypothyroid (underactive thyroid).

In total, the data set contains 7200 samples. The samples of the Thyroid data

set are not equally distributed to the three given classes; in fact, 166 samples

belong to class “1” (“subnormal functioning”), 368 samples are classified as

“2” (“hyperfunction”), and the remaining 6666 samples belong to class “3”

(“euthyroid”); a good classifier therefore has to be able to correctly classify

significantly more than 92% of the samples simply because 92 percent of the

patients are not hypo- or hyperthyroid. 21 attributes (15 binary and 6 con-

tinuous ones) are stored in this data set.

• The Melanoma data set represents medical measurements which were recorded

while investigating patients potentially suffering from skin cancer. It contains

1311 examples for which 30 features have been recorded; each of the 1311

samples represents a pigmented skin lesion which has to be classified as a

melanoma or a nonhazardous nevus. This data set has been provided to us

by Prof. Dr. Michael Binder from the Department of Dermatology at the

Medical University Vienna, Austria.

A comparison of machine learning methods for the diagnosis of pigmented skin

lesions (i.e., detecting skin cancer based on the analysis of visual data) can

be found in [DOMK+01]; in this paper the authors describe the quality of

classifiers produced for a comparable data collection using k-NN classification,

ANNs, decision trees, and SVMs. The difference is that in the data collection

used in [DOMK+01] all lesions were separated into three classes (common nevi,

dysplastic nevi, or melanoma); here we use data representing lesions that have

been classified as benign or malign, i.e. we are facing a binary classification

problem.

All three data sets were investigated via 10-fold cross-validation. This means

that each original data set was divided into 10 disjoint sets of (approximately) equal

size. Thus, 10 different pairs of training (90% of the data) and test data sets (10%

of the data) can be formed and used for testing the classification algorithm.

The results summarized in this section have been partially published

in [WAW06b], [WAW06e] and [WAW07a].

15.1. MEDICAL DATA ANALYSIS 209

Table 15.1: Set of function and terminal definitions for enhanced GP based classifi-

cation.
Functions

Name Arity Description

+ 2 Addition

∗ 2 Multiplication

- 2 Subtraction

/ 2 Division

ex 1 Exponential Function

IF 3 If [Arg0] then return [Then] branch ([Arg1]),

otherwise return [Else] branch ([Arg2])

≤, ≥ 2 Less or equal, greater or equal

&&, || 2 Logical AND, logical OR

Terminals

Name Parameters Description

var x, c Value of attribute x multiplied with coefficient c

const d A constant double value d

15.1.2 Solution Representation Using Hybrid Tree Struc-

tures

The selection of the functions library is an important part of any GP modeling

process because this library should be able to represent a wide range of systems;

Table 15.1 gives an overview of the function set as well as the terminal nodes used

for the classification experiments documented here. As we can see in Table 15.1,

mathematical functions and terminal nodes are used as well as Boolean operators

for building complex arithmetic expressions. Thus, the concept of decision trees is

included in this approach together with the standard structure identification concept

that tries to evolve nonlinear mathematical expressions. An example showing the

structure tree representation of a combined formula including arithmetic as well as

logical functions is displayed in Figure 15.1.

15.1.3 Evaluation of Classification Models

There are several possible functions that can serve as fitness functions within the

GP process. For example, the ratio of misclassifications (using optimal thresholds)

210 CHAPTER 15. CLASSIFICATION

Figure 15.1: An exemplary hybrid structure tree.

or the area under the corresponding ROC curves ([ZC93], [Bra97]) could be used.

Another function frequently used for quantifying the quality of models is the R2

function that takes into account the sum of squared errors as well as the sum of

squared target values; an alternative, the so-called adjusted R2 function, is also

utilized in many applications.

We have decided to use a variant of the squared errors function for estimating

the quality of a classification model. There is one major difference of this modified

mean squared errors function to the standard implementation of this function: The

errors of predicted values that are lower than the lowest class value or greater than

the greatest class value do not have a totally quadratic, but partially only linear

contribution to the fitness value. To be a bit more precise: Given N samples with

original classifications oi divided into n classes c1, ..., cn (with c1 being the lowest and

cn the greatest class value), the fitness value F of a classification model producing

the estimated classification values ei is evaluated as follows:

∀(i ∈ [1, N]) :

(ei < c1) ⇒ fi = (oi − c1)
2+ | c1 − ei |,

(c1 ≤ ei ≤ cn) ⇒ fi = (ei − oi)
2, (15.1)

(ei > cn) ⇒ fi = (oi − cn)2+ | cn − ei |

15.1. MEDICAL DATA ANALYSIS 211

F =
1

N

N∑
i=1

fi (15.2)

The reason for this is that values that are greater than the greatest class value or

below the lowest value are anyway classified as belonging to the class having the

greatest or the lowest class number, respectively; using a standard implementation

of the squared error function would punish a formula producing such values more

than necessary.

15.1.4 Finding Appropriate Thresholds: Dynamic Range

Selection

Of course, a mathematical expression alone does not yet define a classification model;

thresholds are used for dividing the output into multiple ranges, each corresponding

to exactly one class. These regions are defined before starting the training algorithm

in static range selection (SRS, see for example [PLC05] for explanations), which

brings along the difficulty of determining the appropriate range boundaries a priori.

In the GP based classification framework discussed in this paper we have therefore

used dynamic range selection (DRS) which attempts to overcome this problem by

evolving the range thresholds along with the classification models: Thresholds are

chosen so that the sum of class-wise ratios of misclassifications for all given classes

is minimized (on the training data, of course).

In detail, let us consider the following: Given N (training) samples with original

classifications oi divided into n classes c1, . . . , cn (with c1 being the lowest and cn the

greatest class value), models produced by GP can be in general used for calculating

estimated values ei for all N samples. Assuming thresholds T = t1, . . . , tn−1 (with

cj < tj < cj+1 for j ∈ [1;n− 1]), each sample k is classified as eck:

ek < t1 ⇒ eck(T) = c1 (15.3)

tj < ek < tj+1 ⇒ eck(T) = cj+1 (15.4)

ek > tn−1 ⇒ eck(T) = cn (15.5)

Thus, assuming a set of thresholds Tm, for each class ck we get the ratio of correctly

classified samples crk as

totalk(Tm) = |{a : (∀(x ∈ a) : ox = eck(Tm))}| (15.6)

correctk(Tm) = |{b : (∀(x ∈ b) : ox = eck(Tm) ∧ ex = ck)}| (15.7)

crk(Tm) =
correctk(Tm)

totalk(Tm)
. (15.8)

212 CHAPTER 15. CLASSIFICATION

The sum of ratios of correctly classified samples is – dependent on the set of thresh-

olds Tm – calculated as

cr(Tm) =

n∑
i=1

cri(Tm). (15.9)

So, finally we can define the set of thresholds applied as that set Topt so that each

other set of thresholds leads to lower sums of classification accuracies:

Td �= Topt ⇒ cr(Td) ≤ cr(Topt) (15.10)

These thresholds, that are optimal for the training samples, are fixed and also applied

on the test samples.

Please note that this sum of class-wise classification accuracies is not equal to

the total ratio of correctly classified samples which is used later on in Sections 15.1.5

and 15.1.8; the total classification accuracy for a set of thresholds acc(Tm) (assuming

original and estimated values o and e) is defined as

z(Tm) = |{a|(∀(x ∈ a) : ox = ecx(Tm))}| (15.11)

acc(Tm) =
z

N
. (15.12)

15.1.5 First Results and Optimal Parameter Settings

As first reported in detail in [WAW07a], during our thorough test series we have

identified the following GP-relevant parameter settings as the best ones for solving

classification problem instances:

• GP-algorithm: Enhanced GP using strict offspring selection.

• Mutation rate: 10% – 15%.

• Population size: 500 – 2,000.

• Selection operators: Whereas standard GA implementations use only one

selection operator, the SASEGASA requires two, namely the so-called female

selection operator as well as the male selection operator. Similar to our expe-

rience gained during the tests on the identification of mechatronical systems,

it seems to be the best to choose the roulette-wheel selection in combination

with the random selection operator. The reason for this is that apparently

merging the genetic information of rather good individuals (models, formulas)

with randomly chosen ones is the best strategy when using the SASEGASA

for solving identification problems.

15.1. MEDICAL DATA ANALYSIS 213

• Success ratio and selection pressure: As for instance described in [AW04],

there are some additional parameters of the SASEGASA regarding the selec-

tion of those individuals that are accepted to be a part of the next generation’s

population. These are the success ratio and the maximal selection pressure

that steer the algorithm’s behavior regarding offspring selection. For model

structure identification tasks in general and especially in case of dealing with

classification problems, the following parameter settings seem to be the best

ones:

– Success ratio = 1.0, and

– Maximum selection pressure = 100 – 500 (this value has to be defined

before starting a identification process depending on other settings of the

genetic algorithm used and the problem instance which is to be solved).

As has already been explained in further detail in previous chapters, these

settings have the effect that in each generation only offspring survive that are

really better than their parent individuals (since the success ratio is set to 1.0,

only better children are inserted into the next generation’s population). This

is why the selection pressure becomes very high as the algorithm is executed,

and therefore the maximum selection pressure has to be set to a rather high

value (as, e.g., 100 or 500) to avoid premature termination.

• Crossover operators: We have implemented and tested three different

single-point crossover procedures for GP-based model structure identification:

One that exchanges rather big subtrees, one that is designed to exchange

rather small structural parts (e.g., only one or two nodes) and one that re-

places randomly chosen parts of the respective structure trees. Moreover, for

each crossover operator we have also implemented an extended version that

additionally randomly mutates all terminal nodes (i.e., manipulates the pa-

rameters of the represented formula). The following 6 structure identification

crossover operators are available: StandardSPHigh, StandardSPMedium, Stan-

dardSPLow, ExtendedSPHigh, ExtendedSPMedium, and ExtendedSPLow.

Since arbitrarily many crossover operators can be selected when applying the

SASEGASA2, the task was not to find out which operator can be used to

produce the best results but rather which subset of operators is to be chosen.

According to what we experienced, the following set of crossover operators

2Using more than one crossover operator within the SASEGASA does not mean using a com-
bination of several operators for creating one new solution, but rather in the following way: Every
time a new child is to be produced using two parent individuals, one of the given crossover operators
is chosen randomly; the chance of being applied is equal for each operator.

214 CHAPTER 15. CLASSIFICATION

should be applied: All three standard operators (StandardSPHigh, Standard-

SPMedium and StandardSPLow) plus one of the extended ones, for instance

ExtendedSPLow.

• Mutation operators: The basic mutation operator for GP structure iden-

tification we have implemented and tested, GAStandard, works as already

described: A function symbol could become another function symbol or be

deleted, the value of a constant node or the index of a variable could be mod-

ified. Furthermore, we have also implemented an extended version (GAEx-

tended) that additionally randomly mutates all terminal nodes (in analogy to

the extended crossover operators).

As the latest test series have shown, the choice of the crossover operators in-

fluences the decision which mutation operator to apply to the SASEGASA:

If one of the extended crossover operators is selected, it seems to be the best

to choose the standard mutation operator. But if only standard crossover

methods are selected, picking the extended mutation method yields the best

results.

Selected experimental results of the standard GP implementation and the

SASEGASA algorithm for the Thyroid data set using various parameter settings

are presented in Table 15.2. For each parameter settings version the 10-fold cross

validation test runs were executed, the resulting average results are listed. In all

cases, the population size was 1000; furthermore, the following parameter settings

were used:

• (1): crossover: ExtendedSPMedium; mutation: GAStandard; selection:

roulette.

• (2): crossover: StandardSPMedium; mutation: GAExtended; selection:

roulette.

• (3): crossover: all 6 available operators; mutation: GAExtended; selection:

random and roulette (maximum selection pressure: 500).

• (4): crossover: all 6 available operators; mutation: GAStandard; selection:

Random and roulette (maximum selection pressure: 500).

• (5): crossover: all 3 standard operators plus ExtendedSPLow; mutation: GA-

Standard; selection: roulette and roulette (maximum selection pressure: 500).

• (6): crossover: all 3 standard operators plus ExtendedSPLow; mutation: GA-

Standard; selection: random and roulette (maximum selection pressure: 500).

15.1. MEDICAL DATA ANALYSIS 215

Using standard GP implementation

Parameter Correct classifications

settings Evaluation Prognosis

(1) 92.80% 92.13%

(2) 93.91% 93.25%

Using the SASEGASA

Parameter Correct classifications

settings Evaluation Prognosis

(3) 97.15% 96.34%

(4) 98.21% 98.07%

(5) 97.70% 97.25%

(6) 98.93% 98.53%

Table 15.2: Experimental results for the Thyroid data set.

As an example, the model produced for cross validation partition 3 using the

parameter settings combination (6) is shown in Figure 15.5.

Parameter Optimal Value

GP algorithm SASEGASA (GP

with offspring selection)

Mutation rate 10% – 15%

Population size 1,000

Selection operators Random, roulette

Maximum selection pressure 100 – 1,000

StandardSPLow,

Crossover StandardSPMedium,

Operators StandardSPHigh,

ExtendedSPLow

Mutation operator GAStandard

Ratio of weighting the evaluation contributions

SumOfSquaredErrors : separability : class ranges 4 : 1: 1

Table 15.3: Summary of the best GP parameter settings for solving classification

problems.

These insights have been used also in the more extensive test series documented

later on in this chapter.

216 CHAPTER 15. CLASSIFICATION

15.1.6 Graphical Classifier Analysis

Graphical analysis can often help analyzing results achieved to any kind of problem;

this is of course also the case in machine learning and in data-based classification.

The most common and also simplest way how to illustrate classification results

is to plot the target values and the estimated values into one chart; Figure 15.2

shows a graphical representation of the best result obtained for the Thyroid data

set, cross-validation set 9.

0 6480 7200
Samples

Training Test

3

2

1

Original /
Estimated

Values

Figure 15.2: Graphical representation of the best result we obtained for the Thyroid

data set, CV-partition 9: Comparison of original and estimated class values.

In Figure 15.3 we show 4 ROC charts examples that were generated for the

classes ‘0’ and ‘2’ of the Thyroid data set, 10-fold cross validation set number 9:

• (a) ROC curve for an unsuitable classifier for class ‘2’, evaluated on training

data;

• (b) ROC curve for the best identified classifier for class ‘0’, evaluated on train-

ing data;

• (c) ROC curve for the best identified classifier for class ‘0’, evaluated on test

data;

15.1. MEDICAL DATA ANALYSIS 217

• (d) ROC curve for the best identified classifier for class ‘2’, evaluated on test

data.

(a) (b)

(c) (d)

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

AUC:
0.7490008

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

AUC:
0.9930586

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

AUC:
0.9435751

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

AUC:
0.9983904

Figure 15.3: ROC curves and their area under the curve (AUC) values for classifi-

cation models generated for Thyroid data, CV-set 9.

In Figure 15.4 finally we show 4 MROC charts examples that were generated for

the intermediate classes ‘1’ of the Thyroid data set, again on the basis of 10-fold

CV-set number 9:

• (a) MROC curve for an unsuitable classifier for class ‘1’, evaluated on training

data;

• (b) MROC curve for an unsuitable classifier for class ‘1’, evaluated on test

data;

218 CHAPTER 15. CLASSIFICATION

• (c) MROC curve for the best identified classifier for class ‘1’, evaluated on

training data;

• (d) MROC curve for the best identified classifier for class ‘1’, evaluated on test

data.

(a) (b)

(c) (d)

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

False Classifications

T
ru

e
C

la
ss

ifi
ca

tio
ns

Avg. AUC:
0.3076477

Max. AUC:
0.3647628

Avg. AUC:
0.3607539

Max. AUC:
0.4361191

Avg. AUC:
0.9721313

Max. AUC:
0.9981604

Avg. AUC:
0.9740631

Max. AUC:
0.9976785

Figure 15.4: MROC charts and their maximum and average area under the curve

(AUC) values for classification models generated for Thyroid data, CV-set 9.

Figure 15.6 finally shows a collection of 10 example models (exactly one for

each partition of the 10-fold cross-validation) for the Thyroid data set, produced by

GP. Optimal thresholds as well as resulting classification results are also given as

respective confusion matrices. Please note: All variables were linearly scaled to the

interval [0; 100], the threshold values are therefore also values between 0 and 100.

15.1. MEDICAL DATA ANALYSIS 219

Figure 15.5: Graphical representation of a classification model (formula), produced

for 10-fold cross validation partition 3 of the Thyroid data set.

15.1.7 Classification Methods Applied in Detailed Test Se-

ries

For comparing GP based classification with other machine learning methods, the

following techniques for training classifiers were examined: Genetic programming

(enhanced approach using extended parents and offspring selection), linear modeling,

neural networks, the k-nearest-neighbor method, and support vector machines.

15.1.7.1 GP-Based Training of Classifiers

We have used the following parameter settings for our GP test series:

• Single population approach; population size: 500 – 1000

• Mutation rate: 10%

• Maximum formula tree height: 8

• Parents selection: Gender specific, random and roulette

• Offspring selection: Strict offspring selection (success ratio as well as compar-

ison factor set to 1.0)

220 CHAPTER 15. CLASSIFICATION

• 1-elitism

• Termination criteria:

– Maximum number of generations: 1000; not reached, all executions were

terminated via the

– Maximum selection pressure: 100

• Function set: All functions as described in Table 15.1.

• Fitness functions:

– In order to keep the computational effort low, the mean squared errors

function with early abortion was used as fitness function for the GP

training process.

– The eventual selection of models is done by choosing those models that

perform best on validation data (or, if no validation samples are speci-

fied, then the models’ performance on training data is considered). For

this selection we have used the classification specific evaluation function

described in Section 8.2: The mean squared error is considered as well

as class ranges, thresholds qualities and AUC values, all other possible

contributions have been neglected in the test series reported and dis-

cussed here. Thus, c1 = 4.0, ck = 1.0 for k ∈ {6, 7, 8}, and ck = 0.0 for

k ∈ {2, 3, 4, 5}.

In addition to splitting the given data into training and test data, extended

GP based training is implemented in such a way that a part of the given training

data is not used for training models and serves as validation set; in the end, when

it comes to returning classifiers, the algorithm returns those models that perform

best on validation data. This approach has been chosen because it is assumed to

help to cope with overfitting; it is also applied in other GP based machine learning

algorithms as for example described in [BL04]. In fact, this was also done in our

standard GP tests for the Melanoma data set.

15.1.7.2 Linear Modeling

Given a data collection including m input features storing the information about N

samples, a linear model is defined by the vector of coefficients θ1...m. For calculating

15.1. MEDICAL DATA ANALYSIS 221

the vector of modeled values e using the given input values matrix u1...m, these input

values are multiplied with the corresponding coefficients and added:

e = u1...m ∗ θ (15.13)

The coefficients vector can be computed by simply applying matrix division. For

conducting the test series documented here we have used the matrix division function

provided by MATLAB c©:

theta = InputValues \ TargetValues;

If a constant additive factor is to be included into the model (i.e., the coefficients

vector), this command has to be extended:

r = size(InputValues,1);

theta = [InputValues ones(r,1)] \ TargetValues;

Theoretical background of this approach can be found in [Lju99].

15.1.7.3 Neural Networks

For training artificial neural network (ANN) models, three-layer feed-forward neural

networks with one output neuron were created using the backpropagation as well as

the Levenberg-Marquardt training method. Theoretical background and details can

be found in [Nel01] (Chapter 11, “Neural Networks”), [Mar63], [Lev44] or [GMW82].

The following two approaches have been applied for training neural networks:

• On the one hand we have trained networks with 5 neurons in the hidden layer

(referred to as “NN1” in the test series documentation in Section 15.1.8) as

well as networks with 10 hidden neurons (referred to as “NN2” in the test

series documentation); the number of iterations of the training process was set

to 100 (in the first variant, “NN1”) and 300 (in the second variant, “NN2”). In

the context of analyzing the benchmark problems used here, higher numbers

of nodes or iterations are likely to lead to overfitting (i.e., a better fit on the

training data, but worse test results).

The ANN training framework used to collect the results reported in this pa-

per is the NNSYSID20 package, a neural network toolbox implementing the

Levenberg-Marquardt training method for MATLAB c©; it has been imple-

mented by Magnus Nørgaard at the Technical University of Denmark [Nør00].

222 CHAPTER 15. CLASSIFICATION

• On the other hand, the multilayer perceptron training algorithm available

in WEKA [WF05] has also been used for training classifiers. In this case

the number of hidden nodes was set to (a + c)/2, where a is the number of

attributes (features) and c the number of classes. The number of iterations

was not pre-defined, but 10% of the training data were designated to be used

as validation data; in order to combat the danger of overfitting, the training

algorithm was terminated as soon as the error on validation data is constantly

getting worse in 20 iterations consecutively. This training method, which

applies backpropagation learning, is in the following referred to as the “NN3”

method.

15.1.7.4 kNN Classification

Unlike other data based modeling methods based on linear models, neural networks

or GP, k-nearest-neighbor classification works without creating any explicit models.

During the training phase, the data are simply collected; when it comes to classifying

a new, unknown sample xnew, the sample-wise distance between xnew and all other

training samples xtrain is calculated and the classification is done on the basis of

those k training samples (xNN) showing the smallest distances from xnew.

The distance between two samples is calculated as follows: First, all features are

normalized by subtracting the respective mean values and dividing the remaining

samples by the respective variables’ standard deviation. Given a data matrix x

including m features storing the information aboutN samples, the normalized values

xnorm are calculated as

∀(i ∈ [1, m])∀(j ∈ [1, N]) : xnorm(i, j) =
x(i, j) − 1

N

∑N
k=1 x(i, k)

σ(x(i, 1 . . . N))
(15.14)

where the standard deviation σ of a given variable x storing N values is calculated

as

σ(x) =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (15.15)

with x̄ denoting the mean value of x.

Then, on the basis of the normalized data, the distance between two samples a and

b, d(a, b), is calculated as the mean squared variable-wise distance:

d(a, b) =
1

n

n∑
i=1

(anorm(i) − bnorm(i))2 (15.16)

15.1. MEDICAL DATA ANALYSIS 223

where n again is the number of features stored for each sample.

In the context of classification, the numbers of instances (of the k nearest neigh-

bors) are counted for each given class and the algorithm automatically predicts that

class that is represented by the highest number of instances. In the test series docu-

mented in this paper we have applied weighting to kNN classification: The distance

between xnew and any sample xz is relevant for the classification statement, the

weight of “nearer” samples is higher than that of samples that are “further” away

from xnew.

There is a lot of literature that can be found for kNN classification; very good

explanations and compact overviews of kNN classification (including several possible

variants and applications) are for example given in [DHS00] and [RN03].

15.1.7.5 Support Vector Machines

Support vector machines (SVMs) are a widely used approach in machine learning

based on statistical learning theory [Vap98]; an example of the application of SVMs

in the medical domain has been reported in [MIB+00], e.g.

The most important aspect of SVMs is that it is possible to give bounds on the

generalization error of the models produced, and to select the respectively best model

from a set of models following the principle of structural risk minimization [Vap98].

SVM are designed to calculate hyperplanes that separate the data from each other

and maximize the margin between sets of data points. While the basic training

algorithm is only able to construct linear separators, so-called kernel functions can be

used to calculate scalar products in higher-dimensional spaces; if the kernel functions

used are non-linear, then the separating boundaries will be non-linear, too.

In this work we have used the SVM implementation described in [Pla99]

and [KSBK01]; we have used the implementation of this algorithm which is available

for the WEKA machine learning framework [WF05]. Polynomial kernels have been

used as well as Gaussian radial basis function kernels with the γ parameter (defining

the inverse variance) set to 0.01 and the complexity parameter c set to 10,000.

15.1.8 Detailed Test Series Results

Since the Wisconsin and the Thyroid data sets are publicly available, the results

produced by GP are compared to those that have been published previously for

224 CHAPTER 15. CLASSIFICATION

various machine learning methods; the Melanoma is not openly available, therefore

we have used all machine learning approaches mentioned for training classifiers for

this data set.

All three data sets were investigated via 10-fold cross-validation (CV). For each data

collection, each of the resulting 10 pairs of training and test data partitions has been

used in 5 independent GP test runs; for the Melanoma data set, all machine learning

algorithms mentioned previously have also been applied to all pairs of training and

test data, the stochastic algorithms again applied 5 times independently.

The results summarized in this section have been partially published in

[WAW06b], [WAW06e] and [WAW07a].

15.1.8.1 Results for the Wisconsin Data Set

Table 15.4 summarizes the results for the 10-fold cross validation produced by GP

with offspring selection as described in Section 15.1.7.1. These figures boil down to

the fact that extended GP has in this case been able to produce classifiers that on

average correctly classify 97.91% of training samples and 97.53% of test samples.

Table 15.4: Summary of training and test results for the Wisconsin data set: Correct

classification rates (average values and standard deviation values) for 10-fold CV

partitions, produced by GP with offspring selection.

Partition Training Test

Avg. Std.Dev. Avg. Std.Dev.

0 97.69% 0.27 97.06% 1.04

1 97.69% 0.85 97.65% 2.23

2 98.40% 0.72 97.94% 1.32

3 98.37% 0.56 98.24% 1.23

4 97.52% 0.78 97.06% 2.08

5 97.95% 0.77 97.94% 1.32

6 98.05% 0.43 97.05% 1.47

7 98.05% 0.47 97.65% 1.68

8 97.75% 0.62 97.65% 1.32

9 97.62% 0.74 97.06% 1.47

Avg. 97.91% 0.62 97.53% 1.51

In order to compare the quality of these results to those reported in the literature,

Table 15.5 summarizes test accuracies that have been obtained using 10-fold cross

15.1. MEDICAL DATA ANALYSIS 225

validation. For each method listed we give the references to the respective articles

in which these results have been reported3. Obviously the results summarized in

Table 15.4 have to be considered surprisingly good as they outperform all other

algorithms reported in the literature listed here.

In [PLC05], for example, recent results for several classification benchmark problems

are documented; the Wisconsin data set was there analyzed using standard GP as

well as three other GP based classification variants (POPE-GP, DecMO-GP and

DecMOP-GP), and the respective results are also listed in Table 15.5.

Of course, for the sake of honesty we have to admit that the effort of GP to

produce these classifiers is higher than the runtime or memory consumed by most

other machine learning algorithms; in our GP tests using the Wisconsin data set

and populations with 500 individuals the average number of generations executed

was 51.6 and the average number of solutions evaluated ∼1,296,742.

Table 15.5: Comparison of machine learning methods: Average test accuracy of

classifiers for the Wisconsin data set.
Algorithm Test Accuracy

GP with OS 97.53%

Probit [WHMS03] 97.20%

RLP [BU95] 97.07%

SVM [WHMS03] 96.70%

C4.5 (decision tree) [HSC96] 96.0%

ANN [TG97] 95.61%

DecMOP-GP [PLC05] 95.60%

DecMO-GP [PLC05] 95.19%

POPE-GP [PLC05] 95.08%

StandardGP [PLC05] 93.82%

15.1.8.2 Results for the Melanoma Data Set

For the Melanoma data set no results are available in the literature, therefore we

have tested all machine learning algorithms mentioned previously for getting an

objective evaluation of our GP methods.

First, in Table 15.6 we summarize original vs. estimated classifications obtained

by applying the classifiers produced by GP with offspring selection; in total, 97.17%

3An even more detailed listing of test results for this data set can be found in [JHC04].

226 CHAPTER 15. CLASSIFICATION

of the training and 95.42% of the test samples are classified correctly (with standard

deviations 0.87 and 2.13, respectively). These GP tests using the Melanoma data

set were done with populations containing 1,000 individuals; the average number

of generations executed was 54.4 and the average number of solutions evaluated

∼2,372,629.

Table 15.6: Confusion matrices for average classification results produced by GP

with OS for the Melanoma data set.
Training Original Classification

[0] (Benign) [1] (Malign)

Estimated [0] 1,043.21 (88.41%) 9.09 (0.77%)

Classification [1] 24.28 (2.06%) 103.42 (8.76%)

Test Original Classification

[0] (Benign) [1] (Malign)

Estimated [0] 115.18 (87.92%) 2.67 (2.04%)

Classification [1] 3.33 (2.54%) 9.82 (7.50%)

Test results obtained using other machine learning algorithms are collected in

Table 15.7. Support vector machine based training was done with radial as well

as with polynomial kernel functions, furthermore we used γ values 0.001 and 0.01.

In standard GP (SGP) tests we used tournament parents selection (k = 3), 8%

mutation, single point crossover and the same structural limitations as in GP with

OS; in order to get a fair comparison, the population size was set to 1,000 and the

number of generations to 2,500 yielding 2,500,000 evaluations per test run.

As we can see in Table 15.7, our GP implementation performs approximately as

well as the support vector machines and neural nets applying those settings that

are optimal in this test case: GP with OS was able to classify 95.42% of the test

cases correctly, SVMs correctly classified 94.89% – 95.47% and neural nets (with

validation set based stopping) 95.27% of the test cases evaluated. Standard GP as

well as kNN, linear regression and standard ANNs clearly perform worse.

Even though it is nice to see that the average accuracy recorded for models produced

by GP with OS is quite fine, the relatively standard deviation of this method’s

performance (2.13, compared to 0.41 recorded for optimal SVMs) has to be seen as

a negative aspect of these results.

15.1. MEDICAL DATA ANALYSIS 227

Table 15.7: Comparison of machine learning methods: Average test accuracy of

classifiers for the Melanoma data set.
Algorithm Test Accuracy

Avg. Std.Dev.

SVM (radial, γ = 0.01) 95.47% 0.41

GP with OS 95.42% 2.13

SVM (polynomial, γ = 0.01) 95.40% 0.56

SVM (radial, γ = 0.001) 95.27% 0.74

NN3 95.27% 1.91

SVM (polynomial, γ = 0.001 94.89% 0.83

NN1 94.35% 2.39

kNN (k = 3) 93.59% 1.03

SGP 93.52% 3.72

NN2 92.90% 2.59

kNN (k = 5) 92.85% 0.94

Lin 92.45% 2.90

15.1.8.3 Results for the Thyroid Data Set

Finally, the results achieved for the Thyroid data set are to be reported here. Ta-

ble 15.8 summarizes the results for the 10-fold cross validation produced by GP

with offspring selection as described in Section 15.1.7.1. For each class we charac-

terize the classification accuracy on training and test data, giving average as well

as standard deviation values for each partition. These figures boil down to the fact

that extended GP has in this case been able to produce classifiers that on average

correctly classify 99,10% of training samples and 98,76% of test samples, the total

standard deviation values being 0.73 and 0.92, respectively.

In order to compare the quality of these results to those reported in the literature,

Table 15.9 summarizes a selection of test accuracies that have been obtained using

10-fold cross validation; again, for each method listed we give the references to the

respective articles in which these results have been reported. Obviously, the results

summarized in Table 15.8 have to be considered quite fine, but not perfect as they

are outperformed by results reported in [WK90] and [DAG01].

GP has also been repeatedly applied for solving the Thyroid problem, some of

the results published are the following ones:

In [LH06] (Table 8), results produced by a pareto-coevolutionary GP classifier sys-

228 CHAPTER 15. CLASSIFICATION

Table 15.8: Summary of training and test results for the Thyroid data set: Correct

classification rates (average values and standard deviation values) for 10-fold CV

partitions, produced by GP with offspring selection.

Partition Training Test

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

0 avg. 94.67% 97.64% 99.63% 90.00% 95.68% 99.19%

std.dev. 1.70 2.65 0.52 7.13 4.10 0.64

1 avg. 94.93% 98.67% 99.01% 88.75% 96.76% 99.43%

std.dev. 3.58 4.23 0.46 5.23 5.86 0.44

2 avg. 96.67% 98.49% 99.49% 91.25% 96.22% 97.90%

std.dev. 1.89 2.00 0.55 3.42 6.51 2.02

3 avg. 96.00% 98.19% 99.15% 90.00% 95.68% 99.46%

std.dev. 2.87 1.56 0.42 5.59 4.10 0.31

4 avg. 95.33% 97.04% 99.19% 88.75% 96.22% 99.61%

std.dev. 2.45 5.38 0.35 11.18 3.63 0.27

5 avg. 95.07% 96.62% 99.22% 95.00% 94.59% 99.37%

std.dev. 1.92 5.29 0.40 5.23 4.27 0.29

6 avg. 93.47% 97.76% 99.16% 87.50% 94.59% 98.56%

std.dev. 2.18 7.64 0.49 7.65 4.27 0.91

7 avg. 98.80% 98.97% 99.16% 87.50% 92.97% 99.40%

std.dev. 2.18 5.92 0.49 7.65 4.52 0.30

8 avg. 94.40% 98.01% 99.23% 96.25% 94.05% 99.34%

std.dev. 5.11 4.99 0.64 5.23 3.52 0.57

9 avg. 97.73% 96.62% 99.31% 91.25% 92.43% 99.55%

std.dev. 2.69 2.65 0.52 3.42 3.52 0.15

Avg. avg. 95.71% 97.80% 99.26% 90.63% 94.92% 99.18%

std.dev. 2.66 4.23 0.48 6.17 4.43 0.59

tem for the Thyroid problem are reported, and here in Table 15.9 these results are

stated as the “PGPC” results; in fact, these results are not the mean accuracy values

but rather the median value, which is why these results are not totally comparable

to other results stated here. Loveard and Ciesielski [LC01] reported that classifiers

for the Thyroid problem could be produced using GP with test accuracies ranging

from 94.9% to 98.2% (depending on the range selection strategy used).

According to Banzhaf and Lasarczyk [BL04], GP-evolved programs consisting of

register machine instructions turned out to eventually misclassify on average 2.29%

of the given test samples, and that optimal classifiers are able to correctly classify

15.1. MEDICAL DATA ANALYSIS 229

98.64% of the test data.

Furthermore, Gathercole and Ross [GR94] report classification errors between 1.6%

and 0.73% as best result using tree-based GP, and that a classification error of 1.52%

for neural networks is reported in [SJW92]. In fact, Gathercole and Ross reformu-

lated the Thyroid problem to classifying cases as “class 3” or “not class 3”; as is

stated in [GR94], it turned out to be relatively straight forward for their GP imple-

mentation (DSS-GP) to produce function tree expressions which could distinguish

between classes “1” and “2” completely correctly on both the training and test sets.

“To be fair, in splitting up the problem into two phases (class 3 or not, then class 1

or 2) the GP has been presented with an easier problem [. . .]. This could be taken

in different ways: Splitting up the problem is mildly cheating, or demonstrating the

flexibility of the GP approach.” (Taken from [GR94].)

Table 15.9: Comparison of machine learning methods: Average test accuracy of

classifiers for the Thyroid data set.

Algorithm Accuracy

Training Test

CART [WK90] 99.80% 99.36%

PVM [WK90] 99.80% 99.33%

Logical Rules [DAG01] – 99.30%

GP [GR94] – 98.4% – 99.27%

GP with OS 99.10% 98.76%

GP [BL04] – 97.71% – 98.64%

GP [LC01] – 94.9% – 98.2%

BP + local adapt. rates [SJW93] 99.6% 98.5%

ANN [SJW92] – 98.48%

BP + genetic opt. [SJW93] 99.4% 98.4%

Quickprop [SJW93] 99.6% 98.3%

RPROP [SJW93] 99.6% 98.0%

PGPC [LH06] – 97.44%

GP with strict offspring selection was here applied with populations of 1000

individuals; on average, the number of generations executed in our GP tests for the

Thyroid test studies was 73.9, and on average 2,463,635.1 models were evaluated in

each GP test run.

230 CHAPTER 15. CLASSIFICATION

15.1.9 Conclusion

In this section we have presented an enhanced genetic programming method that

was successfully used for investigating machine learning problems in the context of

medical classification. The approach works with hybrid formula structures combin-

ing logical expressions (as used for example in decision trees) and classical math-

ematical functions; the enhanced selection scheme originally successfully applied

for solving combinatorial optimization problems using genetic algorithms was also

applied yielding high quality results.

We have intensively investigated GP in the context of learning classifiers for three

medical data collections, namely the Wisconsin and the Thyroid data sets taken from

the UCI machine learning repository and the Melanoma data set, a collection that

represents medical measurements which were recorded while investigating patients

potentially suffering from skin cancer. The results presented in this section are in-

deed satisfying and make the authors believe that an application in a real-world

framework in the context of medical data analysis using the techniques presented

here is recommended. As documented in the test results summary, our GP based

classification approach is able to produce results that are – in terms of classification

accuracy – at least comparable to or even better than the classifiers produced by

classical machine learning algorithms frequently used for solving classification prob-

lems, namely linear regression, neural networks, neighborhood based classification

or support vector machines as well as other GP implementations that have been

used on the data sets investigated in our test studies.

15.1. MEDICAL DATA ANALYSIS 231

10-fold CV set 0:

class(t) = IF(>=(Log(Log(-(Log([2.643*Var16(t)])|[1.000*Var12(t)])))|
IF(>=(-(-([1.000*Var17(t)]|[1.000*Var16(t)])|+(-0.141724|[1.000*Var18(t)]))|-
(Sig([1.000*Var12(t)])|^([1.000*Var18(t)]| [1.000*Var7(t)])))|ThenElse(-(Sin([-
2.040*Var16(t)])|
Sin([1.973*Var18(t)]))|IF(>=([1.973*Var18(t)] |49.864966)|ThenElse([2.643*Var16(t)]|[-
2.040*Var16(t)])))))|
ThenElse(+(-(+(Cos([0.427*Var18(t)])|-([1.000*Var17(t)]|1.287233))|
Sqrt(+([3.955*Var20(t)]|[11.739*Var16(t)])))|+(+(*([0.083*Var2(t)]|
[0.427*Var18(t)])|Cos([0.427*Var18(t)]))|+(*([-0.045*Var20(t)]|
[1.000*Var18(t)])|[3.955*Var20(t)])))|+(+(-2.541577|e^(/([1.973*Var18(t)]|
[0.427*Var18(t)])))|Cos(+(Sin(49.864966)|^([1.000*Var16(t)]|6.173179))))))

Thresholds: [33.45; 75.25]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 137 | 9 | 5 | Est. [0] | 18 | 3 | 0 |
Class [1] | 9 | 337 | 14 | Class [1] | 0 | 15 | 0 |
 [2] | 2 | 2 | 5965 | [2] | 0 | 2 | 682 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.37% | 99.31%

10-fold CV set 1:

class(t) = *(+(*(-(-(Cos([1.000*Var16(t)])|Cos([-4.991*Var16(t)]))| *(/(
[1.000*Var7(t)]| 6.767502)|[-0.214*Var16(t)]))|*(*(
Sqrt([1.000*Var16(t)])|3.886609)|+(Cos([1.000*Var16(t)])|2.302652)))|-
(+(/(+([1.000*Var16(t)]|[1.000*Var2(t)])|e^([-0.214*Var16(t)]))|-(+([-
4.991*Var16(t)]|108.231865)|+(0.000000| [1.000*Var2(t)])))|-
(*(/(2.302652|1.457826)|+([1.000*Var16(t)]|3.886609)) |*(*([-4.991*Var16(t)]|[-
0.214*Var16(t)])| Sqrt([1.000*Var16(t)])))))|IF(<=(-(+(Sqrt([1.000*Var7(t)])|+
([1.000*Var11(t)]|[8.693*Var20(t)]))|+(-(0.000000|[1.006*Var20(t)])|-
(92.692883|0.000000)))|-(-(1.457826|+(0.000000| [1.000*Var4(t)]))|/(-(
[-4.991*Var16(t)]|-4.030073)|^([1.000*Var16(t)]| [8.693*Var20(t)]))))|
ThenElse(e^(-(Sin([-4.991*Var16(t)])| [1.000*Var16(t)]))|e^([-0.214*Var16(t)]))))

Thresholds: [39.225; 72.7]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 149 | 0 | 10 | Est. [0] | 15 | 0 | 1 |
Class [1] | 2 | 332 | 45 | Class [1] | 0 | 36 | 1 |
 [2] | 0 | 0 | 5942 | [2] | 0 | 0 | 667 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.12% | 99.72%

10-fold CV set 2:

class(t) = +(+(+(IF(>=(+([2.933*Var5(t)]|[4.635*Var20(t)])|
^([1.000*Var16(t)]|32.512281))|ThenElse(104.077790|+(-
5.259905|[3.901*Var20(t)])))|IF(>=(+([1.000*Var17(t)]|[1.000*Var17(t)])|+
([1.000*Var16(t)]|[4.635*Var20(t)]))|ThenElse(+([1.000*Var2(t)]| [4.635*Var20(t)])|-
4.370451)))|IF(>=(^(/([1.000*Var16(t)]|
[1.000*Var17(t)])|+([1.000*Var8(t)]|[0.373*Var7(t)]))|*(Sqrt([4.635*Var20(t)])|Log(
[1.000*Var16(t)])))|ThenElse([1.000*Var16(t)]|+(+(-5.259905|-4.370451)|+(-
5.259905|[0.611*Var7(t)])))))|IF(>=(+(/(+([1.000*Var10(t)]
|0.000000)|/([1.000*Var16(t)]|[1.000*Var2(t)]))|+(Sqrt([2.880*Var20(t)])|+(
[1.000*Var4(t)]|-4.370451)))|Cos(^(Log([1.000*Var16(t)])|-
(-3.260221|[1.000*Var13(t)]))))|ThenElse(*(^(Sqrt([0.079*Var20(t)])| +(
[1.000*Var14(t)]|-3.260221))|+(+([1.000*Var2(t)]|[1.000*Var17(t)])
|+([1.000*Var17(t)]|[1.000*Var16(t)])))|/(+(+([1.000*Var8(t)]|
[0.611*Var7(t)])|+([1.000*Var8(t)]|[0.373*Var7(t)]))|-
(+([2.620*Var20(t)]|[1.000*Var10(t)])|-(6.267298|[1.000*Var13(t)]))))))

Thresholds: [32.425; 76.475]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 140 | 7 | 2 | Est. [0] | 17 | 0 | 0 |
Class [1] | 5 | 316 | 27 | Class [1] | 4 | 45 | 3 |
 [2] | 0 | 0 | 5983 | [2] | 0 | 0 | 651 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.37% | 99.03%

10-fold CV set 3:

class(t) = +(+(IF(<=([-0.37921775*Var16(t)]|+(-0.43533937|
[-2.76239437*Var7(t)]))|ThenElse(+([2.64778823*Var7(t)]|
-0.91019582)|[1.26036869*Var19(t)]))|IF(OR(>=(-0.29808521|-0.96359298)|
>=([1.88284005*Var12(t)]|[0.14167759*Var6(t)]))| ThenElse([0.16761998*Var2(t)]|-
0.73643814))) |+([0.82477057*Var17(t)]|+
([-0.31729187*Var16(t)]|+(+([3.68276008*Var20(t)]|[-0.04266986*Var17(t)])|
-(4.50479669|2.31342641)))))

Thresholds: [43.125; 89.025]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 136 | 4 | 10 | Est. [0] | 16 | 1 | 0 |
Class [1] | 9 | 331 | 231 | Class [1] | 3 | 28 | 23 |
 [2] | 2 | 3 | 5754 | [2] | 0 | 1 | 648 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 96.00% | 96.11%

10-fold CV set 4:

class(t) = IF(<=(/(-(*(-0.507917|[1.000*Var8(t)])|[0.875*Var16(t)])|-
([0.253*Var2(t)]|Log([0.875*Var16(t)])))|+(*(*(+([1.000*Var4(t)]|
[0.720*Var7(t)])|Sin([0.875* Var16(t)]))|/([-2.651*Var16(t)]|-
([0.875*Var16(t)]|[1.000*Var20(t)])))|+
([-0.548*Var16(t)]|e^(e^([9.284*Var12(t)])))))|ThenElse(-(-(-(
-(0.041530|-100.301158)|0.000000)|Sin(12.938045))|/(/([-2.651*Var16(t)]
|3.143818)|-([9.284*Var12(t)]|[1.000*Var20(t)])))|+(+(*(+([1.000*Var2(t)]
|[0.720*Var7(t)])|Sin(12.938045))|+(*([0.012*Var17(t)]|[1.000*Var17(t)])|[-
0.548*Var16(t)]))|-(-(-([5.281*Var20(t)]|[0.856*Var20(t)])|
[0.856*Var20(t)])|+(Cos([0.780*Var20(t)])|-([0.856*Var20(t)]|[1.000*Var17(t)]))))))

Thresholds: [35.55; 77.95]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 134 | 8 | 5 | Est. [0] | 15 | 4 | 1 |
Class [1] | 13 | 309 | 33 | Class [1] | 1 | 46 | 4 |
 [2] | 1 | 1 | 5976 | [2] | 2 | 0 | 647 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.06% | 98.33%

10-fold CV set 5:

class(t) = ^(IF(>=(+(+(^(90.826907|[1.350*Var16(t)])|+([1.350*Var16(t)]|
[1.000*Var3(t)]))|-(Cos([1.000*Var9(t)])|*([1.000*Var5(t)]|
[0.428*Var20(t)])))|^(^(+([1.000*Var2(t)]|98.567908)|Cos([-
0.239*Var16(t)]))|+(+([1.000*Var12(t)]|[1.000*Var4(t)])|+([1.000*Var6(t)]|1.584749))))|
ThenElse(+(-(+(-3.514523|[3.551*Var20(t)])|-([0.428*Var20(t)]|
[1.000*Var17(t)]))|IF(<=([1.813*Var7(t)]|[2.014*Var16(t)])|
ThenElse([0.442*Var2(t)]|60.781038)))|+(98.567908|-(-(1.584749|[-
0.239*Var16(t)])|^([1.000*Var16(t)]|1.584749)))))|Sig(+(^(+(+(
[2.496*Var20(t)]|0.000000)|+([-0.239*Var16(t)]|0.000000))|Cos(55.840663))|
*(Cos(-([1.000*Var9(t)]|[0.428*Var20(t)]))|
*(1.193392|+([1.350*Var16(t)]|[1.350*Var16(t)]))))))

Thresholds: [35.65; 79.5]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 145 | 4 | 5 | Est. [0] | 15 | 1 | 1 |
Class [1] | 5 | 326 | 29 | Class [1] | 1 | 34 | 5 |
 [2] | 0 | 3 | 5963 | [2] | 0 | 0 | 663 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.29% | 98.89%

10-fold CV set 6:

class(t) = IF(<=(IF(<=(+([0.306*Var7(t)]|e^([1.000*Var12(t)]))|-(-
([4.358*Var20(t)]|0.587528)|Sqrt([0.500*Var16(t)])))|ThenElse(Cos(/
([1.000*Var4(t)]|[1.273*Var17(t)]))|[1.000*Var4(t)]))|IF(<=(+(
[7.775*Var20(t)]|+([1.273*Var17(t)]|[2.186*Var20(t)]))|+(-(0.000000|
-5.218301)|98.760572))|ThenElse([1.000*Var8(t)]|IF(>=(0.000000|
[1.000*Var2(t)])|ThenElse([0.306*Var7(t)]|[7.775*Var20(t)])))))|
ThenElse(IF(<=(+([0.500*Var16(t)]| [1.000*Var12(t)])|-(-([4.358*Var20(t)]|
0.587528)|[1.000*Var12(t)]))|ThenElse(+(+(0.587528|98.760572)|0.587528)|
[1.000*Var12(t)]))|IF(<=(+([0.500*Var16(t)]|e^([2.353*Var16(t)]))|+(
Sqrt([1.000*Var4(t)])|15.374653))|ThenElse(+(+(0.587528|98.760572)|0.587528)|+(+(
[1.273*Var17(t)]| [2.186*Var20(t)])|/ ([3.649*Var18(t)]|9.638362))))))

Thresholds: [36.425; 80.1]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 145 | 9 | 4 | Est. [0] | 11 | 0 | 1 |
Class [1] | 8 | 325 | 26 | Class [1] | 1 | 33 | 1 |
 [2] | 0 | 0 | 5963 | [2] | 1 | 1 | 671 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.27% | 99.31%

10-fold CV set 7:

class(t) = +(^(+(+(+(Log(8.775252)|+([1.440*Var20(t)]|8.775252))|*(Sin(
[0.158* Var20(t)])|-(8.775252|[1.000*Var16(t)])))|e^(Sin(+([0.158*Var20(t)]|
[1.000*Var16(t)]))))|Sig(+(+(Sin([-0.421*Var16(t)])|+([0.086*Var4(t)]|
[1.285*Var20(t)]))|+(+([-1.893*Var16(t)]|[1.000*Var8(t)])|
Sin([1.000*Var16(t)])))))|IF(<=(Sig(+(-(59.824802|[1.000*Var2(t)])|-
(8.775252|[1.000*Var19(t)])))|+(Log(+([1.000*Var2(t)]|8.775252))|+(e^(
[1.000*Var7(t)])|+([-1.893*Var16(t)]|0.000000))))|ThenElse(+(59.824802|
-(2.810579|[0.158*Var20(t)]))|+(*(*([0.249*Var2(t)]|[0.158*Var20(t)])|
[0.158*Var20(t)])|+(*([0.158*Var20(t)]|[0.158*Var20(t)])|
+([0.086*Var4(t)]|[1.000*Var17(t)]))))))

Thresholds: [41.575; 74.575]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 140 | 11 | 5 | Est. [0] | 9 | 3 | 3 |
Class [1] | 13 | 305 | 30 | Class [1] | 3 | 49 | 4 |
 [2] | 1 | 0 | 5975 | [2] | 0 | 0 | 649 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.07% | 98.19%

10-fold CV set 8:

class(t) =
-(IF(<=(-(+(+([5.748*Var20(t)]|[1.000*Var4(t)])|3.807626)|*(
-(1.928774|[1.000*Var7(t)])|-([3.224*Var16(t)]|[1.000*Var8(t)])))|
IF(<=(-([3.351*Var16(t)]|[1.000*Var2(t)])|*(1.000000|3.807626))|
ThenElse([-5.157*Var20(t)]|+([4.698*Var16(t)]|56.916803))))|
ThenElse(-(+(+([1.000*Var16(t)]|-8.636405)|+([5.518*Var16(t)]|-8.636405))|-(-([-
5.157*Var20(t)]|[1.000*Var16(t)])|e^([0.222*Var17(t)])))|
IF(<=(-([3.351*Var16(t)]|[1.000*Var7(t)])|*(1.000000|3.807626))|
ThenElse(+([5.518*Var16(t)]|102.747052)|+([1.000*Var20(t)]|56.916803)))))|IF(>=(-
(3.807626|+(+([1.000*Var15(t)]|[1.000*Var11(t)])|+([1.000*Var7(t)]|
[-5.157*Var20(t)])))|Log(/(e^(56.916803)|Sqrt([4.697*Var2(t)]))))|
ThenElse(-(-(3.807626|*([3.224*Var16(t)]|5.880540))|Cos(+([4.698*Var16(t)]
|1.000000)))|*(/(+(3.464115|[1.000*Var4(t)])|+([1.000*Var4(t)]|1.928774))|+(
[4.698*Var16(t)]|Sig([5.748*Var20(t)]))))))

Thresholds: [36.375; 83.275]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 143 | 11 | 3 | Est. [0] | 16 | 1 | 3 |
Class [1] | 6 | 317 | 33 | Class [1] | 0 | 38 | 6 |
 [2] | 1 | 1 | 5965 | [2] | 0 | 0 | 656 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.15% | 98.61%

10-fold CV set 9:

class(t) = +(+(IF(>=(^(Log([3.598*Var20(t)])|+([2.767*Var7(t)]|[1.000*Var12(t)]))|
Log([2.368*Var16(t)]))|ThenElse(IF(>=([2.368*Var16(t)]|35.377930)|
ThenElse(-21.656405|28.887860))|+(+([1.000*Var17(t)]|-3.329153)|+ ([0.247*Var2(t)]|-
3.329153))))|IF(>=(+(+([1.000*Var6(t)]|28.887860)|+
([2.368*Var16(t)]|[1.000*Var10(t)]))|*(-([0.861*Var16(t)]|[1.000*Var3(t)])
|[1.000*Var18(t)]))|ThenElse(IF(>=([2.368*Var16(t)]|49.112689)|ThenElse(
22.857204|49.112689))|-([3.484*Var18(t)]|+([1.000*Var18(t)]|-5.595520)))))|+(IF(<=(-
([2.368*Var16(t)]|/(1.182745|[1.000*Var17(t)]))|
+([1.000*Var8(t)]|[1.000*Var17(t)]))|ThenElse(Sin(Sig(-21.656405))|
IF(<=(35.377930|[3.722*Var20(t)])|ThenElse([0.894*Var16(t)]|-21.656405))))|IF(>=(^(-
([1.000*Var18(t)]|[1.000*Var2(t)])|+(
[2.279*Var7(t)]|[1.000*Var4(t)]))|Log([2.368*Var16(t)]))|ThenElse(IF(>=([0.861*Var16(t)]|
22.857204)|ThenElse([2.279*Var7(t)]|22.857204))|IF(<=(
35.377930|[3.598*Var20(t)])|ThenElse([0.247*Var2(t)]|-21.656405))))))

Thresholds: [34.225; 75.6]

TRAINING TEST

Orig. ->	[0]	[1]	[2]	Orig. ->	[0]	[1]	[2]
Est. [0] | 145 | 0 | 3 | Est. [0] | 17 | 0 | 1 |
Class [1] | 3 | 341 | 21 | Class [1] | 1 | 27 | 6 |
 [2] | 0 | 0 | 5967 | [2] | 0 | 0 | 668 |
----------|-----|-----|------|------- ----------|-----|-----|-----|-------
 | 99.58% | 98.89%

Figure 15.6: Example classification models (produced using GP) and the resulting

confusion matrices for the Thyroid data set.

232 CHAPTER 15. CLASSIFICATION

15.2 Quality Pre-Assessment in Steel Industry

Using Data Based Estimators

In this section we give a summary of the research done on quality pre-assessment

in steel industry. The goal of this work was to examine the ability of data based

estimators to formulate models that predict the final quality of steel products on

the basis of process parameter values.

The work described here was done during a research project at the Institute for

Design and Control of Mechatronical Systems at Johannes Kepler University Linz,

Austria, in cooperation with the Industrial Competence Center for Metallurgical

Process Engineering, Austria and has been partly funded by the Austrian Ministry

for Economy and Labor in the frame of its Industrial Competence Center Program

K-ind/K-net. I am thankful to Prof. Dr. Luigi del Re and Dipl.-Ing. Hajrudin

Efendic, who managed this project and helped to obtain and analyze the results

presented here. An extended version of the report given here has already been

published in [WEdR06].

15.2.1 Introduction

Quality assessment is a standard and central issue in industrial processes and is

usually performed on the basis of an inspection of the final product, either by a hu-

man operator or in a computer assisted way. The latter approach includes usually

an automatic inspection and/or classification method, very often based on pattern

recognition tools. A much more appealing possibility, however, consists in perform-

ing an indirect assessment, i.e. without visual inspection of the final product. These

methods can include intermediate process data and are therefore not necessarily

predictive in a strict sense, but offer the essential advantage of allowing to under-

stand the relationships between process quantities and quality. To this end, different

approaches can be used, in particular a classical issue is the choice or combination

of model based vs. data based approaches.

We here partially summarize a case study within which purely data based ap-

proaches were used to predict the quality of steel products, where the results of

the human inspection were used as comparison, partly as training and partly as

validation data. Essentially, the experience can be summarized as follows:

• It is indeed possible to implement an automatic quality assessment scheme

which reproduces rather well the results of the human inspection of the final

15.2. QUALITY PRE-ASSESSMENT IN STEEL INDUSTRY 233

product.

• The specific choice of the modeling algorithms, as long as nonlinear modeling

methods are used, is not the critical issue.

• The binary decision on the quality by the human operator is the crisp expres-

sion of a continuous value, and therefore is the wrong quantity on which to

train the algorithms.

• Even though large amounts of data are recorded on typical steel (and other)

industrial plants, they might not contain the necessary information.

15.2.2 Solution Structure

As already stated, the first experience gained in this test case concerns the fact that

it is indeed rather straightforward to implement an automatic quality assessment

scheme which allows a good forecast of the product quality. Even if this affirmation

could be obvious for many different setups, it is not for steel plants because the data

are poor in some respects:

• All data available arise from real production processes, and, clearly, the opera-

tor tries to keep the process values in ranges known to produce “best” results,

thus the diversity of data is very limited.

• Luckily enough, the number of products classified as faulty is much lower than

the number of products classified as correct, but this means that the number

of experiments available for the faulty class is much lower than for the correct

class.

Under these circumstances, the simple use of standard classifiers directly is likely

to lead to ill-conditioned problems, whose solution may yield good results for the

training phase, but will usually perform very poorly for new or validation data. To

cope with such a setup, the general structure schematically presented in Figure 15.7

can be used. This structure is intended to derive an adjacent, better conditioned

problem whose solution is expected to behave better - on average - both in the

training and in the validation set.

The first part of the overall data processing workflow is the preprocessing of

the data. This preprocessing includes the removal of variables without significant

234 CHAPTER 15. CLASSIFICATION

Variable Selection

Modeling (Lin, kNN, NN, GP)

Test Models

Evaluation
(Expert)

Evaluation
(Statistics)

Fault Isolation

Data preprocessing
(Removal of invalid data,

Detection of redundancies)

Data

Figure 15.7: The general steel production data processing framework.

information and the detection of redundancies (variable-wise as well as sample-

wise). The next issue is the selection of variables that seem to have a statistically

measurable relationship with the target variable (in the case of our project the

product quality). Then, models are created to describe the target variable’s values

in terms of the values of the other retained variables. Finally, the model’s quality

is calculated using the part of the data that was not included in the training data

base.

15.2.2.1 Preprocessing

The purpose of preprocessing is the extraction of the informative data from the

signals. In our setup there are no dynamical data, so that this operation boils down

to the elimination of all variables not storing significant information and to the

identification of redundancies within the data. The purpose of the latter operation

is essentially to reduce the problem complexity.

Redundancy detection is in fact a bivariate problem. The detection of redundant

variables can be very meaningful also in view of a possible fault detection and

isolation (FDI), and is typically based on pair-wise correlation coefficients (between

the full ordered value sets of the respective variables).

The detection of redundant samples works quite differently, the goal being to find

samples (formed by points of two or more variables belonging to the same measure-

ment) with “insignificant” (variable-wise) differences. It is essentially a clustering

approach, in which all elements which belong to a sufficiently small environment are

15.2. QUALITY PRE-ASSESSMENT IN STEEL INDUSTRY 235

considered as a single measurement. Clustering techniques are well known; in this

work, all variables have been normalized independently, the distance of any sample

to any other has been calculated as a mean squared error, and a threshold has been

used to filter out redundant samples. Both these redundancy checks have proven to

be quite important to obtain a feasible problem. Still, any “approximate” redun-

dancy can indeed hide a real difference. In practice, this means that the value of the

threshold cannot be computed a priori but must be determined during the training

phase. It has also turned out important to perform the sample-wise redundancy

analysis for all samples of each given class separately, i.e., the classification variable

(for example the one dividing all samples into the “faulty” and the “not faulty”

ones) should not be considered in calculating the distance matrix. This enables

finding the pairs of really redundant samples.

The analysis of the data, however, has shown the existence of a special class of

“redundant” cases: Samples clearly redundant in all process parameters but with

a different classification. A more precise analysis of such cases has shown that

they corresponded to a “critical” chemical composition known to produce not well

repeatable results. Such cases can also be seen as indicators that there could be

additional factors which have relevant influence on the process outcome, but are not

measured.

15.2.2.2 Variables Selection

The objective of variable selection is to identify from measurement data a list

of variables which are related; the aim is to derive a set of “input” variables

ui,1, ui,2, . . . , ui,m which significantly influence a defined target variable yi. The so

obtained list allows exploring functional relations between different process vari-

ables, which may extend expert knowledge, and provide a set of input signals which

a model should be built with. There are different methods known for variable se-

lection as for example exhaustive search, sequential forward selection, or sequential

backward selection.

Exhaustive search is executed by computing all possible combinations of variables

and evaluating them by means of the sum of squared errors; exactly that combina-

tion of variables will be selected which provides best approximation of measurement

data. This method is able to provide an optimal solution (if the process is linear),

but especially for higher dimensional problems (including big numbers of variables)

it requires excessive computation time. In order to overcome this drawback, for-

ward and backward selection can be used as alternatives even if they provide only

sub-optimal solutions.

236 CHAPTER 15. CLASSIFICATION

Sequential forward selection assumes a linear-in-parameters model of the form

yi = φT (xi,1, xi,2, . . . , xi,n) ∗ θ (15.17)

where T denotes a vector of known basis functions (linear, polynomial, etc) and θ

the unknown parameter vector. The algorithm sequentially derives the list of input

variables. In the first step, only one input variable is considered where that variable

is selected that minimizes the sum of squared errors. In the next step, another input

variable is selected where once again that variable is chosen which minimizes the sum

of squared errors; the algorithm iteratively adds more and more input signals to the

set X until a predefined accuracy is reached and hence the algorithm terminates. Of

course the results depend on the chosen basis functions; different models (linear and

polynomial) were used in this project and the largest common set X =
⋂

i=1...mXi

was computed. The main difference when applying backward selection is that the

algorithm starts with all variables available in a set of selected variables and then

iteratively removes variables that do not have a statistically measurable connection

with the observed (measured) target values. Hybrid variants combining backward

selection and a subsequent forward selection step have also been investigated for

producing good results very efficiently.

15.2.2.3 Modeling and Model Based Classification

There are several modeling methods that can be used in the context of estimating

the quality of steel products; in the following we report on our experience using

linear modeling, k-nearest-neighbor (kNN) classification, neural networks (NN) and

genetic programming (GP).

In addition to building mathematical models, thresholds separating the classes ‘0’

and ‘1’ have to be found. Of course, thresholds are fixed on the basis of the evaluation

of the models on the training data; they are set so that as few misclassifications

as possible are recorded. During our intensive test series we have come to the

conclusion that weighting factors 1:5 seem to be appropriate (i.e., when it comes to

fixing thresholds, misclassifications of faulty samples are weighted 5 times as much

as misclassified fault free samples).

Linear modeling and neural networks are used in exactly the same way as de-

scribed in Section 14.3; GP is applied as described in the first part of this thesis,

especially using gender specific parents selection (random and proportional, see Sec-

tion 4.1), offspring selection (Section 4.2), local optimization and pruning (Chap-

ter 10), and classification specific evaluation and results analysis as described in

Section 8.2.

15.2. QUALITY PRE-ASSESSMENT IN STEEL INDUSTRY 237

Unlike other data based modeling methods, kNN classification works without cre-

ating any explicit models. During the training phase, the data are simply collected;

when it comes to classifying a new, unknown sample xnew, the sample-wise distance

between xnew and all other training samples is calculated and the classification is

done on the basis of those k training samples showing the smallest distances from

xnew. There is a lot of literature that can be found for kNN classification; very good

explanations and compact overviews of kNN classification are for example given

in [DHS00] and [RN03].

15.2.3 Empirical Results

In this section we exemplarily summarize the results achieved using the data pro-

cessing methods discussed previously for analyzing data from a large scale industrial

production plant and the binary information about the respective final products’

quality. For confidentiality reasons, the variables’ names have been substituted by

dummies, and the results of the redundancies check methods cannot be discussed in

detail. Still, there are some issues to be discussed regarding these results.

Within our testing series we have executed a so-called 10-fold cross validation (10-

fold CV) series using the data (consisting of 2400 samples and 85 variables, one

of them indicating the resulting fault occurrences) taken from a real world steel

production plant already mentioned before. I.e., the given data were split into 10

commensurate independent sets of samples yielding 10 pairs of test data (each con-

taining 10% of the given data) and training data (each including the remaining 90%,

respectively).

15.2.3.1 Redundancies and Nearest-Neighbor Analysis Results

In general, measurement systems of industrial plants include redundant samples as

well as redundant signals, for instance due to multiple sensors measuring the same

or very similar quantities; this happened also here.

Redundant samples are also to be expected, simply because parameter settings of

production plants are usually not changed randomly after each production process,

at least if the earlier run was successful. As already explained, however, sometimes

samples redundant in the inputs correspond to different outcomes: A clear sign

that something is wrong or missing here. Of course, this proposition has to be

examined statistically. Since the detection of redundant samples depends on the

choice of the respective threshold, it is not easy to objectively estimate the ratio

of redundant samples that show this anomaly. Thus we have executed a simplified

238 CHAPTER 15. CLASSIFICATION

nearest neighbor analysis on all training data available: For each sample, the nearest

neighbor sample was identified and then we analyzed, how many sample of each class

have nearest neighbors showing a different original classification. As one can see in

Table 15.10 that summarizes this analysis, almost half of the samples originally

belonging to class ‘1’ have nearest neighbors that are classified differently.

Table 15.10: Simplified nearest neighbor analysis for steel production data.

Original Nearest Neighbor Classification

Classification Class ‘0’ Class ‘1’

‘0’ 97.13% 2.87%

‘1’ 43.45% 56.55%

15.2.3.2 Variables Selection Results

Apart from using variable selection as a data processing and reduction step, the sets

of selected variables can also be used as an independent data analysis result. Even

though these results are not to be seen as descriptions of causal dependencies, this

information can be very useful for experts analyzing the system investigated since it

can be used for describing relationships between certain signals and the final prod-

uct quality (even though these relationships cannot be quantified without further

analysis). Especially the graphical representation of these relationships and redun-

dancies has in the past already been a very appropriate basis for further discussions

and analysis of complex industrial production plants.

Graphical as well as tabular information about the sets of relevant variables

detected using different variables selection methods is given in [WEdR06].

15.2.3.3 Modeling Results

One of the most obvious results of our test series was that linear models are not

adequate for modeling the relationship between steel production process variables

and the respective final products’ quality. kNN classification also does not seem to

be the ideal method; even though class ‘0’ was here almost always classified correctly,

the ratio of correct classifications of ‘1’ is very low. This is probably related to the

fact that fault-free experiments are represented in the data much more often (approx.

90%) than faulty productions; fault-free samples therefore tend to be “near” also to

faults parameter-vectors.

15.2. QUALITY PRE-ASSESSMENT IN STEEL INDUSTRY 239

As described in more detail in [WEdR06], the data available were split into

training and test data, and then variables selection (except when using GP) and

the modeling approached listed above were applied. Table 15.11 summarizes the

modeling results in terms of correct classification rates for each class on training as

well as on test data.

Table 15.11: Overview of the modeling results; for each method, the ratio of correct

classifications is given.

Method Training Results Test Results

Class ‘0’ Class ‘1’ Class ‘0’ Class ‘1’

Lin 76.59% 91.18% 76.25% 87.39%

kNN – – 97.84% 49.53%

NN 87.33% 95.59% 84.34% 82.83%

GP 89.18% 68.55% 89.85% 73.33%

The results achieved using NNs and GP are worth a closer look; both methods

have yielded more or less acceptable results, but still there are some significant

differences that are to be discussed in the following. NN classifiers show a rather high

correct classification rate on training data, correctly classifying more than 87% of

class ‘0’ and even more than 95% of the samples belonging to class ‘1’. Nevertheless

it is obvious that overfitting has happened here because the correct classification

rates on test data are much lower.

Even though the classification models produced by GP show a slightly worse

performance, there are some other important details to be considered here. The

most important fact is that the GP algorithm was set to produce rather simple,

interpretable models; an exemplary formula is graphically shown in Figure 15.8.

For sure it would be possible to achieve higher classification rates by increasing the

allowed model complexity; this, of course, would in return trigger the production

of formulae that are not easy to interpret any more. Furthermore, GP seems to be

not as exposed to overfitting problems as NNs; this is why the classification rates

using the formulae produced by GP on test samples are not significantly worse than

those achieved on training data. A rough overview of the modeling results is given

in Table 15.11.

240 CHAPTER 15. CLASSIFICATION

Figure 15.8: Model identified by the GP based classification algorithm using the

first 2001 samples of the steel production data set.

15.2.4 Discussion

As stated in the beginning, the method can be easily automated and the result -

approximately 90% correct classification - would be considered quite satisfying for

many applications. In the case of a production plant, however, it is evident that

90% is still too little, a visual control of a significant part of the products remains

necessary. Even though some improvements could be still possible by tuning the

methods applied, the experiments have clearly shown that this is not really the

issue. Essentially, there are some important issues to be considered:

• The analyzed process is (partly) stochastic, i.e. the reproducibility is limited.

• The stochastic aspect is increased by the fact that the classification is per-

formed by human operator(s), whose classification thresholds might vary over

time and between persons.

• The recorded data do not need to contain all the necessary information.

Against this background, a real improvement is not expected by modifications

of the algorithms alone, but by a change in the problem. This can be achieved on

two fronts:

15.2. QUALITY PRE-ASSESSMENT IN STEEL INDUSTRY 241

• Instead of predicting the outcome of the classification, the data analysis tool

should be used to give estimations on the likelihood of the product to be faulty.

• The data set should be checked for sufficient information content for produc-

ing nonlinear models with sufficient degrees of prediction precision. This is

approximately the case when the ratio between parameters and independent

samples is large enough (typically more than 10). Otherwise, the measurement

system has to be extended (either by measurements, by models or by expert

knowledge).

Please notice that this implies a different classification procedure (at least three

classes are needed, namely “faulty”, “correct” and “undetermined”), but ideally a

quantitative assessment of the degree of fault would be much more appropriate.

Still, going from crisp to probability values could be an asset if the data analysis

tool is to be used for process re-design and/or optimization. If these aspects are

considered, we are confident that a very valuable tool can be designed to predict

the product quality. If the tool is then used to operate the plant under correct

conditions, i.e. producing as many correct outputs as possible, this will reinforce

the quality of the prediction tool and ask for very few visual control steps. These,

however, will remain as long as the stochastic nature of the process subsists.

242 CHAPTER 15. CLASSIFICATION

243

Chapter 16

GP in Volatile Environments:

On-Line and Sliding Window GP

16.1 Simulated On-Line Design of Virtual Sensors

Early test series using the simulated on-line GP approach described in Section 13.1

have been originally published in [WEA+05], [WAW05a] and later in [WEA+06]; a

compact overview of these results is given here. In fact, this approach was not actu-

ally used in an on-line identification context; we simulated an on-line identification

scenario using data that were recorded previously.

Test Environment

For testing the presented on-line learning GP algorithm we have analyzed the data

representing several signals of a BMW M47D diesel engine (with activated exhaust

recirculation as described in Section 14.1.1). Again, the goal was to identify a model

for the engine’s NOx emissions using the measured values of several other engine

parameters. A whole FTP 75 cycle was executed within approximately 1,400 sec-

onds; all sensor signals (in total 33) were recorded with 20 Hz resolution, for the

GP identification algorithm the data was downsampled to 5 Hz resolution. For sim-

ulating an on-line learning scenario, initially only 50 samples are inserted into the

algorithm’s data pool adding one more every 0.2 seconds. Since the data basis avail-

able to the identification algorithm grows constantly during the simulation (which

brings along runtime problems), the identification data was restricted to the most

244 CHAPTER 16. GP IN VOLATILE ENVIRONMENTS

recent 500 samples (representing 100 seconds).

As underlying GP algorithm the SASEGASA was applied working with a population

size of 300 individuals, 5% mutation rate and a combination of random selection and

roulette selection as selection operators with generational replacement. The average

of squared errors was chosen as fitness function with activated early stopping as

described in Section 7.5.5; after each 10% of the given training data the stopping

criterion was checked and the evaluation aborted as soon as it was clear that the

solution’s fitness was going to be worse than the parents’ qualities.

- Original Signal
- Calculated Signal

Figure 16.1: Evaluation of the best result after three minutes.

- Original Signal
- Calculated Signal

Figure 16.2: Evaluation of the best result after end of the FTP cycle.

Test Results

The Figures 16.1 and 16.2 illustrate the algorithm’s behavior and graphically show

evaluations of the currently best models after some minutes (Figure 16.1) and at

16.1. SIMULATED ON-LINE DESIGN OF VIRTUAL SENSORS 245

Figure 16.3: Model identified by on-line GP after the whole FTP cycle.

the end of the whole simulation (Figure 16.2). The model that was returned by the

program in the end (after finishing the whole simulation, i.e. after approximately 23

minutes), is shown in Figure 16.3. The input variables of this model for NOx are the

target quantity of the fuel injection pump ME MES16, the opacity of the engine’s

emissions OPA OPAC and the starting time of the fuel injection ME MES15 with

varying coefficients and time offsets. In other words, the engine’s NOx emissions can

be modeled as

NOx ∼ f(ME MES16, OPA OPAC,MEMES15). (16.1)

This result was checked and rated as very good by experts in the field of au-

tomotive control, namely members of the automotive group of the Institute of

Design and Control of Mechatronical Systems at the University of Linz, Austria.

It is in fact also consistent with those retrieved during previous investigations

([dRLF+05], [AdRWL05]).

In addition to the test run documented above we have tested the same data set

several times applying the same algorithmic parameter settings. These test runs

were all executed independently and produced also structurally different formulae

modeling the engine’s NOx emissions. One of these models is graphically shown in

Figure 16.4; NOx is modeled using the variables ME MES16, the fuel consumption

KW V AL and the temperature of the coolant TWA, again with varying coefficients

and time offsets. I.e., the engine’s NOx emissions can also be modeled as

NOx ∼ f(ME MES16, KW V AL, TWA). (16.2)

246 CHAPTER 16. GP IN VOLATILE ENVIRONMENTS

Figure 16.4: Alternative model identified by on-line GP after the whole FTP cycle.

Even though this model is not quite as good as the one we have stated previously

(evaluated on the whole test data set its average squared residual is approximately

16% higher), it can still be used for fault detection because it gives a good ap-

proximation of the original target values and is consistent with the results retrieved

during previous investigations. Due to the fact that its set of input signals differs

from the set of inputs of the model previously mentioned, these two models can be

used for data-based fault diagnosis based on analytical redundancy. For a detailed

explanation of fault detection, fault isolation and the potential role of GP in this

context please see for example [WEA+05] or [WEA+06] and the references given

therein.

So, on the basis of evolution inspired heuristic optimization techniques, an en-

hanced on-line learning and model structure identification approach based on Ge-

netic Programming has been presented and successfully tested on real-world mea-

surement data.

16.2 Selection Pressure Based Sliding Window

GP

We shall now discuss empirical test results obtained using the selection pressure

driven sliding window approach for GP as described in Section 13.2; the results

summarized here have been previously published in [WAW07b]. Here we again

report on tests executed using the Thyroid data set; we are going to report on test

16.2. SELECTION PRESSURE BASED SLIDING WINDOW GP 247

results achieved using the first 80% of the data (containing 7,200 samples in total) as

training data and the remaining 20% for testing the models created. We here state

the quality of the classifiers created by the identification process using the mean

squared error function for evaluating them.

16.2.1 Parameter Settings and Test Results

For testing the sliding window approach presented here and also for comparing its

ability to produce models of high quality we have tested the following 5 different GP-

based data mining strategies characterized by their population size |pop|, maximum

selection pressure values MSP (maximum selection pressure), MSP1 and MSP2

(maximum selection pressure values 1 and 2 as explained in Section 13.2) and relative

values for sliding window parameters:

1. Standard-GP: |pop| = 2000, 1500 generations, no offspring selection.

2. GP including offspring selection: |pop| = 1000, MSP = 200

3. Sliding window GP: |pop| = 1000, MSP1 = 50, MSP2 = 200,

sliding window: initial size 0.2, step width 0.1, maximum size 0.4

4. Sliding window GP: |pop| = 1000, MSP1 = 50, MSP2 = 200,

sliding window: initial size 0.4, step width 0.2, maximum size 0.5

5. Sliding window GP: |pop| = 1000, MSP1 = 20, MSP2 = 200,

sliding window: initial size 0.2, step width 0.05, maximum size 0.4

All tests were executed applying 15% mutation rate and a combination of random

and roulette parent selection schemata. For each test scenario we have executed 5

independent test runs. In the following table we give average numbers of iterations

and solutions evaluated as well as the quality of the models identified (average values

as well as the quality of each test series’ result showing the best fit on the complete

training data set) with respect to (complete) training and test data. Please note

that all variables were normalized independently (i.e. scaled linearly so that the

resulting variables’ mean values are equal to 0 and their standard deviations are

exactly 1.0). The maximum size of models created by the training algorithm was

set to 60, the maximum formula tree height to 8.

In Figure 16.5 we give two characteristic screenshots: In the left part the selection

pressure progress of one of the test runs of test series (5) is displayed (with vertical

248 CHAPTER 16. GP IN VOLATILE ENVIRONMENTS

Table 16.1: Results of the tests executed for the Thyroid data set.
Test Iterations Solutions Speed Model quality (mean squared error)

scenario (average) evaluated up on training data on test data
(average) Best model Average Best model Average

1 1,500.00 3,000,000.00 1.00 0.316 0.410 0.381 0.444
2 64.40 2,717,678.80 1.10 0.155 0.283 0.251 0.341
3 65.60 3,199,551.00 2.40 0.166 0.193 0.219 0.233
4 59.80 1,925,755.40 3.18 0.166 0.246 0.199 0.310
5 62.60 2,483,116.60 3.10 0.125 0.173 0.220 0.252

Training data Test data
Current Selection Pressure

Maximum Selection Pressure

Generations Samples

Figure 16.5: Left: Selection pressure progress of the best test run of test series (5);

Right: Graphical representation of the best test run of test series (4).

gray lines indicating training data scope drifts: every time the selection pressure

became greater than 20, the window was shifted); in the right part we show a

graphical representation of the evaluation of the best classifier trained in test series

(4). This model correctly classifies 98.46% of the training and 98.08% of the test

samples; a detailed confusion matrix is given in Table 16.2.

Obviously, as is summarized in Table 16.1, all GP methods using offspring selec-

tion perform significantly better than the standard implementation. Furthermore,

the use of sliding window mechanisms here resulted in models that perform better

on test data as well as in significant runtime reduction. Due to the fact that on

the one hand not all training data but only the respective current data scopes are

used in the sliding window test series and on the other hand the share of model

evaluation in runtime consumption of GP based data mining is almost 100%, the

algorithms are executed significantly faster: The respective speed up values range

from 2.4 to almost 3.2.

16.2. SELECTION PRESSURE BASED SLIDING WINDOW GP 249

Table 16.2: Analysis of the best model produced in test series (4) whose evaluation

is displayed in Figure 16.5.

Original Class → 1 2 3

Class 1 29 (2.06%) 0 (0.00%) 2 (0.14%)

Predicted 2 5 (0.35%) 63 (4.47%) 19 (1.35%)

3 0 (0.00%) 1 (0.07%) 1290 (91.55%)

Correctly Classified 1382 (98.08%)

16.2.2 Discussion

In this section we have summarized the results of sliding window tests for data mining

using GP. Offspring selection is used for determining the resulting selection pressure

which is used for triggering the drift of the current training data scope; we have

reported on a series of tests using a widely used classification benchmark problem

for demonstrating the effects of the use of these enhanced aspects. It has been

shown that it is possible to reduce the algorithm’s runtime as well as to increase the

models’ test quality when applying the sliding window mechanism presented here.

Still, more detailed analysis of this method is needed. For example, the effects

of this drifting mechanism on the genetic diversity are to be analyzed; we are going

to report on this analysis in Chapter 17.

250 CHAPTER 16. GP IN VOLATILE ENVIRONMENTS

251

Chapter 17

Population Dynamics

17.1 Genetic Propagation

17.1.1 Test Setup

When speaking of analysis of genetic propagation as described in Section 12.1, we

analyze how well which parts of the population succeed in propagating their genetic

material to the next generation, i.e. to produce offspring that will be included in the

next generation’s population. In this section we shall report on tests in this area;

major parts have been published in our article on offspring selection and its effects

on genetic propagation in GP based system identification [WAW08a].

We have here used the NOx data set already presented and described in Sec-

tion 14.2.1. Originally, this data set includes 10 variables, each storing approxi-

mately 36,000 samples; the first 10,000 samples are neglected in the tests reported

on here, approximately 18,000 samples are training and 4,000 samples are validation

(which is in this case equivalent to test) data. The last ∼4,000 samples are again

neglected.

In principle, we are using conventional GP (with tournament and proportional

selection) as well as extended GP (with gender specific selection as well as offspring

selection). The details of the test strategies used are given in Table 17.1.

In all three test strategies we applied subtree exchange crossover, the time se-

ries analysis specific evaluation function (with early abortion as described in Sec-

tion 8.1.3) for evaluating solutions, and 1-elitism as well as 15% mutation rate.

252 CHAPTER 17. POPULATION DYNAMICS

Table 17.1: GP test strategies.

Strategy Properties

(I) |Pop| = 1000;

Conventional GP Tournament parents selection (k = 3)

nr. of rounds: 1000

(II) |Pop| = 1000;

Conventional GP Proportional parents selection;

nr. of rounds: 1000

(III) |Pop| = 500;

Extended Gender specific parents selection

GP (proportional, random);

Offspring selection

(SuccessRatio = 1, MaxSelPres = 100)

17.1.2 Test Results

We have executed independent test series with 5 executions for each test strategy;

the results are to be summarized and analyzed here.

With respect to solution quality and effort1, the extended GP algorithm clearly

outperforms the conventional GP variants (as summarized in Table 17.2).

Table 17.2: Test results.
I II III

Best min. 1,390.21 3,022.12 1,201.23

Quality avg. 1,513.84 5,014.96 1,481.69

(Training) max. 2,431.54 10,013.12 2,012.27

Best min. 8,231.76 12,312.83 4,531.56

Quality avg. 10,351.96 15,747.69 8,912.61

(Test) max. 13,945.23 21,315.23 16,123.34

Generations 500 64.31

Effort 1,000,000 898,332.23

Regarding parents analysis, in all test runs we documented the propagation count

1The number of solutions evaluated is here interpreted as the algorithm’s total effort.

17.1. GENETIC PROPAGATION 253

for each individual and sum these over all generations. So we get

pctotal(i) =
∑

i∈[1;gen]

pc(i) (17.1)

for each individual index i and assuming that gen is the number of generations

executed. Additionally, we form equally sized partitions of the population indices

and sum up the pctotal values for each partition.

In Table 17.3 we give the average pctotal values for percentiles of the populations

of test series I, II and III; for test series I and II we collected the pctotal of 100 indices

for forming a partition, for test series III we collected 50 indices for each partition.

The Figures 17.1 and 17.2 show pctotal values of exemplary test runs of the series I

and II summed up for partitions of 10 solution indices each, Figure 17.3 shows pctotal

values of exemplary test runs of series III summed up for partitions of 5 solution

indices each.

Table 17.3: Average overall genetic propagation of population partitions.

Population Test Strategy

Percentile I II III

0 27.88% 10.31% 13.54%

1 21.29% 10.35% 11.20%

2 16.65% 10.31% 11.67%

3 12.64% 10.26% 10.91%

4 9.06% 10.25% 10.63%

5 6.08% 10.28% 9.85%

6 3.71% 10.24% 9.39%

7 1.88% 10.16% 8.83%

8 0.72% 10.10% 7.92%

9 0.10% 7.74% 6.07%

As we see from the results given in Tables 17.2 and 17.3 and Figure 17.1, there

is a rather high selection pressure when using tournament selection; the results are

rather good and (as expected) less fit individuals are by far not able to contribute

to the population as well as fitter ones, leading to a quick and drastic reduction of

genetic diversity.

The results for test series II, as given in Tables 17.2 and 17.3 and Figure 17.2,

are significantly different: The results are a lot worse (especially on training data)

than those of algorithm variant I, and obviously there is no strong selection pressure

254 CHAPTER 17. POPULATION DYNAMICS

Figure 17.1: pctotal values for an exemplary run of series I.

Figure 17.2: pctotal values for an exemplary run of series II.

Figure 17.3: pctotal values for an exemplary run of series III.

as almost all individuals (or, rather the individuals at the respective indices) are

able to contribute almost to the same extent. Only the worst ones are not able

to propagate their genetic material to the next generations as well as better ones.

This is due to the fact that in the presence of very bad individuals roulette wheel

selection selects the best individuals approximately as often as those that perform

middlingly well. Especially in data based modeling there are often individuals that

score extremely badly (due to divisions by very small values, for example), and in

comparison to those all other ones are approximately equally fit.

Finally, test series III obviously produced the best results with respect to training

17.1. GENETIC PROPAGATION 255

as well as validation data (see also Table 17.2). Even more, the results that are given

in Table 17.3, column III, and displayed in Figure 17.3, show that the combination

of random and roulette parents selection and offspring selection results in a very

moderate distribution of the pctotal values: Fitter individuals contribute more than

less fit ones, but even the worst ones are still able to contribute to a significant

extent. Thus, genetic diversity is increased which also contributes positively to the

genetic programming process.

17.1.3 Summary

Thus, in order to sum up this section, offspring selection in genetic programming

based system identification significantly influences the algorithm’s ability to create

high quality results as well as the genetic propagation dynamics: Not only fitter

individuals are able to propagate their genetic make-up, but also less fit ones are

able to contribute to the next population. This is also somehow the case when us-

ing proportional selection, but in the presence of individuals with very bad fitness

values the selection pressure is almost lost which leads to solutions of rather bad

quality. When using offspring selection, extremely bad individuals are eliminated

immediately; when using OS in combination with gender specific parent selection

(applying random and proportional selection mechanisms), GP is able to produce

significantly better results than when using standard techniques. Parents diversifi-

cation and thus increased genetic diversity in GP populations is considered one of

the most influential aspects in this context.

17.1.4 Additional Tests Using Random Parents Selection

In addition to the tests reported on in the previous parts of this section we have also

tested conventional as well as extended GP using random parents selection. Thus,

we have two more test cases to be analyzed.

As we had expected, the test results obtained for standard GP with random par-

ents selection were very bad; obviously, no suitable models were found. When using

OS, on the contrary, the test results for random parents selection were not that bad

at all: The models are (on training data) not quite as good as those obtained using

random/roulette and OS or conventional GP with tournament parents selection, but

still they perform (surprisingly) well on test data2. In Table 17.5 we summarize the

2Of course, these remarks are only valid for the tests reported on here - we do here not give
any general statement regarding result quality using random parents selection and OS.

256 CHAPTER 17. POPULATION DYNAMICS

Table 17.4: Additional GP test strategies.

Strategy Properties

(IV) |Pop| = 2000;

Conventional GP Random parents selection

nr. of rounds: 500

(V) |Pop| = 500;

Extended Random parents selection

GP Offspring selection

(SuccessRatio = 1, MaxSelPres = 100)

respective result qualities.

In Table 17.6 we give the average pctotal values for percentiles of the populations

of test series IV and V (collecting the pctotal values of 200 indices for forming a

partition for series IV and 50 indices for each partition for series V). Obviously

(and exactly as we had expected) random parents selection leads to all individuals

having the approximately same success in propagating their genetic make-up. When

using OS, the result is (even a little bit surprisingly) significantly different: Better

individuals have a much higher chance to produce successful offspring than worse

ones; the probability of the best 10%, for example, to produce successful children is

almost twice as high as the probability of the worst 10% to do so.

Obviously, random parents selection leads to an increased number of generations

that have to be executed until a given selection pressure limit is reached. This is

graphically shown in Figure 17.4, which gives the selection pressure progress for

Table 17.5: Additional test results (random parents selection).

IV V

Best min. >50,000.00 5,041.22

Quality avg. >50,000.00 7,726.11

(Training) max. >50,000.00 8,843.73

Best min. >50,000.00 7,129.31

Quality avg. >50,000.00 8,412.31

(Test) max. >50,000.00 12,653.98

Generations 500 102.86

Effort 1,000,000 1,324,302

17.1. GENETIC PROPAGATION 257

Table 17.6: Average overall genetic propagation of population partitions for random

parents selection tests.

Population Test Strategy

Percentile IV V

0 10.03 % 13.16 %

1 10.02 % 12.07 %

2 9.98 % 11.41 %

3 9.99 % 10.66 %

4 10.02 % 10.30 %

5 9.99 % 9.33 %

6 10.00 % 8.96 %

7 9.98 % 8.62 %

8 9.99 % 7.81 %

9 10.00 % 7.68 %

two exemplary test runs of the test series including OS, i.e. III and V. In the

standard case using random / roulette parents selection and offspring selection,

III, the selection pressure obviously rises faster than when using random parents

selection in combination with strict offspring selection. Still, even though it takes

longer when using random parents selection, the characteristics are very similar, i.e.

it rises steadily with some notable fluctuations.

Average Selection Pressure Progress

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Generations

Sel.Pres. (III)

Sel.Pres. (V)

Figure 17.4: Selection pressure progress in two exemplary runs of test series III and

V (extended GP with gender specific parents selection and strict offspring selection).

258 CHAPTER 17. POPULATION DYNAMICS

17.2 Variables Diversity

The functions designed for estimating the variables diversity among GP populations

described in Section 12.2 have been used for demonstrating internal GP dynamics

in standard as well as in extended genetic programming. Thus, again the Thyroid

and the NOx data sets, described previously in Chapter 15 and Sections 14.2.1

and 14.2.2, respectively, have been used as basic problems.

In Section 17.2.1 the reader can find a summary of first variables diversity and

impact test results previously published in [WAW07c], Section 17.2.2 summarizes

systematic variables impact tests using standard and extended GP strategies.

17.2.1 First Exemplary Results

Initial variables diversity and impact tests were, as reported on in [WAW07c], done

using the Thyroid data set as well as the NOx data set II (as described in Sec-

tion 14.2.1); 80% of both data sets were used as identification, 10% as validation

and 10% as test data. All tests were executed using 12% mutation rate and single

point crossover and mutation operators. The most relevant test settings are summa-

rized in Table 17.7; extended GP hereby stands for GP with gender specific parents

selection (random and proportional selection) and strict offspring selection, MSP for

maximum selection pressure.

Table 17.7: Summary of data and algorithm specific settings of the GP tests inves-

tigated in initial variables diversity tests.
Test Data Set GP Algorithm Pop. Size Parameter Settings
I Thyroid Standard GP 1,000 Number of generations = 1,500

Linear Rank Selection
II NOx Extended GP 500 MSP = 200, Success Ratio = 1.0

(with OS) Random & Roulette Parents Selection
III NOx Extended GP 500 MSP = 200, Success Ratio = 0.9

(with OS) Random & Roulette Parents Selection
IV Thyroid OS-driven 1,000 Sliding Window Moving MSP = 20

Sliding Window GP MSP = 200, Success Ratio = 1.0
Random & Roulette Parents Selection

Test case IV was taken from the test series executed in the course of investiga-

tions of sliding window behavior for GP (see Section 16.2 for details). The main

difference here is that the algorithm starts considering only a part of the training

17.2. VARIABLES DIVERSITY 259

data available; after reaching a certain maximum selection pressure, the data scope

used for evaluating models is shifted until the end of the data set is reached. This

approach significantly increases the speed of GP based structure identification as

well as it helps the method to decrease the effects of overfitting. The test case

analyzed here is part of test series 5 explained in detail in Section 16.2.

First we report on the results obtained using standard GP: In Figures 17.5, 17.6,

and 17.7 selected analysis results for test run I are illustrated. Figure 17.5 shows

the impact of all variables over time using the “mean” replacement strategy (defined

in Equation 12.10) and the sum of squared differences function for calculating the

impact values. Figures 17.6 and 17.7 show the total number of occurrences for all

variables at generations 1400 and 1450, respectively. There is obviously no notable

variables selection process and also no clear statement possible regarding which

variables are more important for modeling the given target variable than others.

Figure 17.5: Test run I: The impact of all variables is shown over time for the first

1000 generations.

Figure 17.6: Test run I: Total occurrences at generation 1400.

In Figures 17.8, 17.9 and 17.10 we visualize the impact of all variables for test

run II. In Figure 17.8 we show the impact using the “linear regression” (see Equa-

tions 12.11 – 12.15) replacement strategy and the correlation coefficient (defined in

260 CHAPTER 17. POPULATION DYNAMICS

Figure 17.7: Test run I: Total occurrences at generation 1450.

Figure 17.8: Test run II: The impact of all variables over time.

Figure 17.9: Test run II: Final impact analysis, calculated using the rmean /

impactmsd strategy.

Equation 12.22) impact function; Figures 17.9 and 17.10 show the variables’ impact

at the end of the algorithm’s execution (based on rmean / impactmsd and rlinreg /

impactcc strategies, respectively). Here the variables selection functionality of GP

becomes obvious, still the results differ quantitatively depending on the selection of

replacement and impact strategies applied.

The Figures 17.11 and 17.12 characterize the algorithmic behavior in test run

III: Even though several variables occur rather often in the population, only one

variable dominates all other ones with respect to occurrence (Figure 17.11) as well

17.2. VARIABLES DIVERSITY 261

Figure 17.10: Test run II: Final impact analysis, calculated using the rlinreg /

impactcc strategy.

Figure 17.11: Test run III: Occurrence of variables over time.

Figure 17.12: Test run III: Impact of variables over time.

as impact (applying rlinreg and impactcc strategies, Figure 17.12).

Figures 17.13 and 17.14 finally show the total occurrences of all variables during

262 CHAPTER 17. POPULATION DYNAMICS

Figure 17.13: Test run IV: Occurrences of variables over time.

the execution of test run IV and the impact of variables (again applying the rmean

/ impactmsd strategy). Here it is even more obvious that one variable dominates all

other ones; genetic diversity almost seems to have disappeared since all models only

use one variable and simply seem to neglect all other ones.

Figure 17.14: Test run IV: Impact of variables over time.

17.2. VARIABLES DIVERSITY 263

17.2.2 Detailed Analysis, Comparing Standard GP to Ex-

tended GP

17.2.2.1 Test Setup

Analyzing the variables diversity and impact test results reported on in the previous

section it became clear that a more systematic comparison of standard and extended

GP was necessary. So, again using the Thyroid data set and the NOx data set III

(see Section 14.2.2 for details), we defined the two test strategies summarized in

Table 17.8; we intentionally applied no local adaptation as we wanted to concentrate

on similarities or differences of these two GP strategies with respect to variables

diversity or impact distribution.

Table 17.8: Summary of data and algorithm specific settings of the systematic GP

tests designed for comparing standard to extended GP.
Test Data Set GP Algorithm Pop. Size Parameter Settings
I NOx Extended GP 1,000 MSP = 200, Success Ratio = 1.0

Random & Roulette Parents Selection
II Thyroid Extended GP 1,000 MSP = 200, Success Ratio = 1.0

Random & Roulette Parents Selection
III NOx Standard GP 1,000 Number of generations = 2,000

Tournament Parents Selection (k = 3)
IV Thyroid Standard GP 1,000 Number of generations = 2,000

Tournament Parents Selection (k = 3)

17.2.2.2 Variables Diversity Results

All test cases were executed 5 times independently; the maximum height of the

formulae created was set to 6, the maximum structure tree size to 60. For each

variable available in the two data sets used we monitored the occurrences (i.e.,

the number of solutions referencing it, weighted using fitness dependent weighting

factors as described in Equations 12.26 and 12.28), for the NOx tests also their

respective impacts (using the rmean / impactmsd strategy). As it is not easy to

illustrate all these results graphically (at least in a relatively compact way) we see the

results summarized in Tables 17.9 – 17.14; for each variable we see the occurrences

or impact values, respectively, given as mean values and standard deviations (over

the test runs executed) for several selected generations.

264 CHAPTER 17. POPULATION DYNAMICS

Table 17.9: Average weighted numbers of solutions referencing input variables in

test runs of GP strategy I.
Generation 10 Generation 40 Generation 80 End of Run
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

qMI 38.1 18.7 385.1 303.7 435.9 182.5 624.0 342.8
pMI 93.9 81.3 34.0 56.1 583.0 719.9 433.0 541.3
HFM 472.4 138.7 952.2 736.7 913.9 553.8 973.6 276.2
N 263.6 76.0 477.5 288.0 589.0 572.0 486.5 251.7
qPI 50.4 20.2 23.8 32.8 0.1 0.1 0.0 0.0
tiP I 70.1 63.6 8.4 14.7 0.4 0.8 0.0 0.0
pRAIL 50.9 47.8 210.0 181.9 171.2 159.5 224.1 253.4
pBOOST 199.4 119.8 55.4 93.3 106.4 184.4 265.3 459.5

Table 17.10: Average weighted numbers of solutions referencing input variables in

test runs of GP strategy II.
Generation 10 Generation 20 Generation 40 End of Run
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

V ar00 5.8 3.7 25.5 35.7 110.6 129.3 185.0 216.8
V ar01 114.3 128.4 160.7 318.7 152.8 305.0 256.0 511.0
V ar02 37.2 62.1 68.7 129.8 119.8 141.6 145.6 172.0
V ar03 4.2 4.1 16.2 20.6 1.1 1.3 1.5 2.5
V ar04 11.4 1.5 40.2 73.6 0.2 0.2 20.5 40.7
V ar05 20.2 15.2 2.76 2.9 0.7 0.9 1.4 1.6
V ar06 11.3 2.2 1.3 1.4 7.3 8.2 26.2 38.0
V ar07 26.1 27.1 9.6 11.5 88.8 98.8 145.4 169.4
V ar08 45.6 55.9 62.1 118.4 3.6 2.2 3.5 4.3
V ar09 78.8 85.3 131.3 225.5 54.1 90.2 90.4 151.3
V ar10 51.2 91.4 33.3 54.39 111.6 212.4 184.8 357.4
V ar11 13.9 5.7 1.7 1.41 43.4 77.6 72.1 130.6
V ar12 79.4 81.9 78.5 127.8 60.2 73.4 62.4 55.3
V ar13 45.0 33.6 4.4 5.1 15.7 28.8 26.3 48.4
V ar14 25.1 21.7 1.5 1.2 0.1 0.1 0.2 0.2
V ar15 36.8 38.0 23.7 34.5 91.0 105.8 136.0 157.1
V ar16 316.9 397.9 233.5 303.4 441.4 360.6 553.5 616.2
V ar17 81.8 95.1 93.2 162.6 204.3 284.4 346.3 482.2
V ar18 63.1 62.4 120.1 209.2 152.3 201.6 28.8 46.5
V ar19 3.0 1.9 17.2 32.5 0.1 0.08 0.1 0.1
V ar20 120.4 186.9 237.3 263.0 286.1 369.3 586.7 666.5

17.2. VARIABLES DIVERSITY 265

Table 17.11: Average weighted numbers of solutions referencing input variables in

test runs of GP strategy III.
Generation 100 Generation 500 Generation 1000 Generation 2000
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

qMI 341.4 218.9 329.3 103.6 303.5 102.3 480.2 129.6
pMI 15.6 15.6 53.5 83.5 705.0 1185.6 85.3 142.1
HFM 617.0 298.0 784.6 589.0 1204.9 803.7 1418.4 1005.7
N 426.5 137.3 588.9 270.4 745.3 297.7 945.9 368.0
qPI 7.5 3.2 76.8 126.6 111.0 204.2 143.4 260.2
tiP I 81.7 130.6 7.2 1.7 9.9 3.6 17.6 13.7
pRAIL 9.4 6.7 187.2 137.5 287.6 219.8 355.9 246.4
pBOOST 11.9 9.3 59.3 101.7 82.7 143.7 109.8 182.3

Table 17.12: Average weighted numbers of solutions referencing input variables in

test runs of GP strategy IV.
Generation 100 Generation 500 Generation 1000 Generation 2000
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

V ar00 20.8 34.4 19.5 37.5 31.1 57.1 42.5 81.5
V ar01 103.8 124.3 141.2 220.8 143.3 208.8 184.9 288.3
V ar02 2.1 2.1 1.2 0.7 3.4 3.1 44.6 83.1
V ar03 1.1 0.6 0.6 0.5 2.1 1.1 2.4 1.6
V ar04 2.4 2.4 0.9 0.3 60.8 117.2 1.7 1.1
V ar05 18.5 17.5 2.3 1.8 2.2 1.5 2.9 2.4
V ar06 94.9 112.1 66.5 95.7 54.5 105.0 145.9 170.8
V ar07 21.5 40.6 57.6 64.8 121.2 86.0 145.4 164.4
V ar08 16.2 22.9 71.9 49.9 109.9 75.9 149.3 165.9
V ar09 5.0 8.3 1.3 0.9 5.3 6.3 31.8 57.6
V ar10 63.8 125.7 123.9 185.4 203.7 315.6 136.8 157.4
V ar11 3.6 4.0 52.6 102.0 2.4 0.8 3.0 1.9
V ar12 87.8 173.3 121.8 231.7 172.0 274.8 348.1 598.4
V ar13 14.2 25.1 33.6 43.6 151.6 175.6 267.6 310.8
V ar14 23.5 31.1 7.2 11.2 2.1 1.2 4.5 0.7
V ar15 54.5 107.3 65.0 91.1 95.2 176.1 152.1 15.3
V ar16 140.0 188.9 266.6 236.3 436.8 370.7 298.2 271.7
V ar17 2.5 2.1 100.2 196.5 200.7 397.1 186.8 367.1
V ar18 133.0 264.4 113.7 92.0 220.3 221.1 328.8 389.5
V ar19 2.8 1.1 40.5 77.1 70.2 136.0 102.0 116.2
V ar20 56.2 109.8 74.7 96.5 86.7 109.4 90.7 99.9

266 CHAPTER 17. POPULATION DYNAMICS

Variables Frequencies (Test Run of Series II)

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50

Generation

Var00

Var01

Var02

Var03

Var04

Var05

Var06

Var07

Var08

Var09

Var10

Var11

Var12

Var13

Var14

Var15

Var16

Var17

Var18

Var19

Var20

Var21

Figure 17.15: Variables diversity over time in an exemplary test run of series II.

Variables Frequencies (Test Run of Series IV)

0

200

400

600

0 200 400 600 800 1000 1200 1400 1600 1800
Generation

Var00
Var01
Var02
Var03
Var04
Var05
Var06
Var07
Var08
Var09
Var10
Var11
Var12
Var13
Var14
Var15
Var16
Var17
Var18
Var19
Var20
Var21

Figure 17.16: Variables diversity over time in an exemplary test run of series IV.

17.2. VARIABLES DIVERSITY 267

In Figure 17.15 we see the weighted frequency progresses of the variables in an

exemplary run of test strategy II, Figure 17.16 visualizes the frequencies progresses

in an exemplary run of strategy IV.

Analyzing the statistic features regarding variables frequencies and impacts as

well as the Figures 17.15 and 17.16, the following speculation arises: The fluctu-

ation of the calculated frequencies and impact values seem to differ significantly

when comparing standard to extended GP; extended GP seems to have a stronger

tendency to select variables strictly, i.e. to remove variables from the population

completely. Additionally, at least when analyzing the variables impact results for

the NOx tests, the results of the standard GP tests vary more than those produced

by extended GP (which can be seen by comparing the results’ standard deviations);

extended GP here seems to be more stable with respect to variables impact diversity

than standard GP. Still, this does not seem to be the case for variables occurrences:

The variables’ frequencies results of extended GP strategies differ not less, but rather

more than those of standard GP tests.

Table 17.13: Average impacts of input variables in test runs of GP strategy I.
Generation 10 Generation 40 Generation 80 End of Run
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

qMI 0.0012 0.0001 0.1233 0.1776 0.1219 0.0893 0.2360 0.2580
pMI 0.0010 0.0019 0.0000 0.0000 0.0167 0.0217 0.0110 0.0139
HFM 0.0640 0.0256 0.0981 0.0643 0.1525 0.0876 0.2873 0.2673
N 0.0029 0.0008 0.0251 0.0245 0.1039 0.0706 0.0987 0.0984
qPI 0.0004 0.0007 0.0006 0.0012 0.0136 0.0271 0.0000 0.0000
tiP I 0.0027 0.0053 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
pRAIL 0.0011 0.0019 0.0107 0.0125 0.0257 0.0303 0.0181 0.0214
pBOOST 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0000 0.0001

Table 17.14: Average impacts of input variables in test runs of GP strategy III.
Generation 100 Generation 500 Generation 1000 Generation 2000
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

qMI 0.1471 0.1351 0.0374 0.0399 0.0904 0.1539 0.2599 0.4494
pMI 0.0225 0.0380 0.1262 0.1584 0.1138 0.0964 0.1189 0.1952
HFM 0.1366 0.0797 0.0809 0.0701 0.0008 0.0015 0.1515 0.1148
N 0.0887 0.1527 0.0539 0.0703 0.0599 0.0807 0.0844 0.0564
qPI 0.1700 0.1586 0.1314 0.0488 0.2656 0.1074 0.1207 0.0766
tiP I 0.0813 0.1263 0.0591 0.0123 0.0776 0.1241 0.1339 0.1857
pRAIL 0.0854 0.1274 0.0681 0.1068 0.0519 0.0899 0.0802 0.0722
pBOOST 0.0238 0.0413 0.0153 0.0266 0.0833 0.0732 0.3104 0.1828

268 CHAPTER 17. POPULATION DYNAMICS

17.2.2.3 Variables Diversity Fluctuation Analysis

In order to compare standard GP to extended GP a bit more systematically with

respect to fluctuations in variables diversity we calculate the average differential

values of the variables frequencies or impact values, respectively, and then sum up

all these values:

x′t = xt−1 − xt (17.2)

x′total =
1

n− 1

∑
i∈[2;n]

|x′i| (17.3)

where x1 . . . xn denotes the frequency or impact values monitored over n generations.

Of course, this way of comparing GP incorporating OS to standard GP is not

quite fair because the numbers of generations differ a lot (the number of generations

in standard GP is here set to 2,000 whereas extended GP is here finished after 100

to 150 rounds). The number of individuals created and evaluated per generation

is fixed in standard GP (i.e., equal to the population’s size), in GP with offspring

selection this number can be a lot higher (depending on OS parameters, for example

it can become 10 or 50 times as much as the population’s size). Thus, one could

bring forward the argument that it would be fairer to calculate the fluctuation in

standard GP as the differential of order 10 instead of 1:

x′10t = xt−10 − xt (17.4)

x′total10
=

1

n− 10

∑
i∈[11;n]

|x′10t | (17.5)

In the Tables 17.15 and 17.16 we summarize the x′total values for the variable’s

frequencies and impact values, given as mean average values; for the standard GP

tests the x′total10
values are also stated.

The results given in Table 17.15, which summarizes the fluctuations in NOx tests,

show that variables frequencies fluctuate (with respect to first order derivative) more

in OS GP than in standard GP, but when looking also at the x′total10
values we see

that the extended GP test runs seem to have run more smoothly (with respect to

variables frequencies) than standard GP runs.

The results for the Thyroid tests are even more univocal: The GP runs incorporating

roulette and random parents selection as well as offspring selection partially show

less variables frequencies fluctuation than the standard GP tests, even considering

the first order derivatives; again, looking at the x′total10
values we see that extended

GP seems to have run a lot more smoothly than standard GP.

17.2. VARIABLES DIVERSITY 269

Table 17.15: Fluctuation of variable frequencies for test strategies I and III.
Variable x′

total(frequencies) x′
total10

(frequencies)
Name Strategy I Strategy III Strategy III
qMI 18587.44 524.32 5296.70
pMI 158.35 124.28 4789.46

HFM 17675.91 973.60 7908.22
N 14127.64 1164.80 7132.37

qPI 569.81 387.16 3185.82
tiP I 332.09 27.15 403.80

pRAIL 297.62 154.97 2452.97
pBOOST 1248.82 166.95 5373.77

Table 17.16: Fluctuation of variable frequencies for test strategies II and IV.
Variable x′

total(frequencies) x′
total10

(frequencies)
Name Strategy II Strategy IV Strategy IV
V ar00 56.82 115.38 144.06
V ar01 92.25 1138.44 2327.61
V ar01 245.13 1865.43 6425.16
V ar03 187.83 132.33 242.7
V ar04 170.1 103.89 264.48
V ar05 464.4 172.8 1001.76
V ar06 120.6 182.76 658.89
V ar07 118.5 639.69 1901.4
V ar08 523.92 1124.73 2375.37
V ar09 122.91 130.92 620.55
V ar10 140.67 302.82 334.38
V ar11 238.35 147.24 2201.91
V ar12 315.06 726.78 419.94
V ar13 153.51 348.51 3539.82
V ar14 245.25 220.23 553.44
V ar15 552.66 268.08 413.22
V ar16 805.23 297.42 1295.91
V ar17 74.04 711 1082.22
V ar18 98.34 5792.28 11128.83
V ar19 83.07 68.19 52.98
V ar20 2658.24 2327.19 9436.5

270 CHAPTER 17. POPULATION DYNAMICS

17.3 Single Population Diversity Analysis

17.3.1 GP Test Strategies

Within our first series of empirical tests regarding solutions similarity and diversity

we analyzed the diversity of populations of single population GP processes. For

testing the population diversity analysis method described in Section 12.4 and il-

lustrating graphical representations of the results of these tests we have used the

following two data sets:

• The NOx data set contains the measurements taken from a 2 liter 4 cylinder

BMW diesel engine at a dynamical test bench (simulated vehicle: BMW 320d

Sedan); this data set has already been described in Section 14.2.2.

• The Thyroid data set is a widely used machine learning benchmark data set

containing the results of medical measurements which were recorded while in-

vestigating patients potentially suffering from hypothyroidism; further details

regarding this data set can be found in Chapter 15.

Both data collections have been split into training and validation / test data

partitions taking the first 80% of each data set as training samples available to the

identification algorithm; the rest of the data is considered as validation data.

We have used various GP selection strategies for analyzing the NOx and the

Thyroid data sets:

• On the one hand, we have used standard GP with proportional as well as

tournament selection (tournament size k = 3).

• On the other hand we have also intensively tested GP using offspring selection

and gender specific parents selection (proportional and random selection).

In general, we have tested GP with populations of 1,000 solution candidates

(with a maximum tree size of 50 and a maximum tree height of 5), standard subtree

exchange crossover, structural as well as parametric node mutation and total 15%

mutation rate; the mean squared errors function was used for evaluating the solutions

on training as well as on validation (test) data. Other essential parameters vary

depending on the test strategies; these are summarized in Table 17.17.

17.3. SINGLE POPULATION DIVERSITY ANALYSIS 271

Table 17.17: GP test strategies.

Strategy Properties

(A) Standard GP Tournament parents selection

(tournament size k = 3);

Number of generations: 4000

(B) Standard GP Proportional parents selection;

Number of generations: 4000

(C) GP with OS Gender specific parents selection;

(Random & proportional)

Success ratio: 0.8

Comparison factor: 0.8

(Maximum selection pressure: 50

(not reached)

Number of generations: 4000

(D) GP with OS Gender specific parents selection;

(Random & proportional)

Success ratio: 1.0

Comparison factor: 1.0

Maximum selection pressure: 100

17.3.2 Test Results

In Table 17.18 we summarize the quality of the best models produced using the GP

test strategies (A) – (D); for the NOx data set the quality is given as the mean

squared error, for the Thyroid data set we give the classification accuracy, i.e. the

ratio of samples that are classified correctly. The models are evaluated on training as

well as on validation data; as each test strategy was executed 5 times independently,

we here state mean average and standard deviation values.

Obviously, the test series (A) and (D) perform best; the results produced using

offspring selection are better than those using standard GP. The classification results

for the Thyroid data set are not quite as good as those reported in [WAW06e] and

Section 8.2; this is due to the fact that we here used smaller models and concentrated

on the comparison of GP strategies with respect to population diversity.

Solution quality analysis is of course important and interesting, but here we are

more interested in a comparison of population diversity during the execution of the

GP processes. We have calculated the similarity among the GP populations during

272 CHAPTER 17. POPULATION DYNAMICS

Table 17.18: Test results: Solution qualities.

Results for NOx test series

GP Strategy

(A) (B) (C) (D)

Training (mse) 2.518 5.027 2.674 1.923

Training (std(mse)) 1.283 2.142 2.412 0.912

Validation (mse) 3.012 5.021 2.924 2.124

Validation (std(mse)) 1.431 3.439 2.103 1.042

Evaluated solutions, avg. 4 · 106 4 · 106 10.2 · 106 3.91 · 106

Generations (avg.) 4,000 4,000 4,000 98.2

Results for Thyroid test series

GP Strategy

(A) (B) (C) (D)

Training (cl. acc., avg.) 0.9794 0.9758 0.9781 0.9812

Training (cl. acc., std) 0.0032 0.0017 0.0035 0.0012

Validation (cl. acc., avg.) 0.9764 0.9675 0.9767 0.9804

Validation (cl. acc., std) 0.0029 0.0064 0.0069 0.0013

Evaluated solutions, avg. 4 · 106 4 · 106 12.2 · 106 5.1 · 106

Generations (avg.) 4,000 4,000 4,000 167.8

the execution of the GP test series described in Table 17.17: The multiplicative

similarity approach (as defined in Equations 11.21 – 11.23) has been chosen; all co-

efficients c1 . . . c10 were set to 0.2, only the coefficient c1 weighting the level difference

contribution d1 was set to 0.8.

In Table 17.19 we give the average population similarity values calculated using

Equation 12.51; again, as each test series was executed several times, we give the

average and standard deviation values (written in italic letters). As we see in the

first row, the average similarity values are approximately in the interval [0.2; 0.25] at

the beginning of the GP runs, i.e. after the initialization of the GP populations. In

standard GP, as can be seen in the first column, the average similarity reaches values

above 0.7 after 400 generations and stays at approximately this level until the end of

the execution of the GP process; in the end, the average similarity was ∼0.87 in the

NOx tests and ∼0.81 in the Thyroid test series. Analyzing the second and the third

column we notice that this is not the case in test series (B) and (C): The similarity

values do in test series (B) by far not rise as high as in series (A) (especially when

working on the Thyroid data set), and also in test series (C) we have measured

17.3. SINGLE POPULATION DIVERSITY ANALYSIS 273

significantly lower similarities than in series (A) (i.e., the population diversity was

higher during the whole GP process). Obviously, the use of offspring selection

with rather soft parameter settings (i.e., success ratio and comparison factor set

to values below 1.0) does not have the same effects on the GP process as strict

ones. The by far highest similarity values are documented for test series (D) using

maximally strict offspring selection (which has produced the best quality models,

as documented in Table 17.18): As is summarized in the far right column, during

the whole evolutionary process the mutual similarity among the models increases

steadily, while also the selection pressure increases. In the end, when the selection

pressure reaches a high level (in these cases, the predefined limit was set to 100) and

the algorithm stops, we see a very high similarity among the solution candidates,

i.e. the population has converged and evolution is likely to have gotten stuck. This

is in fact consistent with the impression already stated in [WAW06a] or [WAW06e],

e.g.; here we see that this in fact really happens.

Similarity Values Histogram (NOx, A, Generation 200)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
ila

ri
ty

 V
al

u
es

Figure 17.17: Distribution of similarity values in an exemplary run of NOx test series

A, generation 200.

In Table 17.20 we summarize the maximum population diversity values calculated

using Equation 12.52; again we give the average and standard deviation values

(written in italic letters). As we see in the first (left) column, in standard GP

with tournament selection the average maximum similarity reaches values above

0.95 rather fast, i.e. for all models in the population rather similar solutions can be

found. This is not the case when using proportional selection. When using offspring

selection the same effect as in standard GP with tournament selection can be seen,

especially in the NOx test series.

The Figures 17.17 – 17.20 exemplarily show the average population diversity by

274 CHAPTER 17. POPULATION DYNAMICS

Table 17.19: Test results: Population diversity (average similarity values; avg, std).

NOx tests

Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)

0 0.247 0.250 0.270 0 0.197

0.041 0.031 0.037 0.039

100 0.723 0.491 0.517 10 0.397

0.073 0.051 0.038 0.039

400 0.813 0.497 0.564 20 0.603

0.035 0.058 0.059 0.049

1000 0.859 0.510 0.520 40 0.810

0.021 0.055 0.052 0.039

4000 0.871 0.518 0.526 End of 0.985

(End of run) 0.019 0.059 0.053 run 0.032

Thyroid tests

Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)

0 0.206 0.205 0.208 0 0.197

0.041 0.040 0.036 0.040

100 0.581 0.241 0.444 10 0.397

0.047 0.043 0.035 0.039

400 0.737 0.321 0,610 20 0.602

0.032 0.058 0.026 0.049

1000 0.808 0.341 0.692 40 0.810

0.029 0.049 0.031 0.041

4000 0.812 0.343 0.701 End of 0.975

(End of run) 0.038 0.056 0.030 run 0.019

giving the distribution of similarities among all individuals. The Figures 17.17 and

17.18 show the similarity distributions of an exemplary test run of series (A) at

generation 200 and 4000; obviously, most similarity calculations returned similarity

values between 0.7 and 1.0, and the distribution at generation 200 is comparable to

the distribution at the end of the test run. For the GP runs incorporating offspring

selection this is not the case, as we exemplarily see in Figures 17.19 and 17.20:

After 20 generations most similarity values almost fit Gaussian distribution with

mean value 0.8, and at the end of the run all models are very similar to each other

(i.e., the population has converged, the selection pressure reaches the given limit

17.3. SINGLE POPULATION DIVERSITY ANALYSIS 275

Table 17.20: Test results: Population diversity (maximum similarity values; avg,

std).

NOx tests

Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)

0 0.919 0.934 0.904 0 0.936

0.116 0.095 0.123 0.109

100 0.995 0.825 0.944 10 0.961

0.014 0.074 0.059 0.049

400 0.998 0.809 0.978 20 0.971

0.006 0.075 0.037 0.033

1000 0.999 0.811 0.965 40 0.995

0.005 0.059 0.044 0.012

4000 0.999 0.819 0.969 End of 0.996

(End of run) 0.003 0.066 0.035 run 0.009

Thyroid tests

Gen. GP Strategy Gen. GP Strategy

(A) (B) (C) (D)

0 0.823 0.771 0.766 0 0.777

0.127 0.145 0.145 0.157

100 0,958 0.749 0.840 10 0.873

0.028 0.123 0.094 0.101

400 0.973 0.752 0.883 20 0.934

0.032 0.125 0.067 0.049

1000 0.977 0.744 0.913 40 0.976

0.022 0.117 0.061 0.022

4000 0.977 0.754 0.909 End of 0.999

(End of run) 0.021 0.111 0.058 run 0.004

and the algorithm stops).

Finally, Figure 17.21 shows the average similarity values for each model (cal-

culated using Equation 12.49) for exemplary test runs of the Thyroid test series

(A)3 and (D). Obviously, the average similarity in standard GP reaches values in

the range [0.7;0.8] very early and then stays at this level during the rest of the GP

3In fact, for the test run of series (A) we here only show the progress over the first 2000
generations.

276 CHAPTER 17. POPULATION DYNAMICS

Similarity Values Histogram (NOx, A, Generation 4000)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
ila

ri
ty

 V
al

u
es

Figure 17.18: Distribution of similarity values in an exemplary run of NOx test series

A, generation 4000.

Similarity Values Histogram (NOx, D, Generation 20)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
ila

ri
ty

 V
al

u
es

Figure 17.19: Distribution of similarity values in an exemplary run of NOx test series

(D), generation 20.

execution. When using gender specific selection and offspring selection, otherwise,

the average similarity steadily increases during the GP process and almost reaches

1.0 at the end of the run, when the maximum selection pressure is reached.

17.3. SINGLE POPULATION DIVERSITY ANALYSIS 277

Similarity Values Histogram (NOx, D, Generation 95)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

p
o

rt
io

n
 o

f
S

im
ila

ri
ty

 V
al

u
es

Figure 17.20: Distribution of similarity values in an exemplary run of NOx test series

(D), generation 95.

 0 400 800 1,200 1,600 2,000
 Iterations

 0 10 20 30 40 50
 Iterations

1

0.5

0

1

0.5

0

Figure 17.21: Population diversity progress in exemplary Thyroid test runs of series

(A) and (D) (shown in the upper and lower graph, respectively).

278 CHAPTER 17. POPULATION DYNAMICS

17.3.3 Conclusion

Structural similarity estimation has been used for measuring the genetic diversity

among GP populations: Several variations of genetic programming using different

types of selection schemata have been tested using fine-grained similarity estimation,

and two machine learning data sets have been used for these empirical tests. The

test results presented show that population diversity differs a lot in the test runs

depending on the selection schemata used.

17.4. MULTI POPULATION DIVERSITY ANALYSIS 279

17.4 Multi Population Diversity Analysis

Our second series of empirical tests regarding solutions similarity and diversity was

dedicated to the diversity of populations of multi population GP processes; for

testing the multi population diversity analysis method described in Section 12.4

and illustrating graphical representations of the results of these tests we have again

used the following two data sets: The NOx data set described in Section 14.2.2 as

well as the Thyroid data set.

Both data collections have been split into training and validation / test data

partitions; in the case of the NOx data set the first 50% of the data set were used as

training samples, in the case of the Thyroid data set the first 80% were considered

by the training algorithms.

17.4.1 GP Test Strategies

In general, 4 different strategies for parallel genetic programming have been applied:

• Parallel island GP without interaction between the populations; i.e., all pop-

ulations evolve independently.

• Parallel island GP with occasional migration after every 100th generation in

standard GP and every 5th generation in GP with offspring selection: The

worst 1% of each population pi is replaced by copies of the best 1% of solutions

in population pi−1; the best solutions of the last population (in the case of n

population that is pn) replace the worst ones of the first population (p1). The

unidirectional ring migration topology has been used.

• Parallel island GP with migration after every 50th generation in standard GP

and every 5th generation in GP with offspring selection: The worst 5% of each

population pi is replaced by copies of the best 5% of solutions in population

pi−1. Again, the unidirectional ring migration topology has been used.

• Finally, the SASEGASA algorithm as described in Section 5.1.6 has been used

as well.

In all cases the algorithms have been initialized with 5 populations, each contain-

ing 200 solutions (in our case representing formulas, of course). Additionally, each of

the first 3 strategies has been tested with standard GP settings as well as offspring

280 CHAPTER 17. POPULATION DYNAMICS

selection; Table 17.21 summarizes the 7 test strategies that have been applied and

whose results shall be discussed here.

Table 17.21: GP test strategies.
Strategy Properties

(A) Parallel standard GP Tournament parents selection
(tournament size k = 3);

Number of generations: 2000
(B) Parallel GP with OS Random & roulette parents selection

Strict Offspring selection (success ratio: 1.0,
(comparison factor: 1.0, maximum selection pressure: 200)

(C) Parallel standard GP, Tournament parents selection
1% migration (tournament size k = 3);

Number of generations: 2000
1% best / worst replacement after every 100th generation

(D) Parallel GP with OS, Random & roulette parents selection
1% migration Strict Offspring selection (success ratio: 1.0,

(comparison factor: 1.0, maximum selection pressure: 200)
1% best / worst replacement after every 5th generation

(E) Parallel standard GP, Tournament parents selection
5% migration (tournament size k = 3);

Number of generations: 2000
5% best / worst replacement after every 50th generation

(F) Parallel GP with OS, Random & roulette parents selection
5% migration Strict Offspring selection (success ratio: 1.0,

(comparison factor: 1.0, maximum selection pressure: 200)
5% best / worst replacement after every 5th generation

(G) SASEGASA Random & roulette parents selection
Strict Offspring selection (success ratio: 1.0,

(comparison factor: 1.0, maximum selection pressure: 200)

17.4.2 Test Results

All test strategies summarized in Table 17.21 have been executed 5 times using the

NOx as well as the Thyroid data set. Multi population diversity was measured

using the equations given in Section 12.4.2: For each solution we calculate the av-

erage as well as the maximum similarities with solutions of all other populations

of the respective algorithms (in the following, these values are denoted as MPdiv

values). Additionally, we have also collected all solutions of the algorithms’ pop-

ulations into temporary total populations and calculate the average as well as the

maximum similarities of all solutions compared to all other ones (hereafter denoted

17.4. MULTI POPULATION DIVERSITY ANALYSIS 281

as SPdiv values).

Again, the multiplicative structural similarity approach (as defined in Equa-

tions 11.21 – 11.23) has been used for estimating the similarity of model structures;

all coefficients c1 . . . c10 were set to 0.2, only the coefficient c1 weighting the level

difference contribution d1 was set to 0.8. The similarity of models was calculated

symmetrically (as described in Equation 12.48).

In the following we summarize these values for all test runs by stating the average

values as well as standard deviations: Table 17.22 summarizes the results of the test

runs using the Thyroid data set, 17.23 those of the test runs using the NOx data

set.

Figure 17.22 exemplarily illustrates the multi population diversity in a test run

of series F at iteration 50: The value represented in row i of column j in bar k

gives the average similarity of model i of population k with all formulas stored in

population j. Low multi population similarity values are indicated by light cells,

dark cells represent high similarity values.

Figure 17.22: Exemplary multi-population diversity of a test run of Thyroid series

F at iteration 50.

282 CHAPTER 17. POPULATION DYNAMICS

Table 17.22: Multi population diversity test results of the GP test runs using the

Thyroid data set.
Results for the Thyroid data set

Test Series Iteration MPdiv (avg) MPdiv (max) SPdiv (avg) SPdiv (max)

A 300 avg 0.2433 0.3301 0.2048 0.8973
std 0.0514 0.0496 0.0612 0.0291

2000 avg 0.3592 0.3925 0.3628 0.9027
std 0.0613 0.0610 0.0593 0.0351

B 20 avg 0.1698 0.2356 0.2130 0.9182
std 0.0497 0.0317 0.0317 0.0852

End of avg 0.3915 0.4037 0.3592 0.9850
Run std 0.0599 0.0769 0.0820 0.0202

C 300 avg 0.1778 0.2788 0.1836 0.6543
std 0.0587 0.0549 0.0296 0.0971

2000 avg 0.4145 0.4885 0.3834 0.9236
std 0.0551 0.0762 0.0665 0.0417

D 20 avg 0.3276 0.4269 0.3394 0.9312
std 0.0486 0.1094 0.0175 0.0459

End of avg 0.4412 0.5822 0.3866 0.9736
Run std 0.0734 0.0635 0.0772 0.0283

E 300 avg 0.3395 0.6271 0.2715 0.6116
std 0.0441 0.0975 0.0139 0.0811

2000 avg 0.5329 0.8710 0.3991 0.9129
std 0.0833 0.0509 0.0921 0.0821

F 20 avg 0.3721 0.5024 0.2711 0.5192
std 0.0629 0.0822 0.0981 0.0601

End of avg 0.5915 0.8802 0.4576 0.9828
Run std 0.1034 0.0996 0.0514 0.0437

G 20 avg 0.4839 0.5473 0.3173 0.5237
std 0.0823 0.0419 0.0581 0.0623

50 avg 0.4325 0.5512 0.3228 0.5828
std 0.0518 0.0920 0.0672 0.0660

100 avg 0.5102 0.7168 0.3783 0.7296
std 0.0730 0.0724 0.0861 0.0740

200 avg 0.8762 0.9314 0.4206 0.9512
std 0.0505 0.0458 0.0792 0.0249

End of avg – – 0.9792 0.9934
Run std – – 0.0256 0.0162

17.4. MULTI POPULATION DIVERSITY ANALYSIS 283

Table 17.23: Multi population diversity test results of the GP test runs using the

NOx data set.
Results for the NOx data set

Test Series Iteration MPdiv (avg) MPdiv (max) SPdiv (avg) SPdiv (max)

A 300 avg 0.3187 0.3991 0.2773 0.8613
std 0.0124 0.0685 0.0726 0.0799

2000 avg 0.3689 0.4627 0.3300 0.9887
std 0.0288 0.0390 0.0390 0.0434

B 20 avg 0.1997 0.1498 0.2902 0.8992
std 0.0698 0.0912 0.0604 0.0634

End of avg 0.3723 0.4811 0.3440 0.9743
Run std 0.0233 0.0244 0.0254 0.0482

C 300 avg 0.2515 0.3323 0.1935 0.8293
std 0.0968 0.0685 0.0607 0.1062

2000 avg 0.3329 0.4741 0.2821 0.9311
std 0.0365 0.0323 0.0402 0.0441

D 20 avg 0.2985 0.3922 0.3791 0.8862
std 0.0870 0.0825 0.0487 0.0829

End of avg 0.5544 0.6839 0.4208 0.9661
Run std 0.0542 0.1039 0.0280 0.0332

E 300 avg 0.5002 0.6697 0.3111 0.6037
std 0.0588 0.0696 0.0474 0.0453

2000 avg 0.6002 0.8523 0.4745 0.9763
std 0.0538 0.0263 0.0728 0.0910

F 20 avg 0.3597 0.5248 0.3901 0.5839
std 0.0743 0.0769 0.0662 0.0775

End of avg 0.5607 0.9080 0.4877 0.9906
Run std 0.0931 0.0799 0.0249 0.0181

G 20 avg 0.4471 0.5303 0.2694 0.4670
std 0.0619 0.0897 0.0802 0.0522

50 avg 0.4923 0.6102 0.3025 0.6120
std 0.0854 0.0749 0.0550 0.0902

100 avg 0.5889 0.6939 0.3923 0.7972
std 0.1184 0.0835 0.0812 0.0805

200 avg 0.9047 0.9148 0.5741 0.9128
std 0.0387 0.0258 0.1253 0.0401

End of avg – – 0.9683 0.9932
Run std – – 0.0412 0.0319

284 CHAPTER 17. POPULATION DYNAMICS

17.4.3 Discussion

As we see in Tables 17.22 and 17.23, the average diversity among populations in

parallel island GP without interaction (i.e., in test series (A) and (B)) rises up to

values between 0.35 and 0.4, no matter whether or not OS is applied; the maxi-

mum values eventually reach values between 0.45 and 0.5. Considering all solutions

collected in temporary total populations, as expected the average similarities reach

values below 0.4, the maximum similarities almost reach 1.0.

The similarity values monitored in test series (C) and (D) are, in comparison to

those of series (A) and (B), slightly higher, but not dramatically. This does not hold

for the next pair of test series (with 5% migration): The similarity values calculated

for test series (E) and (F) are significantly higher than those of test series (A) –

(D); in other words, the exchange of only 5% of the populations’ models can lead to

a significant decrease of population diversity among populations of multi population

GP.

When using the SASEGASA, the diversity among populations is high in the

beginning and then steadily decreases as the algorithm is executed. This is of course

due to the reunification of populations as soon as the maximum selection pressure

is reached.

By executing these test series and analyzing the results as given in this section we

have demonstrated how multi population diversity can be monitored using similarity

measures as those described in Chapter 11. Reference values are given by parallel

GP without migration; of course, the higher the migration rates become, the more

migration affects the diversity among GP populations. When using the SASEGASA,

rather high multi population specific diversity is given in the early stages of the

parallel GP process, and due to the merging of population the diversity decreases

and in the end reaches diversity values comparable to those of single population GP

with offspring selection.

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 285

17.5 Comparison of Population Diversity Mea-

sures

Obviously, structural similarity estimation of formula trees is not equivalent to eval-

uation based similarity estimation; still, somehow we expect a significant correla-

tion between the results calculated using these two approaches. In order to get an

overview regarding this issue, we have analyzed a series of GP tests including both

similarity estimation strategies.

17.5.1 Test Setup

In detail, we have here chosen the GP test strategies which are summarized in

Table 17.24:

Table 17.24: GP test strategies for similarity estimators comparison.

GP Strategy Parameters
Standard GP (SGP) Population size: 1000, mutation rate: 15%

Parents selection: Tournament selection (k = 3)
Number of generations: 2000

Extended GP (EGP) Population size: 1000, mutation rate: 15%
Parents selection: Gender specific selection

(random & roulette)
Offspring selection (success ratio: 1, comparison factor: 1,

maximum selection pressure: 100)

The following similarity estimation functions are used:

• Evaluation based similarity estimation: As described in Section 11.1, all sub-

trees are evaluated on training or validation data, and we can analyze the

similarity of the values calculated by evaluating the subtrees of the formula

trees which are to be compared. We here use validation data for this similarity

estimation and the squared differences based approach (using the sse function,

see Section 11.1 for details).

• Additive structural similarity estimation: Structural components of structure

trees are analyzed as described in Section 11.2 using the additive approach;

we here weight all possible contributing aspects equally, i.e. the contributions’

286 CHAPTER 17. POPULATION DYNAMICS

weighting factors c1...10 are all set to 1.0, only the level difference is weighted

stronger with factor 4.0.

• Multiplicative structural similarity estimation: Again, structural components

of structure trees are analyzed as described in Section 11.2 using the multi-

plicative approach; again, we set all weighting factors equally, namely to 0.2,

only the level difference is weighted stronger with factor 0.8.

Again we have used the NOx data set III (as characterized in Section 14.2.2)

and the Thyroid data set; in both cases we have selected the first 80% of the given

data samples as training data and 400 samples as validation data (which are then

used in evaluation based similarity estimation). Thus, the four test cases which are

summarized in Table 17.25 are formed.

Table 17.25: GP test strategies for similarity estimators comparison.

Test Case GP Strategy Data Set

I EGP NOx

II EGP Thyroid

III SGP NOx

IV SGP Thyroid

All test cases were executed three times independently; the maximum tree height

was set to 6, the maximum tree size to 50 (for NOx as well as Thyroid tests). The

similarity values among individuals were calculated in the context of population

diversity estimation analysis executed after every 100th generation in SGP runs and

after each 5th generation in extended GP (EGP) runs.

17.5.2 Test Results

What we are most interested in here is not how the GP strategies affect the pop-

ulation diversity during the GP executions, but we rather want to document the

relationship between the similarity values calculated using the two approaches cho-

sen. So we have collected the results of all similarity calculations; as this is done for

1,000 models we get 1,000,000 for each similarity function each time the population

is analyzed. For each SGP test we therefore eventually get 21 million similarity

values for each function (because we also analyze after initializing the population),

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 287

and for each EGP test we get a comparable amount of similarity values4.

As we do here not care about differences between EGP and SGP we have collected

all similarity calculation results for the NOx and the Thyroid runs separately; the

NOx series are hereafter referred to as series (n), the Thyroid runs as (t).

The similarity values calculated for the (n) series using evaluation based, additive

structural and multiplicative structural comparison are hereafter denoted as ne, ns1

and ns2, respectively; in analogy to this, the similarity values for the (t) series

are denoted as te, ts1 and ts2, respectively. Please note that for each index i the

values ne(i), ns1(i) and ns2(i) belong to the same pair of models (structure trees)

that have been compared; in analogy to this, for each index i also the corresponding

comparison results te(i), ts1(i) and ts2(i) are associated to the same pair of formulas.

All test runs were executed on Pentium c© 4 computers with 3.00 GHz CPU speed

and 2 GB RAM.

First, several statistics are calculated for the similarity values collected in ne, ns1,

ns2, te, ts1 and ts2; Nn stands for the number of values in ne, ns1 and ns2, Nt for

the number of values in te, ts1 and ts2. The results are summarized in Table 17.26;

std here stands for standard deviation (std(x) =
√

1
N

∑
i∈[1;N](xi − x̄)2, x̄ =

1
N

∑
i∈[1;N] x,N = |x|), and corr again for the linear correlation (please see for ex-

ample Section 11.1 for details about this function).

Obviously, the structural similarity values tend to be a lot higher than the eval-

uation based ones - which is not really surprising as even small changes in the

formula’s structure can affect its evaluation significantly. The mean squared differ-

ence between structural and evaluation based similarity values ranges from ∼0.08

to ∼0.12; the respective standard deviations of the similarity differences range from

0.15 to ∼0.216. The much more informative statistic feature is the linear correlation

coefficient: Analyzing NOx tests we see that the correlation between structural and

evaluation based similarities is between ∼0.82 (for the additive structural calcula-

tion) and ∼0.8455 (for multiplicative structural approach); for the Thyroid tests,

these are not quite as high, namely ∼0.76 and ∼0.8, respectively.

As we had expected, the correlation between the results calculated using the

additive structural model comparison method and the multiplicative one is very

high, namely approximately 0.995 for NOx as well as Thyroid tests.

The runtime consumption of the evaluation based similarity estimation method

4This number is not constant for EGP due to the fact that the selection pressure reaches its
limit not at the same time in each test case execution.

288 CHAPTER 17. POPULATION DYNAMICS

Table 17.26: Comparing similarity estimation results: Basic statistics.

mean(ne) = 1
Nn

∑
i∈[1;Nn](ne(i)) 0.3444

mean(ns1) = 1
Nn

∑
i∈[1;Nn](ns1(i)) 0.6467

mean(ns2) = 1
Nn

∑
i∈[1;Nn](ns2(i)) 0.6061

mean(te) = 1
Nn

∑
i∈[1;Nt]

(te(i)) 0.4224

mean(ts1) = 1
Nn

∑
i∈[1;Nt]

(ts1(i)) 0.6595
mean(ts2) = 1

Nn

∑
i∈[1;Nt]

(ts2(i)) 0.6327
mse(ne,ns1) = 1

Nn

∑
i∈[1;Nn] (ne(i) − ns1(i))2 0.1178

mse(ne,ns2) = 1
Nn

∑
i∈[1;Nn] (ne(i) − ns2(i))2 0.0910

mse(ns1,ns2) = 1
Nn

∑
i∈[1;Nn] (ns1(i) − ns2(i))2 0.0024

mse(te, ts1) = 1
Nn

∑
i∈[1;Nt]

(te(i) − ts1(i))2 0.1028
mse(te, ts2) = 1

Nn

∑
i∈[1;Nn] (te(i) − ts2(i))2 0.0839

mse(ts1, ts2) = 1
Nn

∑
i∈[1;Nn] (ts1(i) − ts2(i))2 0.0016

std(ne − ns1) 0.1625
std(ne − ns2) 0.1500
std(ns1 − ns2) 0.0268
std(te − ts1) 0.2159
std(te − ts2) 0.1992
std(ts1 − ts2) 0.0305

corr(ne,ns1) 0.8179
corr(ne,ns2) 0.8455
corr(ns1,ns2) 0.9954
corr(te, ts1) 0.7634
corr(te, ts2) 0.7998
corr(ts1, ts2) 0.9947

Runtime consumption per generation (evaluation based similarity) 2h08’30”
Runtime consumption per generation (structural similarity, per method) 38’02”

is, of course, a lot higher than the runtime consumption caused by structural pop-

ulation diversity analysis: Although only 400 validation samples are evaluated for

evaluation based similarity estimation, structural similarity calculation consumes

only approximately a fourth as much runtime.

Even more detailed results discussion becomes possible by partitioning all pairs

of corresponding similarity values into five groups with equal range. This means that

we collect all structural similarity results in the intervals [0.0 . . . 0.2], [0.2 . . . 0.4],

. . . , [0.8 . . . 1.0]; of course, we also collect all evaluation based similarity values in

the same intervals. Thus, what we get is a number of partitions of data sets which

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 289

are defined and summarized in Table 17.27.

Table 17.27: Partitions formed for detailed comparison of similarity estimation re-

sults.
Partition Index Index and Data Set Definitions

a0 Ia0 = {i : (0.0 ≤ ne(i) ≤ 0.2)}; na0
e = ne(Ia0), na0

s1 = ns1(Ia0), na0
s2 = ns2(Ia0)

a1 Ia1 = {i : (0.2 < ne(i) ≤ 0.4)}; na1
e = ne(Ia1), na1

s1 = ns1(Ia1), na1
s2 = ns2(Ia1)

a2 Ia1 = {i : (0.4 < ne(i) ≤ 0.6)}; na2
e = ne(Ia2), na2

s1 = ns1(Ia2), na2
s2 = ns2(Ia2)

a3 Ia1 = {i : (0.6 < ne(i) ≤ 0.8)}; na3
e = ne(Ia3), na3

s1 = ns1(Ia3), na3
s2 = ns2(Ia3)

a4 Ia1 = {i : (0.8 < ne(i) ≤ 1.0)}; na4
e = ne(Ia4), na4

s1 = ns1(Ia4), na4
s2 = ns2(Ia4)

b0 Ib0 = {i : (0.0 ≤ ns1(i) ≤ 0.2)}; nb0
e = ne(Ib0), nb0

s1 = ns1(Ib0), nb0
s2 = ns2(Ib0)

b1 Ib1 = {i : (0.2 < ns1(i) ≤ 0.4)}; nb1
e = ne(Ib1), nb1

s1 = ns1(Ib1), nb1
s2 = ns2(Ib1)

b2 Ib2 = {i : (0.4 < ns1(i) ≤ 0.6)}; nb2
e = ne(Ib2), nb2

s1 = ns1(Ib2), nb2
s2 = ns2(Ib2)

b3 Ib3 = {i : (0.6 < ns1(i) ≤ 0.8)}; nb3
e = ne(Ib3), nb3

s1 = ns1(Ib3), nb3
s2 = ns2(Ib3)

b4 Ib4 = {i : (0.8 < ns1(i) ≤ 1.0)}; nb4
e = ne(Ib4), nb4

s1 = ns1(Ib4), nb4
s2 = ns2(Ib4)

c0 Ic0 = {i : (0.0 ≤ ns2(i) ≤ 0.2)}; nc0
e = ne(Ic0), nc0

s1 = ns1(Ic0), nc0
s2 = ns2(Ic0)

c1 Ic1 = {i : (0.2 < ns2(i) ≤ 0.4)}; nc1
e = ne(Ic1), nc1

s1 = ns1(Ic1), nc1
s2 = ns2(Ic1)

c2 Ic2 = {i : (0.4 < ns2(i) ≤ 0.6)}; nc2
e = ne(Ic2), nc2

s1 = ns1(Ic2), nc2
s2 = ns2(Ic2)

c3 Ic3 = {i : (0.6 < ns2(i) ≤ 0.8)}; nc3
e = ne(Ic3), nc3

s1 = ns1(Ic3), nc3
s2 = ns2(Ic3)

c4 Ic4 = {i : (0.8 < ns2(i) ≤ 1.0)}; nc4
e = ne(Ic4), nc4

s1 = ns1(Ic4), nc4
s2 = ns2(Ic4)

d0 Id0 = {i : (0.0 ≤ te(i) ≤ 0.2)}; td0
e = te(Id0), td0

s1 = ts1(Id0), td0
s2 = ts2(Id0)

d1 Id1 = {i : (0.2 < te(i) ≤ 0.4)}; td1
e = te(Id1), td1

s1 = ts1(Id1), td1
s2 = ts2(Id1)

d2 Id1 = {i : (0.4 < te(i) ≤ 0.6)}; td2
e = te(Id2), td2

s1 = ts1(Id2), td2
s2 = ts2(Id2)

d3 Id1 = {i : (0.6 < te(i) ≤ 0.8)}; td3
e = te(Id3), td3

s1 = ts1(Id3), td3
s2 = ts2(Id3)

d4 Id1 = {i : (0.8 < te(i) ≤ 1.0)}; td4
e = te(Id4), td4

s1 = ts1(Id4), td4
s2 = ts2(Id4)

e0 Ie0 = {i : (0.0 ≤ ts1(i) ≤ 0.2)}; te0e = te(Ie0), te0s1 = ts1(Ie0), te0s2 = ts2(Ie0)

e1 Ie1 = {i : (0.2 < ts1(i) ≤ 0.4)}; te1e = te(Ie1), te1s1 = ts1(Ie1), te1s2 = ts2(Ie1)

e2 Ie2 = {i : (0.4 < ts1(i) ≤ 0.6)}; te2e = te(Ie2), te2s1 = ts1(Ie2), te2s2 = ts2(Ie2)

e3 Ie3 = {i : (0.6 < ts1(i) ≤ 0.8)}; te3e = te(Ie3), te3s1 = ts1(Ie3), te3s2 = ts2(Ie3)

e4 Ie4 = {i : (0.8 < ts1(i) ≤ 1.0)}; te4e = te(Ie4), te4s1 = ts1(Ie4), te4s2 = ts2(Ie4)

f0 If0 = {i : (0.0 ≤ ts2(i) ≤ 0.2)}; tf0e = te(If0), tf0s1 = ts1(If0), tf0s2 = ts2(If0)

f1 If1 = {i : (0.2 < ts2(i) ≤ 0.4)}; tf1e = te(If1), tf1s1 = ts1(If1), tf1s2 = ts2(If1)

f2 If2 = {i : (0.4 < ts2(i) ≤ 0.6)}; tf2e = te(If2), tf2s1 = ts1(If2), tf2s2 = ts2(If2)

f3 If3 = {i : (0.6 < ts2(i) ≤ 0.8)}; tf3e = te(If3), tf3s1 = ts1(If3), tf3s2 = ts2(If3)

f4 If4 = {i : (0.8 < ts2(i) ≤ 1.0)}; tf4e = te(If4), tf4s1 = ts1(If4), tf4s2 = ts2(If4)

Now we can analyze these partitions separately: For each partition we have

calculated the linear correlation between evaluation based, additive structural and

multiplicative structural similarities as well as the mean squared difference between

these respective values; Table 17.28 summarizes these partition-wise statistics. Ad-

ditionally, the frequency of each partition is also given: The frequency of a partition

is hereby given by the number of pairs of values included divided by the number

of all pairs of values available: frequ(Iki) = |Iki|∑
j∈[0;4] Ikj

for k ∈ {a, b, c, d, e, f} and

i ∈ [0; 4].

Figure 17.23 shows the distributions of structural and evaluation based similarity

estimation for the NOx and Thyroid tests separately. As we see in both charts the

structural similarity values are significantly higher than the evaluation based ones.

290 CHAPTER 17. POPULATION DYNAMICS

Table 17.28: Comparing similarity estimation results: Detailed partition-wise statis-

tics.
freq(Ia0) = 0.3172 corr(na0

e , na0
s1) = 0.6294 corr(na0

e , na0
s2) = 0.6772

mse(na0
e , na0

s1) = 0.1061 mse(na0
e , na0

s2) = 0.0751

freq(Ia1) = 0.2609 corr(na1
e , na1

s1) = 0.8407 corr(na1
e , na1

s2) = 0.8574

mse(na1
e , na1

s1) = 0.1083 mse(na1
e , na1

s2) = 0.0818

freq(Ia2) = 0.2595 corr(na2
e , na2

s1) = 0.7886 corr(na2
e , na2

s2) = 0.8047

mse(na2
e , na2

s1) = 0.1364 mse(na2
e , na2

s2) = 0.1106

freq(Ia3) = 0.1272 corr(na3
e , na3

s1) = 0.6963 corr(na3
e , na3

s2) = 0.7376

mse(na3
e , na3

s1) = 0.1279 mse(na3
e , na3

s2) = 0.1077

freq(Ia4) = 0.0352 corr(na4
e , na4

s1) = 0.7174 corr(na4
e , na4

s2) = 0.7559

mse(na4
e , na4

s1) = 0.1184 mse(na4
e , na4

s2) = 0.0983

freq(Ib0) = 0.0974 corr(nb0
s1 , nb0

e) = 0.3815 corr(nb0
s1 , nb0

s2) = 0.9890

mse(nb0
s1 , nb0

e) = 0.1407 mse(nb0
s1 , nb0

s2) = 0.0057

freq(Ib1) = 0.1222 corr(nb1
s1 , nb1

e) = 0.6744 corr(nb1
s1 , nb1

s2) = 0.9931

mse(nb1
s1 , nb1

e) = 0.0884 mse(nb1
s1 , nb0

s2) = 0.0028

freq(Ib2) = 0.1363 corr(nb2
s1 , nb2

e) = 0.7591 corr(nb2
s1 , nb2

s2) = 0.9962

mse(nb2
s1 , nb2

e) = 0.0985 mse(nb2
s1 , nb0

s2) = 0.0026

freq(Ib3) = 0.2451 corr(nb3
s1 , nb3

e) = 0.8350 corr(nb3
s1 , nb3

s2) = 0.9963

mse(nb3
s1 , nb3

e) = 0.1080 mse(nb3
s1 , nb0

s2) = 0.0024

freq(Ib4) = 0.3990 corr(nb4
s1 , nb4

e) = 0.7677 corr(nb4
s1 , nb4

s2) = 0.9975

mse(nb4
s1 , nb4

e) = 0.1337 mse(nb4
s1 , nb0

s2) = 0.0013

freq(Ic0) = 0.1160 corr(nc0
s2, nc0

e) = 0.4119 corr(nc0
s2, nc0

s1) = 0.9888

mse(nc0
s2 , nc0

e) = 0.0997 mse(nc0
s2 , nc0

s1) = 0.0059

freq(Ic1) = 0.1335 corr(nc1
s2, nc1

e) = 0.7667 corr(nc1
s2, nc1

s1) = 0.9961

mse(nc1
s2 , nc1

e) = 0.0580 mse(nc1
s2 , nc0

s1) = 0.0023

freq(Ic2) = 0.1584 corr(nc2
s2, nc2

e) = 0.8229 corr(nc2
s2, nc2

s1) = 0.9963

mse(nc2
s2 , nc2

e) = 0.0730 mse(nc2
s2 , nc0

s1) = 0.0027

freq(Ic3) = 0.2728 corr(nc3
s2, nc3

e) = 0.8764 corr(nc3
s2, nc3

s1) = 0.9967

mse(nc3
s2 , nc3

e) = 0.0794 mse(nc3
s2 , nc0

s1) = 0.0021

freq(Ic4) = 0.3193 corr(nc4
s2, nc4

e) = 0.7528 corr(nc4
s2, nc4

s1) = 0.9969

mse(nc4
s2 , nc4

e) = 0.1205 mse(nc4
s2 , nc0

s1) = 0.0011

freq(Id0) = 0.3241 corr(td0
e , td0

s1) = 0.4233 corr(td0
e , td0

s2) = 0.4777

mse(td0
e , td0

s1) = 0.1964 mse(td0
e , td0

s2) = 0.1572

freq(Id1) = 0.1239 corr(td1
e , td1

s1) = 0.8323 corr(td1
e , td1

s2) = 0.8409

mse(td1
e , td1

s1) = 0.0336 mse(td1
e , td1

s2) = 0.0295

freq(Id2) = 0.2216 corr(td2
e , td2

s1) = 0.8455 corr(td2
e , td2

s2) = 0.8606

mse(td2
e , td2

s1) = 0.0703 mse(td2
e , td2

s2) = 0.0587

freq(Id3) = 0.1919 corr(td3
e , td3

s1) = 0.8471 corr(td3
e , td3

s2) = 0.8607

mse(td3
e , td3

s1) = 0.0688 mse(td3
e , td3

s2) = 0.0566

freq(Id4) = 0.1385 corr(td4
e , td4

s1) = 0.7956 corr(td4
e , td4

s2) = 0.8109

mse(td4
e , td4

s1) = 0.0433 mse(td4
e , td4

s2) = 0.0375

freq(Ie0) = 0.1079 corr(te0s1, te0e) = 0.2693 corr(te0s1, te0s2) = 0.9853

mse(te0s1 , te0e) = 0.1435 mse(te0s1 , te0s2) = 0.0077

freq(Ie1) = 0.1043 corr(te1s1, te1e) = 0.3053 corr(te1s1, te1s2) = 0.9854

mse(te1s1 , te1e) = 0.2216 mse(te1s1 , te0s2) = 0.0024

freq(Ie2) = 0.1193 corr(te2s1, te2e) = 0.4652 corr(te2s1, te2s2) = 0.9954

mse(te2s1 , te2e) = 0.2120 mse(te2s1 , te0s2) = 0.0015

freq(Ie3) = 0.2412 corr(te3s1, te3e) = 0.8559 corr(te3s1, te3s2) = 0.9986

mse(te3s1 , te3e) = 0.0479 mse(te3s1 , te0s2) = 0.0006

freq(Ie4) = 0.4274 corr(te4s1, te4e) = 0.8376 corr(te4s1, te4s2) = 0.9985

mse(te4s1 , te4e) = 0.0641 mse(te4s1 , te0s2) = 0.0006

freq(Ie0) = 0.1305 corr(te0s2, te0e) = 0.3430 corr(te0s2, te0s1) = 0.9860

mse(te0s2 , te0e) = 0.0837 mse(te0s2 , te0s1) = 0.0069

freq(Ie1) = 0.0978 corr(te1s2, te1e) = 0.3380 corr(te1s2, te1s1) = 0.9964

mse(te1s2 , te1e) = 0.2230 mse(te1s2 , te0s1) = 0.0021

freq(Ie2) = 0.1456 corr(te2s2, te2e) = 0.6722 corr(te2s2, te2s1) = 0.9960

mse(te2s2 , te2e) = 0.1307 mse(te2s2 , te0s1) = 0.0012

freq(Ie3) = 0.2435 corr(te3s2, te3e) = 0.8513 corr(te3s2, te3s1) = 0.9986

mse(te3s2 , te3e) = 0.0505 mse(te3s2 , te0s1) = 0.0007

freq(Ie4) = 0.3826 corr(te4s2, te4e) = 0.8501 corr(te4s2, te4s1) = 0.9985

mse(te4s2 , te4e) = 0.0518 mse(te4s2 , te0s1) = 0.0005

Regarding results correlations, the figures documented in Table 17.28 can be

summarized in the following way: The correlations between structural and evalua-

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 291

Similarity Distributions (NOx Test Runs)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

[0.0; 0.2]]0.2; 0.4]]0.4; 0.6]]0.6; 0.8]]0.8; 1.0]

Similarity Interval

R
at

io

Eval. Sim.

Struct. Sim. (add.)

Struct. Sim. (mult.)

Similarity Distributions (Thyroid Test Runs)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

[0.0; 0.2]]0.2; 0.4]]0.4; 0.6]]0.6; 0.8]]0.8; 1.0]

Similarity Interval

R
at

io

Eval. Sim.

Struct. Sim. (add.)

Struct. Sim. (mult.)

Figure 17.23: Distribution of similarity values calculated using structural and eval-

uation based similarity functions.

tion based similarity is approximately in the range between 0.3 and 0.85. Especially

low correlation coefficients are calculated for the comparison of structural and eval-

uation based similarities, especially when the structural similarity is considered very

low (<0.4). This impression becomes even more clear when we analyze Figures 17.24

and 17.25 which give the partition wise correlations of similarity values. In each of

the 6 series given in these Figures we show the correlations of similarity values cal-

culated by each possible pair of methods; in each case those partitions of value pairs

are selected that correspond to the values calculated by the first method mentioned

in the respective label. So, for example, in the first series we see the partition-wise

correlations of similarity values calculated by the evaluation based and the additive

structural method; the values are classified in partitions with respect to the evalua-

tion specific similarities.

The Figures 17.24 and 17.25 show clearly that the structural similarity estimation

methods calculate very similar values (with high correlations for trees that are very

different as well as for those which are considered rather similar). Furthermore, the

292 CHAPTER 17. POPULATION DYNAMICS

correlation of structural and evaluation based similarity values is rather low in the

case of low structural similarities (<0.4).

Finally, for graphically illustrating the direct comparison of similarity values

calculated by the three estimation methods chosen we have randomly chosen 100,000

structure tree comparison cases both from the NOx and the Thyroid tests. The

respectively correspondent similarity values are drawn against each other in the

Figures 17.26 – 17.28. On the one hand there is no high correlation which can be

seen when comparing structural and evaluation based similarity values, but on the

other hand the high correlation between the similarities calculated by the structural

similarity estimation methods becomes obvious.

Partition-wise correlations of similarity values: Results for Thyroid test series

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eval. Sim. vs. Struct. Sim.
(add.)

Struct. Sim. (add.) vs.
Eval. Sim.

Eval. Sim. vs. Struct. Sim.
(mult.)

Struct. Sim. (mult.) vs.
Eval. Sim.

Struct. Sim. (add.) vs.
Struct. Sim. (mult.)

Struct. Sim. (mult.) vs.
Struct. Sim. (add.)

Partition [0.0; 0.2]

Partition]0.2; 0.4]

Partition]0.4; 0.6]

Partition]0.6; 0.8]

Partition]0.8; 1.0]

Figure 17.24: Partition-wise correlations of similarity values for NOx test series.

Partition-wise correlations of similarity values: Results for Thyroid test series

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Eval. Sim. vs. Struct. Sim.
(add.)

Struct. Sim. (add.) vs.
Eval. Sim.

Eval. Sim. vs. Struct. Sim.
(mult.)

Struct. Sim. (mult.) vs.
Eval. Sim.

Struct. Sim. (add.) vs.
Struct. Sim. (mult.)

Struct. Sim. (mult.) vs.
Struct. Sim. (add.)

Partition [0.0; 0.2]

Partition]0.2; 0.4]

Partition]0.4; 0.6]

Partition]0.6; 0.8]

Partition]0.8; 1.0]

Figure 17.25: Partition-wise correlations of similarity values for Thyroid test series.

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 293

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, a
dd

iti
ve

 c
al

cu
la

tio
n

m
et

ho
d)

 Similarity Values Comparison (NOx series)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, a
dd

iti
ve

 c
al

cu
la

tio
n

m
et

ho
d)

(b) Thyroid test series

Figure 17.26: Similarity values comparison: Evaluation based vs. structural (addi-

tive calculation).

294 CHAPTER 17. POPULATION DYNAMICS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (NOx series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (evaluation based)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(b) Thyroid test series

Figure 17.27: Similarity values comparison: Evaluation based vs. structural (mul-

tiplicative calculation).

17.5. COMPARISON OF POPULATION DIVERSITY MEASURES 295

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (NOx series)

Similarity values (structural, additive calculation method)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(a) NOx test series

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Similarity Values Comparison (Thyroid series)

Similarity values (structural, additive calculation method)

S
im

ila
rit

y
va

lu
es

 (
st

ru
ct

ur
al

, m
ul

tip
lic

at
iv

e
ca

lc
ul

at
io

n
m

et
ho

d)

(b) Thyroid test series

Figure 17.28: Similarity values comparison: Structural (additive calculation) vs.

structural (multiplicative calculation).

296 CHAPTER 17. POPULATION DYNAMICS

17.5.3 Conclusion

In this section we have summarized a series of GP test runs incorporating evaluation

based as well as structural similarity estimation functions for measuring the genetic

diversity in GP populations.

In general, evaluation based similarity calculation consumes a lot more runtime

than structural comparison, and on average it also tends to produce lower similarity

values. The results show that in most cases there is a linear correlation of approx-

imately 0.4 – 0.9 for the results returned by the evaluation based and structural

methods; not very surprisingly, this correlation is positive, but not very high. Espe-

cially in some cases showing very low structural similarity there can be significantly

different results when using the evaluation based similarity methods.

Furthermore, we have also compared additive and multiplicative structural sim-

ilarity estimation. These two variants tend to produce rather similar results with

high correlations for pairs of structure trees with low as well as rather high simi-

larities; the results retrieved by the multiplicative structural method show a higher

correlation with those calculated using the evaluation based similarity function.

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY297

17.6 Code Bloat, Pruning, and Population Diver-

sity

17.6.1 Introduction

In Chapter 3.6 we have described one of the major problems of genetic programming,

namely permanent code growth, often also referred to as bloat; evolution is also seen

as “survival of the fattest”, and, as Langdon and Poli expressed it, fitness based

selection leads to the fact that “fitness causes bloat” [LP97]. Several approaches for

combating this unwanted unlimited growth of chromosome size, some of them being

• limiting the size and / or the height of the program trees,

• pruning programs, and

• punishing complex programs by decreasing their quality depending on their

respective tree representations’ size and / or height.

Of course, there is no optimal strategy for fixing formula size parameters, popu-

lation size or pruning strategies a priori (see also remarks in Chapter 3). Still, some

code prevention strategies are surely more recommendable than others; we here re-

port on an exemplary test series for characterizing some of the possible approaches.

In all other test series executed and reported on in other sections in this thesis

we have used fixed complexity limits (limiting size and height of program trees);

we shall here report on our tests regarding code growth in GP based structure

identification applying the pruning strategies presented in Section 10.2 as well as

structure tree size dependent fitness manipulation and fixed size limits (partially

with additional pruning). All these approaches have been tested using standard GP

as well as extended GP including gender specific selection and offspring selection.

As an example, we have tested these GP variants on the NOx data set II presented

and described in Section 14.2; population diversity, formula complexity parameters

as well as additional pruning effort (only in case of applying pruning, of course) have

been monitored and shall be reported on here.

We have again used 50% of the given data for training models (namely samples

10,000 – 28,000), and 10% as validation data (samples 28,001 – 32,000 used by

pruning strategies) and ∼7.5% as test data (samples 32,001 – 35,000). As we are

also aware of the problem of overfitting, we have systematically collected each GP

run’s best models with respect to best fit on training as well as on validation data

298 CHAPTER 17. POPULATION DYNAMICS

(using the mse function for estimating the formulas’ qualities); the algorithm is

designed to optimize formulas with respect to training data, validation data are only

used for pruning strategies (if used at all). At the end of each test run, the models

with best fit on training as well as on validation data are analyzed, and in order to

fight overfitting we select the best model on validation data as the result returned

by the algorithm. Test data, which are not available to the algorithm, are used

for demonstrating that this strategy is a reasonable one: Analyzing the evaluation

of the best models on test data we see that those that are best on validation data

perform better on test data than those that were optimally fit to training data.

During the GP process, the standard mean squared error function (with early

abortion as described in 8.1.3) was used; the time series specific fitness function con-

sidering plain values as well as differential and integral values was used for selecting

those models that perform best on training and validation data. All three compo-

nents (i.e., plain values, differentials and integral values) have been weighted using

equal weighting factors. When comparing the quality of the results documented in

the following sections we again state the fitness values calculated using the mean

squared errors function; the maximum punishment factor was set to 10.0.

17.6.2 Test Strategies

In detail, the following test strategies have been applied: On the one hand the

parameters for standard and extended GP are summarized in Table 17.29, the code

growth prevention parameters are summarized in Table 17.30. In all tests the initial

population was created using a size limit of 50 nodes and a maximum height of 6

levels for each structure tree.

Table 17.29: GP parameters used for code growth and bloat prevention tests.

Variant Parameters
1 Population size: 1000
(Standard GP, 2000 generations
SGP) Single point crossover; structural and parametric node mutation

Parents selection: Tournament selection (k = 3)
2 Population size: 1000
(Extended GP, Single point crossover; structural and parametric node mutation
EGP) Parents selection: Gender specific selection (random & proportional)

Strict offspring selection; maximum selection pressure: 100

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY299

In the following table and in the explanations given afterwards, md is the maxi-

mum deterioration limit and mc the maximum coefficient of deterioration and struc-

ture complexity reduction as described in Section 10.2. For ES-based pruning, mr

denotes the maximum number of rounds, and mur the maximum number of unsuc-

cessful rounds.

In those tests including increased pruning (as applied in test series (h) and (i))

the initial pruning ratio is set to 0.3, i.e. in the beginning 30% of the population are

pruned. Then, during the process execution, the pruning rate steadily increases and

finally reaches 0.8; in standard GP runs, the rate is increased linearly, in extended

GP including offspring selection we compute the actual pruning ratio in relation to

the actual selection pressure (so that in the end, when the selection pressure has

reached its maximum value, the pruning rate has also reached its maximum, namely

0.8). Furthermore, fs stands for the formula’s size (i.e., the number of nodes in the

corresponding structure tree), and pf is the fitness punishment factor: If structure

complexity based punishment is applied, then the fitness f of a model is modified

as f ′ = f ∗ (1 + pf) (if pf > 0).

Table 17.30: Summary of the code growth prevention strategies applied in these test

series.
Variant Characteristics

a No code growth prevention strategy
b 20% systematic pruning: md = 0, mc = 1
c 20% ES-based pruning: md = 0, mc = 1, λ = 5, mr = 5, mur = 1

d 50% ES-based pruning: md = 0.5, mc = 1, λ = 10, mr = 10, mur = 2
e 100% ES-based pruning: md = 2, mc = 1.5, λ = 20, mr = 10, mur = 2

f Increasing ES-based pruning: md = 1, mc = 1.5, λ = 10, mr = 10, mur = 2
g Quality punishment: pf = (fs − 50)/50

h Fixed limits: Maximum tree height 6, maximum tree size 50
i Fixed limits: Maximum tree height 6, maximum tree size 50

combined with occasional ES-based pruning
standard GP: every 5th, extended GP: every 2nd generation
md = 1, mc = 1, λ = 10, mr = 5, mur = 2

Please note that in strategies (b) and (c) pruning is done after each generation

step, whereas in (d) – (g) it is done after each creation of a new model by crossover

and / or mutation. In standard GP this does not make any difference, but when

using offspring selection the decision whether to prune after each creation or after

each generation has major effects on the algorithmic process.

300 CHAPTER 17. POPULATION DYNAMICS

The mean squared errors function (with early stopping, see Section 7.5.5) was

used here since we mainly concentrate on pruning and population dynamics relevant

aspects. Furthermore, all variables (including the target variable) were linearly

scaled to the interval [-100; +100].

17.6.3 Test Results

Once again, all test strategies have been executed 5 times independently; formula

complexity has been monitored (and protocolled after each generation step) as well

as structural population diversity which was protocolled after every 10th generation:

The multiplicative similarity approach (as defined in Equations 11.21 – 11.23) has

again been chosen, all coefficients c1 . . . c10 were set to 0.2, only the coefficient c1
weighting the level similarity contribution s1 was set to 0.8. The similarity of models

was calculated symmetrically (as described in Equation 12.48).

17.6.3.1 No Formula Size Limitation

Exactly as we had expected, extreme code growth also occurs in GP-based structure

identification; Figure 17.29 illustrates the progress of formula complexity in terms

of formula size in exemplary test runs of series 1a and 2a: The average formula

size is given as well as minimum and maximum values and the progress of the best

individual’s size.

As we see here, formulas tend to grow very big rather quickly; when using offspring

selection, this effect is even a bit more obvious: On average, in standard GP the

formula size has reached 212.84 after 30 iterations, when using OS the average

formula size was even higher after 30 generations (namely 276.35).

17.6.3.2 Light Pruning

The results of test series (b) and (c) can be summarized in the following way: With-

out any further mechanisms that limit the structural complexity of formula trees,

light pruning as described in strategies (b) and (c) is not an appropriate way to

prevent GP from growing enormous formula structures. After 100 generations, the

average formula size in standard GP has grown to 471.34 in test series (1b) and

333.65 in test runs of series (1c) (average standard deviation: 204.29 and 238.27,

respectively); in extended GP the average formula size at generation 30 on aver-

age reached 293.26 and 276.12 in test runs (2b) and (2c), the respective standard

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY301

(a) SGP (b) EGP

Figure 17.29: Code growth in GP without applying size limits or complexity pun-

ishment strategies (left: standard GP, right: extended GP).

deviations being 157.23 and 124.80.

Systematically analyzing the results of the pruning phases performed in test runs

(b) and (c) we can compare the performances of ES-based and systematic pruning.

For this purpose we have collected the pruning performance statistics for the tests

(b) and (c) and summarize them in Table 17.31:

Table 17.31: Performance of systematic and ES-based pruning strategies.
Parameter Systematic pruning ES-based pruning
Solutions evaluated for pruning one solution 161.02 54.56
Runtime consumed (per iteration) 31.27 sec 12.23 sec
Average coefficient of deterioration 0.2495 0.4053
and reduction of structural complexity

Obviously, both pruning methods performed approximately equally well and were

able to reduce the complexity of the formulas that were supposed to be pruned.

Additionally, we also see that especially for bigger model structures the runtime

consumption is a lot higher when using systematic pruning; in the course of a GP

process it is not considered necessary or even beneficial to reduce models as much

as possible, therefore we shall in the following test runs concentrate on ES-based

302 CHAPTER 17. POPULATION DYNAMICS

pruning phases. Thus, we suggest using systematic pruning as a preparation step

for results analysis, but not during the execution of GP based training processes.

17.6.3.3 Medium Pruning

Medium pruning, as applied in test series (d), is in fact able to reduce the size of

the formulas stored in the GP populations significantly.

Table 17.32: Formula size progress in test series (d).

Test series Iteration Formula size

avg std

(1d) 20 21.83 32.12

50 74.24 111.84

100 123.67 144.78

500 167.51 156.89

2000 168.23 147.56

(2d) 10 10.77 13.27

20 90.43 52.79

50 228.02 112.51

End of run 283.98 172.33

Table 17.33: Quality of results returned in test series (d).

Test series Evaluation data Best model selection basis

Training data Validation data

avg std avg std

(1d) Training data 1,178.13 205.20 8,231.38 1,041.87

Validation data 17,962.78 762.97 15,850.49 1,309.10

Test data 7,162.48 690.10 5,996.27 927.09

(2d) Training data 1,823.43 823.56 6,005.74 729.47

Validation data 14,590.83 1,476.25 10,506.30 981.35

Test data 6,341.28 770.42 4,439.27 918.72

The best results obtained in the (d) test series are summarized in Table 17.33:

For each test run we have collected the models with best fit on training data as

well as those that perform best on validation data; average values are given as well

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY303

as standard deviations. Obviously, rather strong overfitting has happened here; as

we had expected, the production of very large formulas leads to over-fit formulas

that are not able to perform well on samples that were not used during the training

phase.

17.6.3.4 Strong Pruning

Rather strong pruning was applied in test series (e), and as we see in Table 17.34,

the formulas produced by GP are significantly smaller than those produced in the

previous test series. Still, we observed the fact that genetic diversity is lost very

quickly: Already in early stages of the evolutionary processes, the average structural

similarity of solutions reaches a very high level (which is documented in the two most

right columns of Table 17.34).

The quality of the best models produced is very bad (above 5,000), which is why

we do here not state any further details about the evaluation of these models on the

given data partitions. We suppose that this low results quality is connected to the

loss of population diversity (and of course also the fact that the pruning operations

applied were allowed to decrease the models’ quality).

Table 17.34: Formula size and population diversity progress in test series (e).

Test series Iteration Formula size Solutions similarity

avg std avg std

(1e) 50 12.82 15.76 0.8912 0.0912

100 18.27 18.15 0.9371 0.0289

500 19.75 23.52 0.9685 0.0187

2000 21.39 20.87 0.9891 0.0095

(2e) 10 15.77 9.23 0.9574 0.0318

20 19.86 10.83 0.9825 0.0247

50 21.64 16.34 0.9921 0.0082

End of run 20.03 18.27 0.9943 0.0093

17.6.3.5 Increased Pruning

As light, medium and strong pruning did not lead to the desired results, we have

also tried increasing pruning as defined in test strategy (f). As we see in Table 17.35,

this strategy performs rather well: The size of the formulas produced by GP rises

304 CHAPTER 17. POPULATION DYNAMICS

especially in early stages of the GP process, but then decreases and on average

finally reaches values between 80 and 100.

In addition to this, the population diversity stays higher in the beginning than in GP

tests including constantly strong pruning, but eventually decreases and the solutions

finally show higher similarities due to the increased pruning in later algorithmic

stages.

Table 17.35: Formula size and population diversity progress in test series (f).

Test series Iteration Formula size Solutions similarity

avg std avg std

(1f) 50 62.72 95.76 0.3674 0.0943

100 91.27 130.77 0.3897 0.1059

500 92.43 107.41 0.6820 0.1124

2000 87.02 90.68 0.8035 0.0861

(2f) 10 40.78 31.47 0.5235 0.0612

20 63.59 59.34 0.7052 0.0803

50 80.26 40.99 0.9450 0.0588

End of run 79.45 47.67 0.9967 0.0156

The quality values of the results produced in this test series are summarized in

Table 17.36. Obviously, less overfitting has happened than in the tests with light or

medium pruning.

Table 17.36: Quality of results returned in test series (f).

Test series Evaluation data Best model selection basis

Training data Validation data

avg std avg std

(1f) Training data 2,597.35 542.04 7,781.28 827.83

Validation data 8,904.91 611.02 5,981.52 974.31

Test data 3,786.51 800.38 2,830.78 427.08

(2f) Training data 2,275.24 649.11 3,814.93 850.89

Validation data 9,712.98 767.56 5,862.62 518.53

Test data 4,912.38 1,198.58 2,275.03 931.62

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY305

17.6.3.6 Complexity Dependant Quality Punishment

In fact, our GP test runs including complexity dependant quality punishment, i.e.

those of test strategy (g), were also able to produce acceptable results for the NOx

data set investigated here. As we see in Table 17.37, in standard GP the formula

sizes are rather high in the beginning and then decrease steadily, whereas in GP

with offspring selection the models on average include between 50 and 60 nodes

during the whole execution of the GP processes. Population diversity values are

comparable to those reported for GP tests without pruning or quality dependant

punishment as summarized for example in Section 17.3.

Figure 17.30 illustrates the formula complexity progress of an exemplary GP run of

test series (2g).

The qualities of the models with best fit on training and validation are summarized

in Table 17.38.

Table 17.37: Formula size and population diversity progress in test series (g).

Test series Iteration Formula size Solutions similarity

avg std avg std

(1g) 50 140.76 90.75 0.3824 0.0534

100 92.62 71.23 0.3916 0.0620

500 73.73 64.99 0.6381 0.0825

2000 79.07 47.61 0.7202 0.0696

(2g) 10 50.24 64.67 0.4873 0.0836

20 60.71 59.01 0.5412 0.0741

50 65.34 48.33 0.8904 0.0852

End of run 58.82 41.87 0.9315 0.0423

17.6.3.7 Fixed Size Limits

In the case of fixed size limits the crossover and mutation operators have to consider

limits for the complexity of models. Model size and population diversity statistics

for test series (h) are summarized in Table 17.39; in GP with offspring selection

all formulas eventually are maximally big, and the solutions similarity values show

results comparable to those reported in Section 17.3. Table 17.40 summarizes the

quality of the results produced, again evaluated on training, validation and test

data. Figure 17.31 illustrates the formula complexity progress of exemplary GP test

runs of series (1h) and (2h).

306 CHAPTER 17. POPULATION DYNAMICS

Figure 17.30: Progress of formula complexity in one of the test runs of series (1g),

shown for the first ∼400 iterations.

Table 17.38: Quality of results returned in test series (g).

Test series Evaluation data Best model selection basis

Training data Validation data

avg std avg std

(1g) Training data 1,837.84 526.10 4,729.42 480.36

Validation data 12,902.67 767.35 4,531.73 588.30

Test data 2,597.73 835.41 2,708.36 825.64

(2g) Training data 1,402.19 593.84 3,121.86 773.91

Validation data 9,345.87 738.60 3,949.64 962.03

Test data 2,853.62 812.51 2,618.94 664.07

In addition to total statistics we shall also discuss two selected models returned

by one of the test runs of series (2h): Model bt is the model the performs best on

training data (shown in Figure 17.32), bv the one that performs best on validation

data (shown in Figure 17.33). The error distributions on training, validation and

test data partitions are illustrated in Figure 17.34.

Table 17.41 characterizes the performance of bt and bv by means of mean squared

errors as well as the integral values. For this we have calculated the sum of the target

values on training, validation and test data and compared these integral values to

those calculated using the models under investigation. Obviously, bt shows a better

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY307

Table 17.39: Formula size and population diversity progress in test series (h).

Test series Iteration Formula size Solutions similarity

avg std avg std

(1h) 50 37.4182 6.3174 0.4151 0.0935

100 40.2866 5.8133 0.7231 0.0729

500 41.7823 4.3973 0.8175 0.0326

2000 44.2108 5.0450 0.8629 0.0271

(2h) 10 22.4965 8.3763 0.3973 0.0386

20 27.6203 4.2514 0.6022 0.0493

50 44.9120 6.4871 0.8907 0.0371

End of run 50.0000 0.0000 0.9751 0.0189

Table 17.40: Quality of results returned in test series (h).

Test series Evaluation data Best model selection basis

Training data Validation data

avg std avg std

(1h) Training data 1,774.94 300.51 4,168.30 1,186.62

Validation data 10,801.77 923.04 4,248.37 858.02

Test data 5,791.25 1,266.51 2,610.64 930.44

(2h) Training data 1,568.12 382.04 3,083.64 502.75

Validation data 9,641.89 833.71 3,738.13 504.89

Test data 4,802.30 1,371.22 1,374.61 704.73

integral fit on training (and also validation) data, but when it comes to test data the

model that performed best on validation data (bv) produces much more satisfying

results (with an integral error of only 2.354% on test data).

17.6.3.8 Fixed Size Limits and Occasional Pruning

Finally, test series with fixed size limits and occasional pruning have also been exe-

cuted and analyzed; the results regarding formula complexity, population diversity

and results qualities are summarized in Tables 17.42 and 17.43.

Obviously, the results produced are (with respect to evaluation quality) compa-

rable to those produced in the previous series. Still, of course the formula sizes are

308 CHAPTER 17. POPULATION DYNAMICS

Figure 17.31: Progress of formula complexity in one of the test runs of series (1h)

(shown left) and one of series (2h) (shown right).

Table 17.41: Comparison of best models on training and validation data (bt and bv,

respectively).

bt bv

Training quality (MSE) 1,434.65 2,253.62
Validation quality (MSE) 9,187.53 3,748.61
Test quality (MSE) 2,936,40 1,461.95
Target training values integral 6.010 ∗ 106

Estimated training values integral 6.037 ∗ 106 (-0.452%) 6.084 ∗ 106 (+1.220%)
Target validation values integral 4.660 ∗ 105

Estimated validation values integral 4.620 ∗ 105 (+0.872%) 4.517 ∗ 106 (+3.173%)
Target test values integral 3.978 ∗ 105

Estimated test values integral 3.198 ∗ 105 (+24.395%) 3.886 ∗ 106 (+2.354%)

a bit smaller (due to pruning), and also overfitting seems to have decreased: Even

though the fit on training data is not as good as on previous test series, the quality

on test data is still very good and comparable to the test performance reached in

test series (g) and (h).

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY309

+(+([1,030496*Var003(t-0)]|-([1,02955555783691*Var007(t-8)]|[1,02955555783691*Var007(t-9)])|/([0,859604*Var007(t-7)]|Signum(+(-19,6774250843158
|[0,925277*Var007(t-0)])))|/([0,796922*Var008(t-10)]|Signum(+(-13,4653753764306|[1,009622*Var007(t-1)]))))|+(+([1,064909*Var006(t-6)]
|[0,245936*Var001(t-5)]|-8,11313346378627|-([1,02466876708512*Var007(t-10)]|[1,02466876708512*Var007(t-11)])|-([1,02993590500011*Var007(t-10)]
|[1,02993590500011*Var007(t-11)]))|[1,062877*Var006(t-6)]|[0,792079*Var008(t-10)]|Exp(Sqrt([1,008566*Var007(t-1)]))|/([0,796922*Var008(t-10)]
|Signum(+(-19,6774250843158|[1,009622*Var007(t-1)]))))|*([1,030496*Var003(t-0)]|+([1,070487*Var007(t-0)]|Signum(Sin([1,015816*Var004(t-6)]))|-
(Signum([0,925277*Var007(t-0)])|[1,028206*Var003(t-7)])|Exp(Sin([0,859604*Var007(t-7)]))))|-([1,02015787437991*Var007(t-9)]
|[1,02015787437991*Var007(t-10)])|-([1,02955555783691*Var007(t-8)]|[1,02955555783691*Var007(t-9)]))

Figure 17.32: Model with best fit on training data: Model structure and full evalu-

ation.

IF(<(IF(&&(<(-([0,878205630205626*Var009(t-0)]|[0,878205630205626*Var009(t-1)])|14,6416958621683)|<=(-([0,916623127059497*Var002(t-6)]
|[0,916623127059497*Var002(t-7)])|14,6416958621683)))THEN(17,4222949615303),ELSE([1,174105*Var003(t-7)])|IF(<([0,928868*Var008(t-4)]|-
([0,916872632186935*Var006(t-5)]|[0,916872632186935*Var006(t-6)])))THEN([0,970435*Var007(t-9)]),ELSE(IF(<=(-([0,806610292256365*Var002(t-1)]
|[0,806610292256365*Var002(t-2)])|13,4084736247274))THEN([0,974565*Var007(t-0)]),ELSE([1,085533*Var004(t-1)]))))THEN(*(IF(&&(<([0,973703*Var004(t-6)]
|-20)|>=([1,176232*Var003(t-10)]|[0,983657*Var007(t-0)])))THEN(13,4084736247274),ELSE([0,983657*Var007(t-0)])|+([0,796939*Var003(t-0)]
|[1,176232*Var003(t-10)]|13,4084736247274))),ELSE(+(-20|[1,085533*Var004(t-1)]|+(IF(==([0,970435*Var007(t-9)]|-20))THEN([0,786266*Var003(t-10)]),
ELSE([0,983657*Var007(t-0)])|[0,970435*Var007(t-9)]|[0,983657*Var007(t-0)])))

Figure 17.33: Model with best fit on validation data: Model structure and full

evaluation.

17.6.4 Conclusion

In this section we have demonstrated the effects of code bloat and selected prevention

strategies for GP. As expected and known from literature, without any limitations

or size reducing strategies GP tends to produce bigger and bigger models that fit

the given training data, but of course this also increases the probability of producing

over-fit models. Pruning strategies have been analyzed, and the test results show

that only strong pruning is able to prevent GP from producing bigger and bigger

models, which again decreases population diversity and leads to results which are

not optimal. Complexity dependent fitness punishment as well as fixed size limits

enable GP to produce quite good results; occasional pruning in combination with

fixed size limits can help to decrease overfitting.

310 CHAPTER 17. POPULATION DYNAMICS

(I) (IV)

(II) (V)

(III) (VI)

Figure 17.34: Errors distributions of best models: Charts I, II and III show the er-

rors distributions of the model with best fit on training data evaluated on training,

validation and test data, respectively; charts IV, V and VI show the errors distribu-

tions of the model with best fit on validation data evaluated on training, validation

and test data, respectively.

17.6. CODE BLOAT, PRUNING, AND POPULATION DIVERSITY311

Table 17.42: Formula size and population diversity progress in test series (i).

Test series Iteration Formula size Solutions similarity

avg std avg std

(1i) 50 34.8365 6.1534 0.4682 0.0852

100 37.1863 4.9901 0.7413 0.0711

500 39.2217 5.2673 0.8388 0.0450

2000 40.1260 4.9724 0.8992 0.0251

(2i) 10 18.5330 6.6114 0.4307 0.0518

20 21.5286 5.3083 0.7202 0.0772

50 38.5143 5.6305 0.9248 0.0403

End of run 48.2051 4.6228 0.9859 0.0178

Table 17.43: Quality of results returned in test series (i).

Test series Evaluation data Best model selection basis

Training data Validation data

avg std avg std

(1i) Training data 2,258.22 561.27 5,869.40 1.233.09

Validation data 6,608.26 1,463.49 4,819.26 730.51

Test data 2,238.61 983.57 1,811.05 834.83

(2i) Training data 1,723.07 623.11 4,209.57 499.89

Validation data 6,361.46 921.26 3,607.13 736.05

Test data 3,289.33 945.79 1,434.63 739.22

312 CHAPTER 17. POPULATION DYNAMICS

313

Chapter 18

Incorporation of A Priori

Knowledge: Modeling NOx with

Physical Knowledge and GP

18.1 Physical Knowledge about the Formation of

NOx

In previous chapters we have already described results of attempts to identify dy-

namic models for NOx emissions of diesel engines. In fact, research in this area has

been done since several decades, so there is already a lot of physical and chemical

knowledge available for this modeling task:

As Warnatz, Maas and Dibble explain in [WMD96], the products of combus-

tion are distinctly identified as a severe source of environmental damage, especially

caused by increased combustion of hydrocarbon fuels. The major combustion pro-

ductions, especially carbon dioxide and water, have long been considered rather

“harmless”; now, carbon dioxide is more and more seen as a significant source of

problems regarding the atmospheric balance and greenhouse effect.

Nitric oxides (NOx) are less obvious products of combustion; within the last half

of the twentieth century it has become apparent that NO and NO2, collectively

called NOx, are major contributors to photochemical smog and ozone in the tro-

posphere [Sei86]. Gaining knowledge regarding the production process of NOx is

therefore of great interest and researchers search for models for the production of

these pollutants in order to find new ways how to minimize them [WMD96].

314 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

Based on physical models summarized in [WMD96], we have used the following

model describing the production of NOx dependent on measurable engine param-

eters. This model has been suggested by Markus Hirsch, research assistant at the

Institute for Design and Control of Mechatronical Systems at Johannes Kepler Uni-

versity Linz, Austria [HW07] and can be formulated in the following way:

HFM∗ =
HFM

N
· 1000

60

[
kg/h

U/min
· 1000

60
= g/U

]
(18.1)

NOx ≈ e(qMI·(α·pMI+β· 1
N

+γ·HFM∗)) (18.2)

where

• HFM is the amount of fresh air in the engine’s air intake section,

• N the engine’s rotational frequency,

• HFM∗ is the amount of fresh air divided by the rotational frequency and

converted to the amount of air per combustion cycle,

• qMI the amount of fuel injected into the combustion chamber(s),

• pMI is the angle φ of the fuel injection, the crankshaft angle1, and

• α, β and γ are parameters which have to be identified.

Figure 18.1 shows a graphical representation of this semi-abstract model struc-

ture available as physical knowledge for the formation of NOx emissions.

The data set available in this context again contains measurements taken from a

2 liter 4 cylinder BMW diesel engine at a dynamical test bench (simulated vehicle:

BMW 320d Sedan). The most recent NOx data set (III, described in Section 14.2.2)

has been used in the test series reported on in this chapter: Several emissions (in-

cluding NOx, CO and CO2) as well as several other engine parameters were recorded

at 100 Hz and downsampled to 10 Hz. The maximum time offsets for all potential

input variables has been set to 1, only when referencing HFM we have allowed a

maximum offset of 5 samples.

Figure 18.2 visualizes the target variable HoribaNOx (this figure has on fact

already been shown in Section 14.2.2 as Figure 14.8).

1The crankshaft angle is directly related to the piston position, which plays an important role
in the injection timing. This crankshaft angle can be easily measured and is therefore used for the
control of the injection timing.

18.2. INCORPORATION OF KNOWLEDGE ABOUT NOX 315

ex

*

qMIt-{0,1} +

α * pMIt-{0,1} β * 1/Nt-{0,1} γ * HFM*t-{0,5}

Figure 18.1: Model representing the physical knowledge available for the formation

of NOx emissions.

Figure 18.2: Target HoribaNOx values of NOx data set III.

18.2 Strategies for the Incorporation of Knowl-

edge about the Formation of NOx in GP

As we now know about the physical knowledge available in context with formation

of NOx during combustion in diesel engines, there are several ways how we can make

this information available for the GP process.

316 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

18.2.1 Introduction of a New Variable for HFM∗

First and most obviously, Formula 18.1 describing the calculation of the auxiliary

variable HFM∗ can be used for defining a new variable; as there are no parameters

to be fixed, this new variable can be introduced into the data base immediately.

The GP process is therefore able to use this information simply by using this new

variable, i.e. by creating models that reference the variable HFM∗.

18.2.2 Seeding Stub Models for NOx

The incorporation of the information given in Formula 18.2 is a bit more complicated

as it includes parameters which are not known; we shall here discuss possibilities

how to use the strategies given in Chapter 9.

The first possibility is to seed the population using a stub of the model already

known. Of course, this brings along the problem that the unknown parameters in-

cluded in the model, namely α, β and γ, have to be initialized using some arbitrary,

but fixed values; we initially set those parameters to 0.1 and expect the evolution-

ary optimization process to tune the values so that improved model structures are

evolved.

As already mentioned in Chapter 9, we now have to decide to which extent this

pre-defined model shall be inserted in the initial population and during the main

loop of the GP process.

18.2.3 Defining Terminals and a Basic Function for NOx

An alternative method is to create an artificial function that represents the structure

of the knowledge available. So we define the following additional items that are to

be added to the functional basis used by the GP process:

• The function definition “PKfuncNOx” represents the main part of the model.

On the one hand it expects the input variables qMI, pMI, 1/N (N−1) and

HFM∗ as inputs at indices 0, 2, 4 and 6; on the other hand it also expects 5

more inputs that are processed as coefficients (at indices 1, 3, 5 and 8) or an

additional term at index 7.

When called with the expected inputs I0...8, this function returns the result of

18.3. TEST STRATEGIES 317

the following expression:

eI0·(I1·I2+I3·I4+I5·I6+I7)·I8 (18.3)

• The terminal definitions “qMI”, “pMI” and “HFM∗” represent variables that

always reference the variables qMI, pMI and HFM∗, respectively, and

• the terminal definition “Ninv”, in Figure 18.3 shown as “N−1”, always returns

the multiplicative inverse of the respective sample in the N variable.

The requirements regarding valid parent and child definitions are given in such a way

that a node referencing the “PKfuncNOx” function is only allowed to accept child

nodes referencing the terminal definitions “qMI”, “phiMI”, “N−1” and “HFM∗” at

indices 0, 2, 4 and 6, respectively. All other indices are not restricted, i.e. any subtree

structure can be attached at indices 1, 3, 5, 7 and 8 representing the parameters α,

β and γ, an additional additive term and an additional coefficient.

Figure 18.3 graphically shows the terminals and the function definition used in

this approach.

PKfuncNOx

qMI
t-{0,1}

phiMI
t-{0,1}

HFM*
t-{0,5}

N-1
t-{0,1}

0

1

2

3

4

5

6

7

8

Figure 18.3: Terminal definitions and the “PKfuncNOx” function representing phys-

ical knowledge about the formation of NOx emissions.

18.3 Test Strategies

Using the definitions described in the previous section we shall now see to which

extent these strategies are appropriate for incorporating physical knowledge into

318 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

the GP process. We here report on test series executed using the test strategies

summarized in Table 18.1.

Table 18.1: Test strategies for incorporating physical knowledge about the formation

of NOx in the GP process.

Strategy Index Approach and Parameters

(I) No additional information given.
(II) Use of additional variable HFM∗, as described in Section 18.2.1.
(III) Use of additional variable HFM∗ as well as stub model

described in Section 18.2.2.
(IIIa) Seed model in 20% of the initial population
(IIIb) Seed model in 60% of the initial population
(IIIc) Seed model in 100% of the initial population

(IV) Use of additional variable HFM∗ as well as stub model
described in Section 18.2.2.

(IVa) Seed model in 10% of the initial population and with 10% probability
in main loop (replacing solutions selected by parents selection)

(IVb) Seed model in 20% of the initial population and with 20% probability
in main loop (replacing solutions selected by parents selection)

(IVc) Seed model in 50% of the initial population and with 30% probability
in main loop (replacing solutions selected by parents selection)

(V) Use of additional variable HFM∗ as well as terminals and the
“PKfuncNOx” function as described in Section 18.2.3

(Va) No manipulation of the GP-process
(Vb) Introduction of “PKfuncNOx” function into solutions

by special mutation operator; probability: 15%

Once again, all test strategies have been executed 5 times independently: We

applied GP with 1000 solutions, strict offspring selection (maximum selection pres-

sure: 200), gender specific parents selection (random & roulette) and 12% mutation

rate.

18.4. TEST RESULTS 319

18.4 Test Results

18.4.1 Test Series I: Using no Additional Information

Table 18.2 summarizes the quality of the models produced for the NOx data set

without adding any physical knowledge. We here also give average and standard

deviation values of the performance of the models that show best fit on training and

of those that show best fit on validation data. Once again we see that those models,

that perform best on validation data, are also those that perform quite well on test

data (at least better than those that show best fit on training data).

Table 18.2: Quality of results produced in test series I.
Quality (mse)

Model Training Validation Test
avg std avg std avg std

Best on training data 0.003585 0.000241 0.004497 0.000341 0.005236 0.000382
Best on validation data 0.004148 0.000276 0.003538 0.000295 0.004359 0.000331

18.4.2 Test Series II: Using an Additional Variable

After adding physical knowledge in terms of the additional variable HFM∗ we again

executed GP tests and collected the results summarized in Table 18.3. Obviously,

the results are a lot better - not only in terms of training, but also validation and

test quality.

Table 18.3: Quality of results produced in test series II.
Quality (mse)

Model Training Validation Test
avg std avg std avg std

Best on training data 0.003312 0.000219 0.003714 0.000204 0.003979 0.000263
Best on validation data 0.004022 0.000157 0.003329 0.000198 0.003901 0.000374

320 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

18.4.3 Test Series III and IV: Inducing Model Structures

into GP

In addition to the variable HFM∗, physical knowledge has also been inducted into

the GP processes by seeding known model structures into the initial population as

well as into the main GP loop as defined in test strategies III and IV; Tables 18.4

and 18.5 summarize the quality of the models produced in these test series. Ob-

viously, this induction of model structures again brought along an increase of the

results’ quality:

• Seeding the models into the initial population at medium rate (series IIIb)

seems to be the best strategy if no more manipulation is done during the main

GP loop.

• Regarding the induction of models in the main GP loop (as done in test series

IV) also the medium variant seems to have performed best, as the results of

series IVb are better than those measured for test series IVa and IVc.

Table 18.4: Quality of results produced in test series III.
Quality (mse)

Model Training Validation Test
avg std avg std avg std

(a) Best on training data 0.00327 0.00018 0.00359 0.00019 0.00391 0.00018
Best on validation data 0.00390 0.00015 0.00316 0.00010 0.00388 0.00022

(b) Best on training data 0.00319 0.00020 0.00381 0.00022 0.00382 0.00031
Best on validation data 0.00404 0.00014 0.00305 0.00014 0.00408 0.00038

(c) Best on training data 0.00361 0.00025 0.00393 0.00028 0.00409 0.00024
Best on validation data 0.00463 0.00026 0.00329 0.00017 0.00429 0.00032

Figure 18.4 illustrates a model which was returned as best model with respect

to fit on validation data in one of the test runs in series IVb. Obviously, the given

model structures that were inducted into the GP processes in series IV have been

used and are incorporated in the model’s structure.

Of course, all these manipulations of the GP process (as done in test series

III and especially IV) are expected to have more or less significant effects on the

GP population dynamics. This can be clearly seen in Tables 18.6 and 18.7 which

summarize the average solution similarities (given as mean average and standard

18.4. TEST RESULTS 321

Table 18.5: Quality of results produced in test series IV.
Quality (mse)

Model Training Validation Test
avg std avg std avg std

(a) Best on training data 0.00316 0.00016 0.00382 0.00017 0.00402 0.00023
Best on validation data 0.00399 0.00016 0.00339 0.00014 0.00382 0.00032

(b) Best on training data 0.00289 0.00015 0.00360 0.00017 0.00370 0.00017
Best on validation data 0.00439 0.00015 0.00289 0.00010 0.00348 0.00020

(c) Best on training data 0.00305 0.00027 0.00427 0.00024 0.00426 0.00026
Best on validation data 0.00387 0.00020 0.00353 0.00019 0.00384 0.00027

deviation values) of the test series III and IV: Of course, the more the GP process is

forced to use some given model structure (parts), the less the population diversity

becomes and more the mutual similarity of the populations’ individuals rises. This

effect becomes obvious especially in the results for test series IIIc and IVc.

Table 18.6: Population diversity progress in test series III.
Test series Iteration Average solutions similarity

avg std

a 10 0.2738 0.0398
20 0.4380 0.0479
40 0.7429 0.0334

End of run 0.9892 0.0247
b 10 0.3952 0.0402

20 0.4537 0.0537
40 0.7548 0.0479

End of run 0.9917 0.0281
c 10 0.4203 0.0458

20 0.4946 0.0435
40 0.7823 0.0382

End of run 0.9946 0.0172

Furthermore, forcing the GP process to use some given model structures also

influences population dynamics not only in terms of population diversity, but also

regarding the frequency and the impact of terminals and functions that are available

in the given functional basis. This can be done measuring mean squared difference

function defined in Equation 12.19; terminals and functions are systematically re-

moved (i.e., replaced by their parents’ neutral elements for the respective input

index) and the formulas re-evaluated. Table 18.8 summarizes the average fitness-

weighted impact values for each given terminal and variable in test series I & II and

322 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

(0,03295252415|+(+(+(-9,46567338989098|(Exp(+(*(2,28775692582664|+([0,070808*Var008(t-0)]|-0,258062238956865))|*(0,0332778702163062|+([-0,076378
Var012(t-2)]|168,527475406471))|(13,1447989812029|+([0,134846*Var024(t-0)]|-0,116801040367473))))|+(*(0,0216216216216216|+([-0,233247*Var013(t-0)]
|336,692581340245))|*(13,1447989812029|+([0,220482*Var024(t-0)]|-0,190977552643847))|Exp(*(8,06451612903226|+([-0,053086*Var009(t-2)]
|0,0658266640240317)))))|Exp(+(*(13,1447989812029|+([0,072412*Var024(t-0)]|-0,0627215386548598))|*(0,0216216216216216|+([-0,042651*Var013(t-0)]
|61,5662161068429))|*(13,1447989812029|+([0,154444*Var024(t-0)]|-0,133776754704841)))))|*(Exp(Cos(*(13,1447989812029|+([0,167279*Var024(t-0)]|-
0,144893638173656))))|+(*(0,088308019927729|+([0,128883*Var014(t-2)]|-16,5470311567856))|*(0,0332778702163062|+([-0,022459*Var012(t-2)]
|49,5555169769855))|Exp(*(*(0,088308019927729|+([-0,146616*Var014(t-1)]|18,8237422359773))|*(13,1447989812029|+([0,165896*Var024(t-0)]|-
0,143696015960345))))))|*(*(1,43369187960074|+([-0,101744*Var007(t-2)]|1,52463483246412))|Exp(*(*(*(1,43369187960074|+([-0,008179*Var007(t-0)]
|0,122568034142857))|+(*(2,28775692582664|+([-0,088277*Var008(t-1)]|0,321729996215363))|*(13,1447989812029|+([0,157689*Var024(t-0)]|-
0,136587034346519))|-0,463536465954036))|+(*(0,088308019927729|+([0,181987*Var014(t-1)]|-23,3649753346804))|-9,8625925134551
|*(0,0455062540041238|+([0,079715*Var011(t-1)]|-56,4100106106371)))))))|10,3291258342041))

Figure 18.4: Best model produced for the NOx data set: The given a priori knowl-

edge has been incorporated as subtrees of the returned model structure.

III & IV2 after 10 iterations and at the end of the GP runs that have been analyzed.

As we see here, some terminals and variables tend to have almost no impact on the

populations’ evaluation (especially differential, square root, logarithm, sine, condi-

2For the sake of results lucidity the results for test series I and II have been collected and
analyzed collectively as well as those for test series III and IV.

18.4. TEST RESULTS 323

Table 18.7: Population diversity progress in test series IV.
Test series Iteration Average solutions similarity

avg std

a 10 0.2664 0.0428
20 0.4334 0.0476
40 0.7796 0.0309

End of run 0.9914 0.0187
b 10 0.2703 0.0438

20 0.4737 0.0385
40 0.8290 0.0321

End of run 0.9953 0.0196
c 10 0.3025 0.0422

20 0.5916 0.0429
40 0.8645 0.0313

End of run 0.9971 0.0127

tionals, and Boolean and logical functions), whereas others are integral parts of the

evaluation of the produced GP populations. Furthermore, in the results calculated

for test series III and IV we see a higher impact of the multiplication and expo-

nential functions; due to the repeated induction of model structures the functions

used in these structures eventually become more prominent, integral parts of the

populations’ solutions.

18.4.4 Test Series V: Using an Enhanced Functional Basis

Test series V finally represents GP tests using the artificial function “PKfuncNOx”

as described in Section 18.2.3. Both surprisingly and also a little disappointingly,

this function was not able to enable GP to produce better models; in fact, in both

test variants (Va and Vb) this function was not considered by the GP process.

Table 18.9 summarizes the quality of the best models produced in these test series:

The quality of the models produced in series Va is comparable to the fitness of

those of series II (without any manipulation of the GP process), forcing GP to use

“PKfuncNOx” by directed mutation here even leads to worse results.

In order to find out whether or not this is only because of the enhanced selection

concepts used we have here also tried standard genetic programming (SGP) with

1000 individuals, 7% mutation rate, tournament selection (k=3) and 2000 genera-

tions. The quality of the models returned by SGP are (as expected) slightly worse

– this can be seen in Table 18.10. Thus, offspring alone cannot be considered to be

324 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

Table 18.8: Population diversity progress in test series IV.
Definition Test series I and II Test series III and IV

Iteration 10 End of run Iteration 10 End of run
Variable 23.63 50.16 37.94 54.82
Constant 17.99 28.82 36.85 21.39
Differential 2.03 0.37 3.86 0.68
Addition 31.89 49.27 25.31 31.97
Subtraction 15.79 28.29 13.37 9.62
Division 9.04 7.53 8.20 6.02
Multiplication 59.43 51.16 77.04 80.69
Power 33.37 3.52 28.31 1.35
Square Root 0.01 0.02 0.03 0.01
Exponential 18.36 19.28 14.07 38.23
Logarithm 0.00 0.00 0.00 0.00
Trigonometrics 23.19 9.42 15.68 2.52
Signum 8.29 0.05 9.70 0.00
Boolean 13.03 0.04 9.42 0.00
Logical 8.02 0.01 0.01 0.01
Conditional 13.09 0.85 3.69 0.02

Table 18.9: Quality of results produced in test series V.
Quality (MSE)

Model Training Validation Test
avg std avg std avg std

(a) Best on training data 0.00341 0.00020 0.00388 0.00021 0.00413 0.00027
Best on validation data 0.00384 0.00017 0.00334 0.00018 0.00409 0.00032

(b) Best on training data 0.00400 0.00031 0.00445 0.00034 0.00436 0.00044
Best on validation data 0.00426 0.00017 0.00356 0.00026 0.00388 0.00028

the cause for these results.

We have analyzed the population diversity for test series Va and Vb, both with

standard as well as enhanced GP (with gender specific parents selection and strict

offspring selection), the results are summarized in Table 18.11: For series Va the

results are comparable to those reported on in Section 17.3, the analysis of test

series Vb shows higher mutual solutions similarity values and thus lower population

diversity.

Of course we have also calculated the impact of the “PKfuncNOx” function3 in

3The impact of the “PKfuncNOx” function is here calculated in the same way as in previous
terminals and variables impact comparisons as defined in Section 18.4.3.

18.4. TEST RESULTS 325

Table 18.10: Quality of results produced by standard GP in test series V.
Quality (MSE)

Model Training Validation Test
avg std avg std avg std

(a) Best on training data 0.00372 0.00031 0.00391 0.00027 0.00549 0.00041
Best on validation data 0.00419 0.00020 0.00357 0.00023 0.00486 0.00040

(b) Best on training data 0.00387 0.00041 0.00458 0.00040 0.00473 0.00038
Best on validation data 0.00528 0.00021 0.00386 0.00037 0.00431 0.00031

Table 18.11: Population diversity progress in test series V.
Test series Iteration Average solutions similarity

Standard GP Extended GP
avg std avg std

a 10 0.2948 0.0562 0.3520 0.0398
400 / 20 0.7835 0.0724 0.4251 0.0432
1000 / 40 0.8620 0.0529 0.6368 0.0379

End of run 0.8873 0.0235 0.9641 0.0261
b 10 0.3523 0.0511 0.3532 0.0430

400 / 20 0.8407 0.0604 0.5286 0.0402
1000 / 40 0.8825 0.0516 0.7753 0.0317

End of run 0.8933 0.0362 0.9751 0.0185

standard as well as in extended GP:

• In test series Va, the impact of “PKfuncNOx” is on average 21.45 in standard

GP after 100 iterations and eventually falls down to 11.89; in extended GP, it

reaches 18.52 after 10 iterations and in the end goes down to only 7.41.

• In test series Vb (including repeated introduction of the “PKfuncNOx” func-

tion by directed mutation) the impact of this function is of course higher. In

standard GP it reaches 28.11 on average after 100 generations and 31.23 by

the end of the GP processes; in extended GP, the function’s average impact is

about 24.58 after 10 generations and finally reaches 35.59.

Thus, comparing these results we have to admit that the “PKfuncNOx” func-

tion loses importance almost completely during the GP process executions; only by

introducing it repeatedly it can remain in the GP populations, but this again leads

to significantly worse results than without doing so.

Obviously, in this application it has been easier for the GP process to integrate

326 CHAPTER 18. INCORPORATION OF A PRIORI KNOWLEDGE

physical knowledge given as model structures (built up of simple standard compo-

nents) than complex functions. We have also observed the fact that the “PKfunc-

NOx” function was represented in successful solutions only if all input subtrees were

terminal nodes - as soon as more complex subtrees were attached to this function

(serving as coefficients for the terms that are summed up), the function contributed

in a negative way so that the formulas were either eliminated by offspring selection

or not selected as parents for the next generations.

18.5 Conclusion

In this chapter we have summarized test results for an example for the introduction

of a priori about the system which is to be identified: Virtual sensors for the NOx

emissions of a BMW diesel engine have been created using physical knowledge.

Three different ways how to introduce additional knowledge into the GP based

learning process have been discussed and tested:

• If partial knowledge can be formulated by equations without variable param-

eters, then additional variables can be formed. Of course, this approach can

be used in any machine learning approach; in this example application, the

virtual variable HFM∗ has been formed and added to the problem data set,

leading to increased model qualities.

• Alternatively, model structures representing partial knowledge (about physical

systems, e.g.) can also be introduced into the GP process by seeding parts of

the initial population or by repeatedly inserting them into the main GP loop

(before crossover and mutation operations). In our example application, this

was also successfully done; of course, if this forceful introduction is done too

often, then population diversity can be lost leading to worse results.

• The third possibility discussed and tested here is the formation of complex

functions representing partial knowledge; the genetic process is then supposed

to form models that include these functions. Unfortunately, exactly this ap-

proach did not really work fine in this exemplary application: On the one hand,

without manipulating the GP process, the function designed in this example

died off almost completely, and on the other hand forceful introduction of this

function into the existing models had negative effects on population diversity

as well as on results quality.

327

Chapter 19

Results Stability

19.1 Introduction

Even though GP is widely considered a method that is able to identify models

for several kinds of linear as well as nonlinear systems (see examples for example

in [Koz92], [KKS+03a], [WEA+06] or [WAW07a]), the following problem is repeat-

edly discussed: Due to the stochastic element that is intrinsic to any evolutionary

process and the extremely wide range of possible (arbitrarily complex) models that

can be formed using function and terminal definitions, genetic programming cannot

guarantee that the results of GP processes applied to a given data set will always

be similar or even equal to each other. Still, if there is a physical model underlying

to the data that are analyzed, then GP is expected to find these structures and

produce somehow similar results.

In principle, the analysis of GP results reported on in this chapter was done in the

following way: For each test run (including 10 separate GP processes) we collect the

models that were eventually returned by the modeling algorithms; all returned mod-

els are then syntactically compared to each other using the multiplicative structural

comparison function presented in Chapter 11.

An explanatory, synthetic example is given in Figure 19.1: 5 solutions are com-

pared to each other and the results are summarized in the given table. Additionally,

for each solution we collect the maximum similarity of the respective solution com-

pared to all other ones: maxSim(mi) = max∀j:1≤j≤n,j �=i(sim(mi, mj)) (where mi is

the model number i and n the total number of models).

In this example, the mean similarity is 0.313 (standard deviation: 0.245), and the

mean maximum similarity is computed as 0.529 (standard deviation: 0.248).

328 CHAPTER 19. RESULTS STABILITY

 Iteration 17

 01: Signum(Sqrt(Log(-(e^(4,92436805485784|e^([1,115452*Var029(t-0)]|

Cos([1,058453*Var012(t-0)])))|*(Signum(-8,98619052616505)|/(Tan(-
([0,918539224493133*Var028(t-0)]|[0,918539224493133*Var028(t-1)]))
|[0,989673*Var029(t-0)])|*(5,50294049733634|[0,990563*Var010(t-0)]))))))

 02: /(Tan(IF(<=(+([1,077744*Var022(t-0)]|-([1,10727685164315*Var015(t-0)]
|[1,10727685164315*Var015(t-1)]))|-([0,976768789758407*Var022(t-0)]
|[0,976768789758407*Var022(t-1)])))THEN([1,041900*Var004(t-0)]),
ELSE(Sqrt(IF(<=(2,44583836239596|[1,154666*Var009(t-0)]))
THEN([0,943343*Var029(t-0)]),ELSE([0,950025*Var022(t-0)]))))|
Tan(IF(<=(+([1,077744*Var022(t-0)]|17,1775511725676)|-
([0,976768789758407*Var022(t-0)]|[0,976768789758407*Var022(t-1)])))
THEN(0,908943850130704),ELSE(Sqrt(IF(<=(-1,91706125250988| [1,040191*
Var027(t-0)]))THEN([0,943343*Var029(t-0)]),ELSE([0,950025*Var022(t-0)])))))

 03: /([1,018166*Var029(t-0)]|[1,018166*Var029(t-0)])
 04: IF(||(||(<=([0,963652*Var028(t-0)]|[1,043041*Var005(t-0)])| >([0,853987*Var027

(t-0)]|-([1,03592076887582*Var005(t-0)]| [1,03592076887582*Var005(t-1)])))|<(-
(e^([0,935266*Var000(t-0)]|18,5846317477213)|0,628437844963067)|
+(18,9154051224144|11,6099712533028)))) THEN(Signum(Signum(Tan(IF(<=(-
([1,0425793099*Var005(t-0)]| [1,0425793099*Var005(t-1)])|[1,171622*
Var013(t-0)]))THEN([0,968277*Var029(t-0)]) ,ELSE(Signum(-(13,4731341989302|-
2,3347292239722))))))), ELSE(Tan(Signum(+([1,172564*Var013(t-0)]|
Signum(6,10413791798622)|-([0,959094579076586*Var001(t-0)]|
[0,959094579076586*Var001(t-1)])))))

 05: IF(&&(&&(<=(-([1,04831623404712*Var023(t-0)]|[1,04831623404712*Var023(t-1)])|
Log([1,023825*Var001(t-0)]))|>=(-14,6562330699379|-12,6473184478614))|~(<(-
([0,932356724857449*Var024(t-0)]|[0,932356724857449*Var024(t-1)])|
Log(Signum([0,941442*Var004(t-0)]))))))THEN([1,232069*Var001(t-0)]),
ELSE(Signum(Sin([1,068600*Var029(t-0)])))

 Similarity | (01) | (02) | (03) | (04) | (05) | maxSim
------------+------------+------------+------------+------------+------------+-----------
 (01) | - | 0,143795 | 0,043997 | 0,275474 | 0,140406 | 0,275474
 (02) | 0,210052 | - | 0,072045 | 0,513435 | 0,331605 | 0,513435
 (03) | 0,939894 | 0,800255 | - | 0,379430 | 0,379209 | 0,939894
 (04) | 0,257190 | 0,337566 | 0,024343 | - | 0,419353 | 0,419353
 (05) | 0,165161 | 0,251798 | 0,032487 | 0,545353 | - | 0,545353

mean(similarity): 0,31314
stddev(similarity): 0,24465

mean(maxSim): 0,53870
stddev(maxSim): 0,24757

Figure 19.1: Synthetic example for results stability analysis.

The results presented in this chapter are partially to be published in [WAW08b]

on the reliability of nonlinear modeling using enhanced genetic programming tech-

niques.

19.2 Test Setup

We have tested GP with strict offspring selection (comparison factor and success

ratio have been set to 1.0, the maximum selection pressure to 200) using the following

4 test data sets:

• The Melanoma data set,

19.3. TEST RESULTS 329

• the Thyroid data set,

• the Wisconsin data set, and

• the NOx data set described in Section 14.2.2.

In all four cases the first 80% of the data sets were used as training data, the rest

as validation data (used by pruning methods).

The functions and terminals basis contained the following definitions:

• Basic arithmetic functions (addition, subtraction, multiplication, division),

• exponential and logarithm functions,

• trigonometric functions (sine, cosine and tangent), and

• conditional, boolean and logic functions;

• variables (in the case of learning models for the classification sets no time

offsets other than 0 were allowed, for the NOx data set the maximum time

offset was set to 2.0),

• constants, and

• differentials (only in the context of learning models for the NOx data set).

For calculating the similarity of models the multiplicative structural similarity

function has been used (all coefficients c1 . . . c10 were set to 0.2, only the coefficient

c1 weighting the level difference contribution d1 was set to 0.8.). For each test run

we give the average and standard deviation values of the similarities of the mod-

els; additionally, for each model we have collected the maximum similarity values

maxSim and calculated average and standard deviation for these values, too.

19.3 Test Results

The Tables 19.1 – 19.4 summarize the similarity values calculated for each of the

5 test series (for learning models for each data set); the average similarity values

and average maximum similarity values are given as well as the respective standard

deviations.

330 CHAPTER 19. RESULTS STABILITY

Obviously, the results produced are not extremely similar to each other: Given

the fact that 1,000 randomly generated models for the NOx data set show an average

similarity of 0.1287 (std : 0.0255), an average similarity of 0.4149 seems plausible,

but unfortunately not really high; in fact, we had expected higher values. For the

classifiers produced we see even lower results, having in mind that 1,000 randomly

generated classifiers for the Melanoma, Thyroid or the Wisconsin data set show

average similarities of 0.1478 (std : 0.02736).

Of course, one fact has to be considered here: GP tends to produce bloat, and

models produced by GP are likely to become maximally big and are thus prone to

overfitting. This is why for example pruning methods are used for removing parts

of the models produced in order to become smaller, more compact formulas; still,

this pruning should not decrease the quality of the models more than necessary

(this trade-off always has to be kept in mind when it comes to pruning). We have

used a pruning method based on evolution strategies (as described in Section 10.2)

for reducing the complexity of the models that are eventually returned as results

of the GP processes by cutting out nodes and deleting subtrees of the given model

structures; no quality deterioration was allowed, the number of solutions (λ) was

set to 25, and the maximum number of iterations to 10. After doing so, the pruned

results were once again compared to each other leading to the results summarized

in Tables 19.5 – 19.8.

Obviously, the mutual similarity of the pruned results is a lot higher than the

original ones, on average even reaching 0.6238 for the NOx data set. This result is

in fact very satisfying because it shows that independent GP processes have in this

case really produced formulas with rather similar model structures; pruning reveals

the really essential parts of the models, and these essential parts are more similar

to each other than the original ones. Furthermore, this increase of results similarity

after pruning them is a lot stronger when analyzing the results for the NOx data

set (representing a real, mechatronical system) than when analyzing the classifiers

produced for the classification data sets.

19.3. TEST RESULTS 331

Table 19.1: Results similarity statistics for tests using the Melanoma data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)
1 0.4955 0.1808 0.6478 0.0482
2 0.5115 0.1917 0.6053 0.1352
3 0.4615 0.1511 0.5813 0.0982
4 0.4855 0.2309 0.6310 0.1073
5 0.5198 0.1652 0.6335 0.1130

avg. 0.4948 0.1839 0.6198 0.1004

Table 19.2: Results similarity statistics for tests using the Thyroid data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)

1 0.4650 0.1065 0.5918 0.0616
2 0.4852 0.1129 0.6591 0.0475
3 0.4640 0.1026 0.5875 0.0673
4 0.4933 0.1029 0.6053 0.0581

5 0.4472 0.1747 0.6363 0.0973
avg. 0.4709 0.1199 0,6160 0,0664

Table 19.3: Results similarity statistics for tests using the Wisconsin data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)
1 0.4438 0.1513 0.6050 0.1229
2 0.4611 0.2040 0.5946 0.1681
3 0.4081 0.1550 0.7164 0.1329
4 0.4252 0.3342 0.7367 0.1833
5 0.4771 0.1459 0.5904 0.1199
avg. 0.4431 0.1981 0.6486 0.1454

332 CHAPTER 19. RESULTS STABILITY

Table 19.4: Results similarity statistics for tests using the NOx data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)

1 0.3991 0.1705 0.6038 0.1673
2 0.4279 0.1546 0.6518 0.0825
3 0.3966 0.1359 0.5761 0.1608
4 0.4009 0.1299 0.6780 0.1265
5 0.4498 0.1300 0.5555 0.0904

avg. 0.4149 0.1442 0.6130 0.1255

Table 19.5: Pruned results similarity statistics for tests using the Melanoma data

set.
Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)

1 0.5971 0.3605 0.7404 0.3164
2 0.6417 0.3318 0.7188 0.3041
3 0.5047 0.2497 0.5769 0.2276
4 0.5662 0.2253 0.6796 0.2529
5 0.5442 0.3104 0.7662 0.1708

avg. 0.5708 0.2955 0.6964 0.2544

Table 19.6: Pruned results similarity statistics for tests using the Wisconsin data

set.
Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)
1 0.5832 0.1332 0.6463 0.1015
2 0.5544 0.2168 0.5517 0.2099
3 0.4977 0.1473 0.6073 0.1331
4 0.6065 0.1018 0.7159 0.0857
5 0.5394 0.1987 0.6766 0.1213
avg. 0.5562 0.1596 0.6396 0.1303

19.4. CONCLUSION 333

Table 19.7: Pruned results similarity statistics for tests using the Thyroid data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)

1 0.5605 0.1488 0.6329 0.0918
2 0.5510 0.1415 0.6679 0.0555
3 0.5577 0.1448 0.6290 0.0931
4 0.5494 0.1159 0.6528 0.0286

5 0.4647 0.2023 0.6626 0.1077
avg. 0.5367 0.1507 0.6490 0.0753

Table 19.8: Pruned results similarity statistics for tests using the NOx data set.

Test run mean(sim) stddev(sim) mean(maxSim) stddev(maxSim)
1 0.6049 0.1995 0.7774 0.1853
2 0.5731 0.1479 0.7089 0.0750
3 0.6055 0.1217 0.7252 0.0757
4 0.6435 0.1352 0.7389 0.0940
5 0.6921 0.0926 0.7702 0.0752
avg. 0.6238 0.1394 0.7441 0.1010

19.4 Conclusion

In this chapter we have discussed results regarding the comparison of models pro-

duced by evolutionary system identification based on genetic programming; using

this similarity estimation we have systematically compared the results obtained for

the identification of NOx emissions of a motor engine as well as medical bench-

mark machine learning data sets. Comparing these results we see that especially

the pruned models, i.e. those that have been deprived of genetic junk, are a lot

more similar to each other. Thus, the results presented here can be seen as another

indication that GP using enhanced selection concepts does not only work, but also

has to be considered reliable with respect to comparability and similarity of results

if there really is a system whose behavior is represented in the given training data.

334 CHAPTER 19. RESULTS STABILITY

335

Part III

Conclusion

337

Chapter 20

Conclusion and Future

Perspectives

In this thesis several techniques have been described that are able to enhance the

power of genetic programming (GP) in data based modeling. In addition to this,

several concepts for monitoring what is going on in the population of a genetic

programming process have been presented; time series data representing measure-

ments of mechatronical systems have been used as well as classification data sets for

demonstrating how these GP concepts effect the GP process.

In Part I we have summarized the basics of evolutionary computation, GP in

general and concepts for selection and parallelization. Data based modeling has also

been described as well as the GP implementation for the HeuristicLab framework;

time series and classification analysis specific aspects for GP have been explored as

well as concepts for local adaptation and the introduction of a priori knowledge into

the GP process. Estimation models for the similarity of GP solution candidates

have also been introduced; these similarity calculations are (amongst others) used

for monitoring population dynamics in GP processes. Part I is concluded by a

discussion of on-line and sliding window genetic programming.

Several test series have been summarized in Part II; these empirical test stud-

ies have been executed and analyzed in order to demonstrate how and how well

evolutionary system identification works using the concepts described in the first

part of this thesis. The most interesting results of these empirical test series can be

summarized in the following way:

• The use of enhanced selection models has significantly positive effects on GP’s

338 CHAPTER 20. CONCLUSION AND FUTURE PERSPECTIVES

ability to produce high quality models. For time series as well as classification

data sets we have shown cases in which GP using a combination of proportional

and random parents selection and strict offspring selection was able to generate

models that perform better in terms of achievable solution quality and stability

than those produced using standard GP.

• Sliding window GP, implemented as a generalization of an on-line GP simu-

lation, can be used in order to combat known problems of GP based system

identification such as overfitting and rather high runtime consumption.

• Genetic propagation has been investigated by analyzing which parts of the

population are able to place children into the next generation’s pool of indi-

viduals.

• Population diversity has been investigated in single population GP as well

as in multi-population GP implementations. We have shown that population

diversity in standard GP variants differs significantly from diversity progresses

in standard GP implementations; this can be seen as a result of offspring

selection and the migration frequencies applied in multi-population GP using

various migration concepts.

• The use of pruning strategies as well as fitness based punishment of large

models and the use of fixed complexity limits have been analyzed as strategies

for combating code bloat. This can also be seen in the context of the avoid-

ance of premature convergence: By removing parts of model structures that

are redundant or do not contribute significantly to the models’ performance,

there is more space available that can be used for building better (i.e., more

meaningful) subtree structures.

• Inserting (parts of) models into the GP process as well as extending the func-

tions library and enabling the GP process to build models that use the func-

tions that represent the available knowledge can also help the GP process to

evolve reasonable models. Still, the introduction of a priori knowledge into

the GP process can be dangerous as there can be a significant loss of genetic

diversity if models representing available knowledge are introduced directly

into the GP population with too high frequency.

• Finally, we have analyzed the similarity of models produced by GP in separate

test runs. Using a structural similarity estimation function we have system-

atically compared the results obtained for the identification of NOx emissions

of a motor engine as well as medical benchmark machine learning data sets.

Comparing these results we see that especially the pruned models, i.e. those

339

that have been deprived of genetic junk, show a rather high similarity with

each other. These results can be seen as another indication that GP using

enhanced selection concepts does not only work, but also has to be considered

reliable with respect to comparability and similarity of results if there really

is a system whose behavior is represented in the given training data.

We hope that the use of the possibilities for monitoring populations, that have

been presented in this thesis, can help to analyze how and why modifications of

the standard GP process affect GP populations. For example, analyzing the ge-

netic propagation and population diversity results for extended GP gives hints why

the use of gender specific parents selection and offspring selection enables genetic

programming to produce even better models than standard genetic programming.

The implicit ability of GP to perform the selection of relevant variables in combina-

tion with structure identification and parameters optimization is also more obvious

when using extended GP based techniques. In any case, we have presented graphical

representations of the analysis results that are intuitive and easily understandable;

we are convinced that the information provided by these GP population analysis

features can help designers as well as users of GP implementations to tune their GP

applications and thus produce even better results.

Of course, several concepts presented here can be used not only for structure

identification, but also for other GP applications; in fact, several aspects are designed

in such a generic way that they can be transferred to any GA application. This is

why we suggest transferring these concepts to other application areas of evolutionary

computation. Furthermore, even though we have discussed the use of several ways

how to monitor internal processes in GP populations, we have not yet designed

or implemented methods that use this information for steering GP processes; this

surely should be done in the near future.

340 CHAPTER 20. CONCLUSION AND FUTURE PERSPECTIVES

341

Part IV

Indices

343

Bibliography

[AA05] Wendy Ashlock and Dan Ashlock. Single parent genetic program-

ming. In David Corne, Zbigniew Michalewicz, Marco Dorigo, Gusz

Eiben, David Fogel, Carlos Fonseca, Garrison Greenwood, Tan Kay

Chen, Guenther Raidl, Ali Zalzala, Simon Lucas, Ben Paechter,

Jennifier Willies, Juan J. Merelo Guervos, Eugene Eberbach, Bob

McKay, Alastair Channon, Ashutosh Tiwari, L. Gwenn Volkert, Dan

Ashlock, and Marc Schoenauer, editors, Proceedings of the 2005

IEEE Congress on Evolutionary Computation, volume 2, pages 1172–

1179, Edinburgh, UK, 2-5 September 2005. IEEE Press.

[AdRWL05] Daniel Alberer, Luigi del Re, Stephan Winkler, and Peter Langth-

aler. Virtual sensor design of particulate and nitric oxide emissions

in a DI diesel engine. In Proceedings of the 7th International Con-

ference on Engines for Automobile ICE 2005, number 2005-24-063,

2005.

[Aff01] Michael Affenzeller. Transferring the concept of selective pressure

from evolutionary strategies to genetic algorithms. In Z. Bub-

nicki and A. Grzech, editors, Proceedings of the 14th International

Conference on Systems Science, volume 2, pages 346–353. Oficyna

Wydawnicza Politechniki Wroclawskiej, 2001.

[Aff03] Michael Affenzeller. New Hybrid Variants of Genetic Algorithms:

Theoretical and Practical Aspects. Schriften der Johannes Kepler

Universität Linz. Universitätsverlag Rudolf Trauner, 2003.

[Aff05] Michael Affenzeller. Population Genetics and Evolutionary Compu-

tation: Theoretical and Practical Aspects. Schriften der Johannes

Kepler Universität Linz. Universitätsverlag Rudolf Trauner, 2005.

[AK95] David Andre and John R. Koza. Parallel genetic programming on

a network of transputers. In Justinian P. Rosca, editor, Proceedings

344 BIBLIOGRAPHY

of the Workshop on Genetic Programming: From Theory to Real-

World Applications, pages 111–120, Tahoe City, California, USA, 9

July 1995.

[AK96] David Andre and John R. Koza. Parallel genetic programming: A

scalable implementation using the transputer network architecture.

In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Ge-

netic Programming 2, chapter 16, pages 317–338. MIT Press, Cam-

bridge, MA, USA, 1996.

[Alb05] Enrique Alba. Parallel Metaheuristics: A New Class of Algorithms.

Wiley-Interscience, 2005.

[Alt94a] Lee Altenberg. Emergent phenomena in genetic programming. In

Anthony V. Sebald and Lawrence J. Fogel, editors, Evolutionary

Programming — Proceedings of the Third Annual Conference, pages

233–241, San Diego, CA, USA, 24-26 February 1994. World Scientific

Publishing.

[Alt94b] Lee Altenberg. The Schema Theorem and Price’s Theorem. In

L. Darrell Whitley and Michael D. Vose, editors, Foundations of

Genetic Algorithms 3, pages 23–49, Estes Park, Colorado, USA, 31

July–2 August 1994. Morgan Kaufmann. Published 1995.

[And71] Theodore W. Anderson. The Statistical Analysis of Time Series.

Wiley, 1971.

[And76] Oliver D. Anderson. Time Series Analysis and Forecasting: the Box-

Jenkins Approach. Butterworth, 1976.

[Ang93] Peter John Angeline. Evolutionary Algorithms and Emergent Intel-

ligence. PhD thesis, Ohio State University, 1993.

[Ang94] Peter John Angeline. Genetic programming and emergent intelli-

gence. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic Pro-

gramming, chapter 4, pages 75–98. MIT Press, 1994.

[Ang96] Peter J. Angeline. Genetic programming’s continued evolution. In

Kenneth E. Kinnear and Peter J. Angeline, editors, Advances in

Genetic Programming 2, pages 1 – 20. MIT Press, Cambridge, MA,

USA, 1996.

[Ang98] Peter J. Angeline. Subtree crossover causes bloat. In John R. Koza,

Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco

BIBLIOGRAPHY 345

Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hi-

toshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Pro-

ceedings of the Third Annual Conference, pages 745–752, University

of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998. Morgan

Kaufmann.

[AT99] Enrique Alba and José M. Troya. A survey of parallel distributed

genetic algorithms. Complexity (USA), 4(4):31–52, 1999.

[AW04] Michael Affenzeller and Stefan Wagner. SASEGASA: A new generic

parallel evolutionary algorithm for achieving highest quality results.

Journal of Heuristics - Special Issue on New Advances on Parallel

Meta-Heuristics for Complex Problems, 10:239–263, 2004.

[AWW05a] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. GA-

selection revisited from an ES-driven point of view. In J. Mira and

J. R. Alvarez, editors, Artificial Intelligence and Knowledge Engi-

neering Applications: A Bioinspired Approach, volume 3562 of Lec-

ture Notes in Computer Science, pages 262–271. Springer, 2005.

[AWW05b] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. Goal-

oriented preservation of essential genetic information by offspring se-

lection. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO) 2005, volume 2, pages 1595–1596. Association

for Computing Machinery (ACM), 2005.

[BB94] Marco Bohanec and Ivan Bratko. Trading accuracy for simplicity in

decision trees. Machine Learning, 15:223 – 250, 1994.

[BD91] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and

Methods. Springer, 1991.

[BD96] Peter J. Brockwell and Richard A. Davis. A First Course in Time

Series Analysis. Springer, 1996.

[BES01] Elizabeth Bradley, Matthew Easley, and Reinhard Stolle. Reason-

ing about nonlinear system identification. Artificial Intelligence,

133:139–188, December 2001.

[BGK04] Edmund K. Burke, Steven Gustafson, and Graham Kendall. Diver-

sity in genetic programming: An analysis of measures and correla-

tion with fitness. IEEE Transactions on Evolutionary Computation,

8(1):47–62, 2004.

346 BIBLIOGRAPHY

[BJ76] George E. P. Box and Gwilym M. Jenkins. Time Series Analysis:

Forecasting and Control. Holden-Day, 1976.

[BK00] Vladan Babovic and Maarten Keijzer. Genetic programming as a

model induction engine. Journal of Hydroinformatics, 1(2):35–60,

2000.

[BKSS99] Forrest H Bennett III, John R. Koza, James Shipman, and Oscar

Stiffelman. Building a parallel computer system for $18,000 that per-

forms a half peta-flop per day. In Wolfgang Banzhaf, Jason Daida,

Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark Jakiela,

and Robert E. Smith, editors, Proceedings of the Genetic and Evo-

lutionary Computation Conference, volume 2, pages 1484–1490, Or-

lando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[BL04] Wolfgang Banzhaf and Christian W. G. Lasarczyk. Genetic pro-

gramming of an algorithmic chemistry. In Una-May O’Reilly, Tina

Yu, Rick L. Riolo, and Bill Worzel, editors, Genetic Programming

Theory and Practice II, chapter 11, pages 175–190. Springer, Ann

Arbor, 13-15 May 2004.

[BLFM04] Celia C. Bojarczuk, Heitor S. Lopes, Alex A. Freitas, and Edson L

Michalkiewicz. A constrained-syntax genetic programming system

for discovering classification rules: application to medical data sets.

Artificial Intelligence in Medicine, 30(1):27–48, January 2004.

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.

Francone. Genetic Programming – An Introduction; On the Auto-

matic Evolution of Computer Programs and its Applications. Morgan

Kaufmann, San Francisco, CA, USA, January 1998.

[BOA+05] Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang

Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantu-Paz, Di-

pankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de

Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan,

Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Wat-

son, and Eckart Zitzler, editors. GECCO 2005: Proceedings of the

2005 conference on Genetic and evolutionary computation, Washing-

ton DC, USA, 25-29 June 2005. ACM Press.

[Bra97] Andrew Bradley. The use of the area under the ROC curve in

the evaluation of machine learning algorithms. Pattern Recognition,

30:1145–1159, 1997.

BIBLIOGRAPHY 347

[BU95] Carla E. Brodley and Paul E. Utgoff. Multivariate decision trees.

Machine Learning, 19(1):45–77, 1995.

[CG93] Helen G. Cobb and John Grefenstette. Genetic algorithms for track-

ing changing environments. In Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 523–530, 1993.

[Cha01] Chris Chatfield, editor. Time Series and Forecasting. Chapman and

Hall, 2001.

[CJ91a] Robert J. Collins and David R. Jefferson. Antfarm: Towards simu-

lated evolution. In Christopher G. Langton, Charles Taylor, J. Doyne

Farmer, and Steen Rasmussen, editors, Artificial Life II, pages 579–

601. Addison-Wesley, Redwood City, CA, 1991.

[CJ91b] Robert J. Collins and David R. Jefferson. Representations for ar-

tificial organisms. In Jean-Arcady Meyer and Stewart W. Wilson,

editors, Proceedings of the First International Conference on Simu-

lation of Adaptive Behavior: From Animals to Animats, pages 382–

390. MIT Press, 1991.

[CO07] Steffen Christensen and Franz Oppacher. Solving the artificial ant

on the santa fe trail problem in 20,696 fitness evaluations. In

Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,

John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy

Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller,

Jason Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Ku-

mara Sastry, Kenneth Owen Stanley, Thomas Stutzle, Richard A

Watson, and Ingo Wegener, editors, GECCO ’07: Proceedings of

the 9th annual conference on Genetic and evolutionary computation,

volume 2, pages 1574–1579, London, 7-11 July 2007. ACM Press.

[CP94] Weon Sam Chung and Rafael A. Perez. The schema theorem consid-

ered insufficient. Proceedings of the Sixth IEEE International Con-

ference on Tools with Artificial Intelligence, pages 748–751, 1994.

[CP97] Erick Cantú-Paz. A survey of parallel genetic algorithms. Technical

Report IlliGAL 97003, University of Illinois at Urbana-Champaign,

1997.

[CP01] Erick Cantú-Paz. Efficient and Accurate Parallel Genetic Algo-

rithms. Kluwer Academic Publishers, 2001.

348 BIBLIOGRAPHY

[CPFD+03a] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis,

Rajkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K.

Standish, Graham Kendall, Stewart W. Wilson, Mark Harman,

Joachim Wegener, Dipankar Dasgupta, Mitchell A. Potter, Alan C.

Schultz, Kathryn A. Dowsland, Natasha Jonoska, and Julian F.

Miller, editors. Genetic and Evolutionary Computation – GECCO

2003, Part I, volume 2723 of Lecture Notes in Computer Science,

Chicago, IL, USA, 12-16 July 2003. Springer.

[CPFD+03b] Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, Lawrence Davis,

Rajkumar Roy, Una-May O’Reilly, Hans-Georg Beyer, Russell K.

Standish, Graham Kendall, Stewart W. Wilson, Mark Harman,

Joachim Wegener, Dipankar Dasgupta, Mitchell A. Potter, Alan C.

Schultz, Kathryn A. Dowsland, Natasha Jonoska, and Julian F.

Miller, editors. Genetic and Evolutionary Computation – GECCO

2003, Part II, volume 2724 of Lecture Notes in Computer Science.

Springer, 12-16 July 2003.

[CPG99] Erick Cantu-Paz and David E. Goldberg. On the scalability of par-

allel genetic algorithms. Evolutionary Computation, 7(4):429–449,

1999.

[Cra85] Nichael L. Cramer. A representation for the adapative generation

of simple sequential programs. International Conference on Genetic

Algorithms and their Applications (ICGA85), pages 183–187, 1985.

[CTE+06] Pierre Collet, Marco Tomassini, Marc Ebner, Steven Gustafson, and

Anikó Ekárt, editors. Proceedings of the 9th European Conference on

Genetic Programming, volume 3905 of Lecture Notes in Computer

Science, Budapest, Hungary, 10 - 12 April 2006. Springer.

[DAG01] Wlodzislaw Duch, Rafal Adamczak, and Krzysztof Grabczewski. A

new methodology of extraction, optimization and application of crisp

and fuzzy logical rules. IEEE Transactions on Neural Networks,

12:277–306, 2001.

[Dar59] Charles Darwin. The Origin of Species By Means of Natural Selec-

tion or the Preservation of Favoured Races in the Struggle for Life.

Murray, London, 1859.

[Dar98] Charles Darwin. The Origin of Species. Wordsworth Classics of

World Literature. Wordsworth Editions Limited, 1998.

BIBLIOGRAPHY 349

[Dei04] Manfred Deistler. System identification and time series analysis:

Past, present, and future. In Stochastic Theory and Control: Pro-

ceedings of a Workshop held in Lawrence, Kansas, Lecture Notes in

Control and Information Sciences, pages 97–110. Springer Berlin /

Heidelberg, 2004.

[DG89] Kalyanmoy Deb and David E. Goldberg. An investigation of niche

and species formation in genetic function optimization. In Proceed-

ings of the Third International Conference on Genetic Algorithms,

pages 42–50. Morgan Kaufmann, 1989.

[DH02] Judith E. Devaney and John G. Hagedorn. The role of genetic pro-

gramming in describing the microscopic structure of hydrating plas-

ter. In Erick Cantú-Paz, editor, Late Breaking Papers at the Genetic

and Evolutionary Computation Conference (GECCO-2002), pages

91–98, New York, NY, July 2002. AAAI.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Clas-

sification. Wiley Interscience, 2nd edition, 2000.

[DLJD00] Dumitru Dumitrescu, Beatrice Lazzerini, Lakhmi C. Jain, and

Adrian Dumitrescu. Evolutionary Computation. The CRC Press In-

ternational Series on Computational Intelligence. CRC Press, 2000.

[dN06] Lilian M. de Menezes and Nikolay Y. Nikolaev. Forecasting with

genetically programmed polynomial neural networks. International

Journal of Forecasting, 22(2):249–265, April-June 2006.

[DOMK+01] Stephan Dreiseitl, Lucila Ohno-Machado, Harald Kittler, Staal Vin-

terbo, Holger Billhardt, and Michael Binder. A comparison of ma-

chine learning methods for the diagnosis of pigmented skin lesions.

Journal of Biomedical Informatics, 34:28–36, 2001.

[DPB+04a] Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg

Beyer, Edmund Burke, Paul Darwen, Dipankar Dasgupta, Dario Flo-

reano, James Foster, Mark Harman, Owen Holland, Pier Luca Lanzi,

Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andy Tyrrell,

editors. Genetic and Evolutionary Computation – GECCO-2004,

Part I, volume 3102 of Lecture Notes in Computer Science, Seattle,

WA, USA, 26-30 June 2004. Springer-Verlag.

[DPB+04b] Kalyanmoy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg

Beyer, Edmund Burke, Paul Darwen, Dipankar Dasgupta, Dario Flo-

reano, James Foster, Mark Harman, Owen Holland, Pier Luca Lanzi,

350 BIBLIOGRAPHY

Lee Spector, Andrea Tettamanzi, Dirk Thierens, and Andy Tyrrell,

editors. Genetic and Evolutionary Computation – GECCO-2004,

Part II, volume 3103 of Lecture Notes in Computer Science, Seattle,

WA, USA, 26-30 June 2004. Springer-Verlag.

[dRLF+05] Luigi del Re, Peter Langthaler, Christian Furtmüller, Stephan Win-

kler, and Michael Affenzeller. NOx virtual sensor based on structure

identification and global optimization. In Proceedings of the SAE

World Congress 2005, number 2005-01-0050, 2005.

[Dro98] Stefan Droste. Genetic programming with guaranteed quality. In

John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E.

Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Program-

ming 1998: Proceedings of the Third Annual Conference, pages 54–

59, University of Wisconsin, Madison, Wisconsin, USA, 22-25 July

1998. Morgan Kaufmann.

[DS98] Norman R. Draper and Harry Smith. Applied Regression Analysis.

Wiley, 1998.

[Eic07] Christoph F. Eick. Evolutionary Programming: Genetic Program-

ming (http://www2.cs.uh.edu/∼ceick/6367/eiben6.ppt, class trans-

parencies). Department of Computer Science, University of Houston,

Texas, 2007.

[EKK04] Jeroen Eggermont, Joost N. Kok, and Walter A. Kosters. Detecting

and pruning introns for faster decision tree evolution. In Xin Yao,

Edmund Burke, Jose A. Lozano, Jim Smith, Juan J. Merelo-Guervós,

John A. Bullinaria, Jonathan Rowe, Peter Tiňo Ata Kabán, and

Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature -

PPSN VIII, volume 3242 of LNCS, pages 1071–1080, Birmingham,

UK, 18-22 September 2004. Springer-Verlag.

[Ell98] Jeff Ellis. An investigation of predictive and adaptive model-based

methods for direct ground-to-space teleoperation with time delay.

Master’s thesis, Wright State University, 1998.

[EN00] Aniko Ekart and S. Z. Nemeth. A metric for genetic programs and fit-

ness sharing. In Riccardo Poli, Wolfgang Banzhaf, William B. Lang-

don, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors,

Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of

LNCS, pages 259–270, Edinburgh, 15-16 April 2000. Springer-Verlag.

BIBLIOGRAPHY 351

[EN01] Aniko Ekart and S. Z. Nemeth. Selection based on the pareto non-

domination criterion for controlling code growth in genetic program-

ming. Genetic Programming and Evolvable Machines, 2(1):61–73,

March 2001.

[EOE+07] Marc Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and

Anna Isabel Esparcia-Alcázar, editors. Proceedings of the 10th Eu-

ropean Conference on Genetic Programming, volume 4445 of Lecture

Notes in Computer Science, Valencia, Spain, 11 - 13 April 2007.

Springer.

[ES03] Agoston E. Eiben and James E. Smith. Introduction to Evolutionary

Computing. Springer, 2003.

[FBF+03] Peter Flach, Hendrik Blockeel, Cesar Ferri, José Hernández-Orallo,

and Jan Struyf. Decision support for data mining: Introduction to

ROC analysis and its applications. Data mining and decision support:

Integration and collaboration, 2003.

[FE05] Jonathan E. Fieldsend and Richard M. Everson. Formulation and

comparison of multi-class ROC surfaces. Proceedings of the ICML

2005 Workshop on ROC Analysis in Machine Learning, pages 41–48,

2005.

[FG97] David B. Fogel and Adam Ghozeil. Schema processing under pro-

portional selection in the presence of random effects. IEEE Trans.

Evolutionary Computation, 1(4):290–293, 1997.

[FG98] David B. Fogel and Adam Ghozeil. The schema theorem and the mis-

allocation of trials in the presence of stochastic effects. Proceedings

of the 7th International Conference on Evolutionary Programming

VI, 1447:313–321, 1998.

[Fog94] David B. Fogel. An introduction to simulated evolutionary optimiza-

tion. IEEE Trans. on Neural Networks, 5(1):3–14, 1994.

[For81] Richard Forsyth. BEAGLE – A Darwinian approach to pattern

recognition. Kybernetes, 10:159–166, 1981.

[Fox97] John Fox. Applied Regression Analysis, Linear Models and Related

Methods. Sage, 1997.

352 BIBLIOGRAPHY

[FP98] Pablo Funes and Jordan Pollack. Evolutionary body building: Adap-

tive physical designs for robots. Artificial Life, 4(4):337–357, Fall

1998.

[FPS06] Gianluigi Folino, Clara Pizzuti, and Giandomenico Spezzano. Im-

proving cooperative GP ensemble with clustering and pruning for

pattern classification. In Maarten Keijzer, Mike Cattolico, Dirk

Arnold, Vladan Babovic, Christian Blum, Peter Bosman, Martin V.

Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G. Ficici,

James Foster, Arturo Hernandez-Aguirre, Greg Hornby, Hod Lip-

son, Phil McMinn, Jason Moore, Guenther Raidl, Franz Rothlauf,

Conor Ryan, and Dirk Thierens, editors, GECCO 2006: Proceedings

of the 8th annual conference on Genetic and evolutionary computa-

tion, volume 1, pages 791–798, Seattle, Washington, USA, 8-12 July

2006. ACM Press.

[FPSS96] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth.

From data mining to knowledge discovery: An overview. Advances

in Knowledge Discovery and Data Mining, 1996.

[GAMRRP07] Marc Garcia-Arnau, Daniel Manrique, Juan Rios, and Alfonso

Rodriguez-Paton. Initialization method for grammar-guided genetic

programming. Knowledge-Based Systems, 20(2):127–133, March

2007.

[GAT06] Alma Lilia Garcia-Almanza and Edward P. K. Tsang. Simplifying

decision trees learned by genetic programming. In Proceedings of

the 2006 IEEE Congress on Evolutionary Computation, pages 7906–

7912, Vancouver, 6-21 July 2006. IEEE Press.

[GB89] John J. Grefenstette and James E. Baker. How genetic algorithms

work: A critical look at implicit parallelism. In J. David Schaffer,

editor, Proceedings of the Third International Conference on Genetic

Algorithms. Morgan Kaufmann Publishers, 1989.

[GL97] Fred Glover and Fred Laguna. Tabu Search. Kluwer Academic Pub-

lishers, 1997.

[Glo86] Fred Glover. Future paths for integer programming and links to

artificial intelligence. Computers & Operations Research, 13:533–549,

1986.

BIBLIOGRAPHY 353

[GMW82] Philip Gill, Walter Murray, and Margaret Wright. Practical Opti-

mization. Academic Press, 1982.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison Wesley Longman, 1989.

[GR94] Chris Gathercole and Peter Ross. Dynamic training subset selection

for supervised learning in genetic programming. In Yuval Davidor,

Hans-Paul Schwefel, and Reinhard Männer, editors, Parallel Prob-

lem Solving from Nature III, volume 866 of LNCS, pages 312–321,

Jerusalem, 9-14 October 1994. Springer-Verlag.

[Gru94] Frederic Gruau. Neural Network Synthesis using Cellular En-

coding and the Genetic Algorithm. PhD thesis, Laboratoire de

l’Informatique du Parallilisme, Ecole Normale Supirieure de Lyon,

France, 1994.

[Gru96] Frederic Gruau. On using syntactic constraints with genetic pro-

gramming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Ad-

vances in Genetic Programming 2, chapter 19, pages 377–394. MIT

Press, Cambridge, MA, USA, 1996.

[Ham58] Charles L. Hamblin. Computer languages. The Australian Journal

of Science, 20:135–139, 1958.

[Ham62] Charles L. Hamblin. Translation to and from Polish notation. Com-

puter Journal, 5:210–213, 1962.

[Ham94] James D. Hamilton. Time Series Analysis. Princeton University

Press, 1994.

[Hey88] John B. Heywood. Internal Combustion Engine Fundamentals. Mc-

Graw Hill, 1988.

[HHM04] Hoang Tuan Hao, Nguyen Xuan Hoai, and Robert I McKay. Does it

matter where you start? A comparison of two initialisation strategies

for grammar guided genetic programming. In R I Mckay and Sung-

Bae Cho, editors, Proceedings of The Second Asian-Pacific Workshop

on Genetic Programming, Cairns, Australia, 6-7 December 2004.

[HLdVL07] José Ignacio Hidalgo, Juan Lanchares, Francisco Fernández de Vega,

and Daniel Lombraña. Is the island model fault tolerant? In Pro-

ceedings of the Genetic and Evolutionary Computation Conference

354 BIBLIOGRAPHY

GECCO 2007, pages 2737–2744. Association for Computing Machin-

ery (ACM), 2007.

[HM82] James A. Hanley and Barbara J. McNeil. The meaning and use

of the area under a receiver operating characteristic (ROC) curve.

Radiology, 143:29–36, 1982.

[HOFLF04] José Hernández-Orallo, César Ferri, Nicolas Lachiche, and Peter A.

Flach, editors. ROC Analysis in Artificial Intelligence, 1st Interna-

tional Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004,

2004.

[Hol75] John H. Holland. Adaption in Natural and Artifical Systems. Uni-

versity of Michigan Press, 1975.

[Här90] Wolfgang Härdle. Applied Nonparametric Regression. Cambridge

University Press, 1990.

[HRv07] Kenneth Holladay, Kay Robbins, and Jeffery von Ronne. FIFTH:

A stack based GP language for vector processing. In Marc Ebner,

Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel

Esparcia-Alcázar, editors, Proceedings of the 10th European Con-

ference on Genetic Programming, volume 4445 of Lecture Notes in

Computer Science, pages 102–113, Valencia, Spain, 11 - 13 April

2007. Springer.

[HS95] David P. Helmbold and Robert E. Schapire. Predicting nearly as

well as the best pruning of a decision tree. Proceedings of the Eighth

Annual Conference on Computational Learning Theory, pages 61 –

68, 1995.

[HSC96] Howard J. Hamilton, Ning Shan, and Nick Cercone. Riac: A rule

induction algorithm based on approximate classification. Technical

Report CS 96-06, Regina University, 1996.

[HSD01] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-

changing data streams. Proceedings of the 7th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining,

pages 97–106, 2001.

[HW07] Markus Hirsch and Stephan Winkler. Personal communication on

combustion and formation of NOx, November 2007.

BIBLIOGRAPHY 355

[IIS98] Takuya Ito, Hitoshi Iba, and Satoshi Sato. Non-destructive depth-

dependent crossover for genetic programming. In Wolfgang Banzhaf,

Riccardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors,

Proceedings of the First European Workshop on Genetic Program-

ming, volume 1391 of LNCS, pages 71–82, Paris, 14-15 April 1998.

Springer-Verlag.

[Jac94] Dale Jacquette. Philosophy of Mind. Prentice Hall, 1994.

[Jac99] Christian Jacob. Lindenmayer systems and growth program evolu-

tion. In Talib S. Hussain, editor, Advanced Grammar Techniques

Within Genetic Programming and Evolutionary Computation, pages

76–79, Orlando, Florida, USA, 13 July 1999.

[JCC+92] David Jefferson, Robert Collins, Claus Cooper, Michael Dyer, Mar-

got Flowers, Richard Korf, Charles Taylor, and Alan Wang. Evolu-

tion as a theme in artificial life: The genesys/tracker system. Artifi-

cial Life II, pages 417–434, 1992.

[JHC04] Istvan Jonyer, Lawrence B. Holder, and Diane J. Cook. Attribute-

value selection based on minimum description length. In Proceed-

ings of the International Conference on Artificial Intelligence, pages

1154–1159, 2004.

[JM05] Xianhua Jiang and Yuichi Motai. Incremental on-line PCA for auto-

matic motion learning of eigen behavior. Proceedings of the 1st In-

ternational Workshop on Automatic Learning and Real-Time ALaRT

‘05, pages 153–164, 2005.

[Jon75] Kenneth A. De Jong. An Analysis of the Behavior of a Class of

Genetic Adaptive Systems. PhD thesis, University of Michigan, 1975.

[JP96] Hugues Juille and Jordan B. Pollack. Massively parallel genetic pro-

gramming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Ad-

vances in Genetic Programming 2, chapter 17, pages 339–358. MIT

Press, Cambridge, MA, USA, 1996.

[KB99] Maarten Keijzer and Vladan Babovic. Dimensionally aware genetic

programming. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben,

Max H. Garzon, Vasant Honavar, Mark Jakiela, and Robert E.

Smith, editors, Proceedings of the Genetic and Evolutionary Com-

putation Conference, volume 2, pages 1069–1076, Orlando, Florida,

USA, 13-17 July 1999. Morgan Kaufmann.

356 BIBLIOGRAPHY

[KBAK99] John Koza, Forrest H Bennett III, David Andre, and Martin A.

Keane. The design of analog circuits by means of genetic program-

ming. In Peter Bentley, editor, Evolutionary Design by Computers,

chapter 16, pages 365–385. Morgan Kaufmann, San Francisco, USA,

1999.

[KCA+06] Maarten Keijzer, Mike Cattolico, Dirk Arnold, Vladan Babovic,

Christian Blum, Peter Bosman, Martin V. Butz, Carlos Coello

Coello, Dipankar Dasgupta, Sevan G. Ficici, James Foster, Arturo

Hernandez-Aguirre, Greg Hornby, Hod Lipson, Phil McMinn, Ja-

son Moore, Guenther Raidl, Franz Rothlauf, Conor Ryan, and Dirk

Thierens, editors. GECCO 2006: Proceedings of the 8th annual con-

ference on Genetic and evolutionary computation, Seattle, Washing-

ton, USA, 8-12 July 2006. ACM Press.

[Kei96] Maarten Keijzer. Efficiently representing populations in genetic pro-

gramming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Ad-

vances in Genetic Programming 2, chapter 13, pages 259–278. MIT

Press, Cambridge, MA, USA, 1996.

[Kei02] Maarten Keijzer. Scientific Discovery using Genetic Programming.

PhD thesis, Danish Technical University, Lyngby, Denmark, March

2002.

[Ken73] Maurice G. Kendall. Time Series. Griffin, 1973.

[KGV83] Scott Kirkpatrick, Charles Daniel Gelatt, and Mario P. Vecchi. Op-

timization by simulated annealing. Science, 220:671–680, 1983.

[KIAK99] John R. Koza, Forrest H. Bennett III, David Andre, and Martin A.

Keane. Genetic Programming III: Darwinian Invention and Problem

Solving. Morgan Kaufmann Publishers, 1999.

[Kin93] Kenneth E. Kinnear, Jr. Generality and difficulty in genetic program-

ming: Evolving a sort. In Stephanie Forrest, editor, Proceedings of

the 5th International Conference on Genetic Algorithms, ICGA-93,

pages 287–294, University of Illinois at Urbana-Champaign, 17-21

July 1993. Morgan Kaufmann.

[KKS+03a] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-

lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV: Rou-

tine Human-Competitive Machine Learning. Kluwer Academic Pub-

lishers, 2003.

BIBLIOGRAPHY 357

[KKS+03b] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-

lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV: Rou-

tine Human-Competitive Machine Intelligence. Kluwer Academic

Publishers, 2003.

[Knu64] Donald E. Knuth. Backus normal form versus backus naur form.

Communications of the ACM, 7:735–736, 1964.

[KO90] Maurice G. Kendall and J. Keith Ord. Time Series. Edward Arnold,

1990.

[KOL+04] Maarten Keijzer, Una-May O’Reilly, Simon M. Lucas, Ernesto Costa,

and Terence Soule, editors. Genetic Programming 7th European Con-

ference, EuroGP 2004, Proceedings, volume 3003 of LNCS, Coimbra,

Portugal, 5-7 April 2004. Springer-Verlag.

[Koz89] John R. Koza. Hierarchical genetic algorithms operating on popula-

tions of computer programs. In N. S. Sridharan, editor, Proceedings

of the Eleventh International Joint Conference on Artificial Intelli-

gence IJCAI-89, volume 1, pages 768–774. Morgan Kaufmann, 20-25

August 1989.

[Koz92] John R. Koza. Genetic Programming: On the Programming of Com-

puters by Means of Natural Selection. The MIT Press, 1992.

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of

Reusable Programs. The MIT Press, 1994.

[KP98] Ron Kohavi and Foster Provost. Glossary of terms. Machine Learn-

ing, Special Issue on Applications of Machine Learning and the

Knowledge Discovery Process, 30:271–274, 1998.

[KSBK01] Sathiya Keerthi, Shirish K. Shevade, Chiranjib Bhattacharyya, and

Radha K. M. Karuturi. Improvements to platt’s SMO algorithm for

SVM classifier design. Neural Computation, 13(3):637–649, 2001.

[KTC+05] Maarten Keijzer, Andrea Tettamanzi, Pierre Collet, Jano I. van

Hemert, and Marco Tomassini, editors. Proceedings of the 8th Euro-

pean Conference on Genetic Programming, volume 3447 of Lecture

Notes in Computer Science, Lausanne, Switzerland, 30 March - 1

April 2005. Springer.

[Kus98] Ibrahim Kuscu. Evolving a generalised behavior: Artificial ant prob-

lem revisited. In V. William Porto, N. Saravanan, D. Waagen, and

358 BIBLIOGRAPHY

A. E. Eiben, editors, Seventh Annual Conference on Evolutionary

Programming, volume 1447 of LNCS, pages 799–808, Mission Valley

Marriott, San Diego, California, USA, 25-27 March 1998. Springer-

Verlag.

[Lan95] William B. Langdon. Evolving data structures using genetic pro-

gramming. In L. Eshelman, editor, Genetic Algorithms: Proceed-

ings of the Sixth International Conference (ICGA95), pages 295–302,

Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Lan98] William B. Langdon. Genetic Programming and Data Structures:

Genetic Programming + Data Structures = Automatic Program-

ming!, volume 1 of Genetic Programming. Kluwer, Boston, 24 April

1998.

[Lan99] William B. Langdon. Size fair tree crossovers. In Eric Postma

and Marc Gyssen, editors, Proceedings of the Eleventh Bel-

gium/Netherlands Conference on Artificial Intelligence (BNAIC’99),

pages 255–256, Kasteel Vaeshartelt, Maastricht, Holland, 3-4 Novem-

ber 1999.

[Lan00] William B. Langdon. Size fair and homologous tree genetic program-

ming crossovers. Genetic Programming and Evolvable Machines,

1(1/2):95–119, April 2000.

[LAWdR05] Peter Langthaler, Daniel Alberer, Stephan Winkler, and Luigi del

Re. Design eines virtuellen Sensors für Partikelmessung am Diesel-

motor. In M. Horn, M. Hofbauer, and N. Dourdoumas, editors,

Proceedings of the 14th Styrian Seminar on Control Engineering and

Process Automation (14. Steirisches Seminar über Regelungstechnik

und Prozessautomatisierung), pages 71–87, 2005.

[LC01] Thomas Loveard and Victor Ciesielski. Representing classification

problems in genetic programming. In Proceedings of the Congress

on Evolutionary Computation, volume 2, pages 1070–1077, COEX,

World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Ko-

rea, 2001. IEEE Press.

[Lev44] Kenneth Levenberg. A method for the solution of certain non-linear

problems in least squares. The Quarterly of Applied Mathematics,

2:164–168, 1944.

BIBLIOGRAPHY 359

[Lev66] Vladimir I. Levenshtein. Binary codes capable of correcting dele-

tions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–

710, 1966.

[LH06] Peter Lichodzijewski and Malcolm I. Heywood. Pareto-

coevolutionary genetic programming for problem decomposition in

multi-class classification. Proceedings of the Genetic and Evolution-

ary Computation Conference GECCO’07, pages 464–471, 2006.

[Lju99] Lennart Ljung. System Identification – Theory For the User, 2nd

edition. PTR Prentice Hall, Upper Saddle River, N.J., 1999.

[LN00] William B. Langdon and Peter Nordin. Seeding GP populations.

In Riccardo Poli, Wolfgang Banzhaf, William B. Langdon, Julian F.

Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic Pro-

gramming, Proceedings of EuroGP’2000, volume 1802 of LNCS,

pages 304–315, Edinburgh, 15-16 April 2000. Springer-Verlag.

[LP97] William B. Langdon and Riccardo Poli. Fitness causes bloat. In

P. K. Chawdhry, R. Roy, and R. K. Pant, editors, Soft Computing

in Engineering Design and Manufacturing, pages 13–22. Springer-

Verlag London, 23-27 June 1997.

[LP98] William B. Langdon and Riccardo Poli. Why ants are hard. In

John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy

Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Gold-

berg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming

1998: Proceedings of the Third Annual Conference, pages 193–201,

University of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998.

Morgan Kaufmann.

[LP02] William B. Langdon and Riccardo Poli. Foundations of Genetic Pro-

gramming. Springer Verlag, Berlin Heidelberg New York, 2002.

[LS97] Sean Luke and Lee Spector. A comparison of crossover and mutation

in genetic programming. In John R. Koza, Kalyanmoy Deb, Marco

Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Ri-

olo, editors, Genetic Programming 1997: Proceedings of the Second

Annual Conference, pages 240–248, Stanford University, CA, USA,

13-16 July 1997. Morgan Kaufmann.

[LW95] Jack Y. B. Lee and P. C. Wong. The effect of function noise on GP

efficiency. In Xin Yao, editor, Progress in Evolutionary Computation,

360 BIBLIOGRAPHY

volume 956 of Lecture Notes in Artificial Intelligence, pages 1–16.

Springer-Verlag, Heidelberg, Germany, 1995.

[Man97] Yishay Mansour. Pessimistic decision tree pruning based on tree size.

Proceedings of the Fourteenth International Conference on Machine

Learning, pages 195–201, 1997.

[Mar63] Donald W. Marquardt. An algorithm for least-squares estimation of

nonlinear parameters. SIAM J. Appl. Math., 11:431–441, 1963.

[McC60] John L. McCarthy. Recursive functions of symbolic expressions and

their computation by machine, part I. Communications of the ACM,

3(4):184–195, 1960.

[McK00] R I (Bob) McKay. Fitness sharing in genetic programming. In Dar-

rell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian

Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2000), pages

435–442, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kauf-

mann.

[MH99] Nicholas Freitag McPhee and Nicholas J. Hopper. Analysis of genetic

diversity through population history. In Wolfgang Banzhaf, Jason

Daida, Agoston E. Eiben, Max H. Garzon, Vasant Honavar, Mark

Jakiela, and Robert E. Smith, editors, Proceedings of the Genetic and

Evolutionary Computation Conference, volume 2, pages 1112–1120,

Orlando, Florida, USA, 13-17 July 1999. Morgan Kaufmann.

[MIB+00] Katharina Morik, Michael Imboff, Peter Brockhausen, Thorsten

Joachims, and Ursula Gather. Knowledge discovery and knowl-

edge validation in intensive care. Artificial Intelligence in Medicine,

19(3):225–249, 2000.

[Mic92] Zbigniew Michalewicz. Genetic Algorithms + Data Structures =

Evolution Programs. Springer, 1992.

[Min89] John Mingers. An empirical comparison of pruning methods for

decision tree induction. Machine Learning, 4:227 – 243, 1989.

[Mit00] Tom Mitchell. Machine Learning. McGraw-Hill, New York, 2000.

[MJK07] Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci.

Introduction to Time Series Analysis and Forecasting. Wiley & Sons,

2007.

BIBLIOGRAPHY 361

[MK00] Yoichiro Maeda and Satomi Kawaguchi. Redundant node prun-

ing and adaptive search method for genetic programming. In Dar-

rell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian

Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic

and Evolutionary Computation Conference (GECCO-2000), page

535, Las Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

[Mor91] Foster Morrison. The Art of Modeling Dynamic Systems: Forecasting

for Chaos, Randomness, and Determinism. John Wiley & Sons, Inc,

1991.

[MP43] Warren McCulloch and Walter Pitts. A logical calculus of the ideas

imminent in nervous activity. In Bulletin of Mathematical Biophysics,

volume 5, pages 115–137, 1943.

[NB95] Peter Nordin and Wolfgang Banzhaf. Complexity compression and

evolution. In L. Eshelman, editor, Genetic Algorithms: Proceed-

ings of the Sixth International Conference (ICGA95), pages 310–317,

Pittsburgh, PA, USA, 15-19 July 1995. Morgan Kaufmann.

[Nel01] Oliver Nelles. Nonlinear System Identification. Springer Verlag,

Berlin Heidelberg New York, 2001.

[Nol97] Daniel Nolan. Quantitative parsimony. British Journal for the Phi-

losophy of Science, 48(3):329–343, 1997.

[Nor97] Peter Nordin. Evolutionary Program Induction of Binary Machine

Code and its Applications. PhD thesis, der Universitat Dortmund

am Fachereich Informatik, 1997.

[Nør00] Magnus Nørgaard. Neural network based system identification tool-

box. Technical Report 00-E-891, Technical University of Denmark,

2000.

[NV92] Allen E. Nix and Michael D. Vose. Modeling genetic algorithms with

markov chains. Annals of Mathematics and Artificial Intelligence,

5(1):79–88, 1992.

[OO94] Una-May O’Reilly and Franz Oppacher. The troubling aspects of

a building block hypothesis for genetic programming. In L. Darrell

Whitley and Michael D. Vose, editors, Foundations of Genetic Algo-

rithms 3, pages 73–88, Estes Park, Colorado, USA, 31 July–2 August

1994. Morgan Kaufmann. Published 1995.

362 BIBLIOGRAPHY

[O’R95] Una-May O’Reilly. An Analysis of Genetic Programming. PhD

thesis, Carleton University, Ottawa-Carleton Institute for Computer

Science, Ottawa, Ontario, Canada, 22 September 1995.

[O’R97] Una-May O’Reilly. Using a distance metric on genetic programs

to understand genetic operators. In IEEE International Conference

on Systems, Man, and Cybernetics, Computational Cybernetics and

Simulation, volume 5, pages 4092–4097, Orlando, Florida, USA, 12-

15 October 1997.

[Pan83] Alan Pankratz. Forecasting With Univariate Box-Jenkins Models:

Concepts and Cases. Wiley, 1983.

[Pan91] Alan Pankratz. Forecasting With Dynamic Regression Models. Wiley,

1991.

[Per94] Tim Perkis. Stack-based genetic programming. In Proceedings of the

1994 IEEE World Congress on Computational Intelligence, volume 1,

pages 148–153, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

[PL97a] Riccardo Poli and William B. Langdon. An experimental analysis

of schema creation, propagation and disruption in genetic program-

ming. In Thomas Back, editor, Genetic Algorithms: Proceedings of

the Seventh International Conference, pages 18–25, Michigan State

University, East Lansing, MI, USA, 19-23 July 1997. Morgan Kauf-

mann.

[PL97b] Riccardo Poli and William B. Langdon. Genetic programming with

one-point crossover. In P. K. Chawdhry, R. Roy, and R. K. Pant,

editors, Soft Computing in Engineering Design and Manufacturing,

pages 180–189. Springer-Verlag London, 23-27 June 1997.

[PL97c] Riccardo Poli and William B. Langdon. A new schema theory for

genetic programming with one-point crossover and point mutation.

In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel,

Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Pro-

gramming 1997: Proceedings of the Second Annual Conference, pages

278–285, Stanford University, CA, USA, 13-16 July 1997. Morgan

Kaufmann.

[Pla99] John Platt. Fast training of support vector machines using sequential

minimal optimization. In B. Schoelkopf, C. Burges, and A. Smola,

editors, Advances in Kernel Methods - Support Vector Learning,

pages 185–208. MIT Press, 1999.

BIBLIOGRAPHY 363

[PLC05] Daniel Parrot, Xiaodong Li, and Vic Ciesielski. Multi-objective tech-

niques in genetic programming for evolving classifiers. Proceedings of

the 2005 Congress on Evolutionary Computation (CEC ’05), pages

183–190, 2005.

[PM01a] Riccardo Poli and Nicholas F. McPhee. Exact GP schema theory

for headless chicken crossover and subtree mutation. In Proceed-

ings of the 2001 Congress on Evolutionary Computation CEC2001,

pages 1062–1069, COEX, World Trade Center, 159 Samseong-dong,

Gangnam-gu, Seoul, Korea, 27-30 May 2001. IEEE Press.

[PM01b] Riccardo Poli and Nicholas Freitag McPhee. Exact schema theorems

for GP with one-point and standard crossover operating on linear

structures and their application to the study of the evolution of size.

In Julian F. Miller, Marco Tomassini, Pier Luca Lanzi, Conor Ryan,

Andrea G. B. Tettamanzi, and William B. Langdon, editors, Genetic

Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS,

pages 126–142, Lake Como, Italy, 18-20 April 2001. Springer-Verlag.

[PM01c] Riccardo Poli and Nicholas Freitag McPhee. Exact schema theory for

GP and variable-length GAs with homologous crossover. In Lee Spec-

tor, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael

Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk,

Max H. Garzon, and Edmund Burke, editors, Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2001),

pages 104–111, San Francisco, California, USA, 7-11 July 2001. Mor-

gan Kaufmann.

[PM03a] Riccardo Poli and Nicholas Freitag McPhee. General schema theory

for genetic programming with subtree-swapping crossover: Part I.

Evolutionary Computation, 11(1):53–66, March 2003.

[PM03b] Riccardo Poli and Nicholas Freitag McPhee. General schema theory

for genetic programming with subtree-swapping crossover: Part II.

Evolutionary Computation, 11(2):169–206, June 2003.

[PMR04] Riccardo Poli, Nicholas Freitag McPhee, and Jonathan E. Rowe. Ex-

act schema theory and markov chain models for genetic programming

and variable-length genetic algorithms with homologous crossover.

Genetic Programming and Evolvable Machines, 5(1):31–70, March

2004.

364 BIBLIOGRAPHY

[Pol97] Riccardo Poli. Evolution of graph-like programs with parallel dis-

tributed genetic programming. In Thomas Back, editor, Genetic Al-

gorithms: Proceedings of the Seventh International Conference, pages

346–353, Michigan State University, East Lansing, MI, USA, 19-23

July 1997. Morgan Kaufmann.

[Pol99a] Riccardo Poli. New results in the schema theory for GP with one-

point crossover which account for schema creation, survival and dis-

ruption. Technical Report CSRP-99-18, University of Birmingham,

School of Computer Science, December 1999.

[Pol99b] Riccardo Poli. Parallel distributed genetic programming. In David

Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Opti-

mization, Advanced Topics in Computer Science, chapter 27, pages

403–431. McGraw-Hill, Maidenhead, Berkshire, England, 1999.

[Pol00a] Riccardo Poli. Exact schema theorem and effective fitness for GP

with one-point crossover. In Darrell Whitley, David Goldberg, Erick

Cantu-Paz, Lee Spector, Ian Parmee, and Hans-Georg Beyer, editors,

Proceedings of the Genetic and Evolutionary Computation Confer-

ence (GECCO-2000), pages 469–476, Las Vegas, Nevada, USA, 10-12

July 2000. Morgan Kaufmann.

[Pol00b] Riccardo Poli. Hyperschema theory for GP with one-point crossover,

building blocks, and some new results in GA theory. In Riccardo

Poli, Wolfgang Banzhaf, William B. Langdon, Julian F. Miller, Pe-

ter Nordin, and Terence C. Fogarty, editors, Genetic Programming,

Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 163–180,

Edinburgh, 15-16 April 2000. Springer-Verlag.

[Pol00c] Riccardo Poli. A macroscopic exact schema theorem and a redefini-

tion of effective fitness for GP with one-point crossover. Technical

Report CSRP-00-1, University of Birmingham, School of Computer

Science, February 2000.

[Pol01] Riccardo Poli. Exact schema theory for genetic programming and

variable-length genetic algorithms with one-point crossover. Genetic

Programming and Evolvable Machines, 2(2):123–163, June 2001.

[Pop92] Karl Popper. The Logic of Scientific Discovery. Taylor & Francis,

1992.

BIBLIOGRAPHY 365

[PP01] Fabio Previdi and Thomas Parisini. Model-free fault detection: a

spectral estimation approach based on coherency functions. Inter-

national Journal of Control, 74:1107–1117, 2001.

[PTT01] Daniel Peña, George C. Tiao, and Ruey S. Tsay. A Course in Time

Series Analysis. Wiley, 2001.

[Que03] Christian Queinnec. LISP in Small Pieces. Cambridge University

Press, 2003.

[RB96] Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines

in genetic programming. In Peter J. Angeline and K. E. Kinnear,

Jr., editors, Advances in Genetic Programming 2, chapter 9, pages

177–202. MIT Press, Cambridge, MA, USA, 1996.

[Rec73] Ingo Rechenberg. Evolutionsstrategie. Friedrich Frommann Verlag,

1973.

[RF99] José Luis Rodŕıguez-Fernández. Ockham’s razor. Endeavour, 23:121–

125, 1999.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2nd edition, 2003.

[Ros95a] Justinian Rosca. Towards automatic discovery of building blocks

in genetic programming. In E. V. Siegel and J. R. Koza, editors,

Working Notes for the AAAI Symposium on Genetic Programming,

pages 78–85, MIT, Cambridge, MA, USA, 10–12 November 1995.

AAAI.

[Ros95b] Justinian P. Rosca. Entropy-driven adaptive representation. In Jus-

tinian P. Rosca, editor, Proceedings of the Workshop on Genetic Pro-

gramming: From Theory to Real-World Applications, pages 23–32,

Tahoe City, California, USA, 9 July 1995.

[Ros97] Justinian P. Rosca. Analysis of complexity drift in genetic program-

ming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.

Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic

Programming 1997: Proceedings of the Second Annual Conference,

pages 286–294, Stanford University, CA, USA, 13-16 July 1997. Mor-

gan Kaufmann.

366 BIBLIOGRAPHY

[RS01] Alain Ratle and Michele Sebag. Avoiding the bloat with probabilistic

grammar-guided genetic programming. In P. Collet, C. Fonlupt, J.-

K. Hao, E. Lutton, and M. Schoenauer, editors, Artificial Evolution

5th International Conference, Evolution Artificielle, EA 2001, vol-

ume 2310 of LNCS, pages 255–266, Creusot, France, October 29-31

2001. Springer Verlag.

[RS03] Alain Ratle and Michele Sebag. A novel approach to machine discov-

ery: Genetic programming and stochastic grammars. In S. Matwin

and C. Sammut, editors, Proceedings of Twelfth International Con-

ference on Inductive Logic Programming, volume 2583 of LNCS,

pages 207–222, Sydney, Australia, July 9-11, 2002 2003. Springer

Verlag.

[Sam59] Arthur Samuel. Some studies in machine learning using the game of

checkers. In IBM Journal of Research and Development, volume 3,

pages 211 – 229, 1959.

[Sch75] Hans-Paul Schwefel. Evolutionsstrategie und numerische Opti-

mierung. PhD thesis, Technische Universität Berlin, 1975.

[Sch94] Hans-Paul Schwefel. Numerische Optimierung von Computer-

Modellen mittels der Evolutionsstrategie. Birkhäuser Verlag, Basel,

Switzerland, 1994.

[Sei86] John H. Seinfeld. Atmospheric Chemistry and Physics of Air Pollu-

tion. Wiley, New York, 1986.

[SF98] Terence Soule and James A. Foster. Removal bias: a new cause of

code growth in tree based evolutionary programming. In 1998 IEEE

International Conference on Evolutionary Computation, pages 781–

186, Anchorage, Alaska, USA, 5-9 May 1998. IEEE Press.

[SFD96] Terence Soule, James A. Foster, and John Dickinson. Code growth in

genetic programming. In John R. Koza, David E. Goldberg, David B.

Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Pro-

ceedings of the First Annual Conference, pages 215–223, Stanford

University, CA, USA, 28–31 July 1996. MIT Press.

[SG99] Kim Sterelny and Peter E. Griffiths. Sex and Death: An Introduction

to Philosophy of Biology. University of Chicago Press, 1999.

BIBLIOGRAPHY 367

[SH98] Peter W. H. Smith and Kim Harries. Code growth, explicitly defined

introns, and alternative selection schemes. Evolutionary Computa-

tion, 6(4):339–360, Winter 1998.

[SJB+93] William M. Spears, Kenneth A. De Jong, Thomas Bäck, David B.

Fogel, and Hugo de Garis. An overview of evolutionary computation.

In P. Bradzil, editor, Proceedings of the 1993 European Conference on

Machine Learning, Vienna, Austria, 1993. Springer-Verlag, Berlin,

Heidelberg, New York.

[SJW92] Wolfram Schiffmann, Merten Joost, and Randolf Werner. Optimiza-

tion of the backpropagation algorithm for training multilayer per-

ceptrons. Technical Report 15, University of Koblenz, Institute of

Physics, 1992.

[SJW93] Wolfram Schiffmann, Merten Joost, and Randolf Werner. Compari-

son of optimized backpropagation algorithms. Proceedings of the Eu-

ropean Symposium on Artificial Neural Networks ESANN ’93, pages

97–104, 1993.

[Smi80] Stephen F. Smith. A Learning System Based on Genetic Adaptive

Algorithms. PhD thesis, University of Pittsburgh, 1980.

[SOG04] Kumara Sastry, Una-May O’Reilly, and David E. Goldberg. Pop-

ulation sizing for genetic programming based on decision making.

In Una-May O’Reilly, Tina Yu, Rick L. Riolo, and Bill Worzel, edi-

tors, Genetic Programming Theory and Practice II, chapter 4, pages

49–65. Springer, Ann Arbor, 13-15 May 2004.

[SPWR02] Christopher R. Stephens, Riccardo Poli, Alden H. Wright, and

Jonathan E. Rowe. Exact results from A coarse grained formula-

tion of the dynamics of variable-length genetic algorithms. In W. B.

Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,

K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A.

Potter, A. C. Schultz, J. F. Miller, E. Burke, and N. Jonoska, ed-

itors, GECCO 2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 578–585, New York, 9-13 July 2002.

Morgan Kaufmann Publishers.

[Sri99] Ashwin Srinivasan. Note on the location of optimal classifiers in n-

dimensional ROC space. Technical Report PRG-TR-2-99, Oxford

University Computing Laboratory, 1999.

368 BIBLIOGRAPHY

[SS01] Marc Schoenauer and Michele Sebag. Using domain knowledge in

evolutionary system identification. In K. C. Giannakoglou, D. Tsa-

halis, J. Periaux, K. Papailiou, and T. C. Fogarty, editors, Evolution-

ary Methods for Design, Optimization and Control with Applications

to Industrial Problems, Athens, 19-21 September 2001.

[SW97] Christopher R. Stephens and Henri Waelbroeck. Effective degrees

of freedom in genetic algorithms and the block hypothesis. Proceed-

ings of the Seventh International Conference on Genetic Algorithms

(ICGA97), pages 34–40, 1997.

[SW99] Christopher R. Stephens and Henri Waelbroeck. Schemata evolution

and building blocks. Evolutionary Computation, 7(2):109–124, 1999.

[SWM91] Timothy Starkweather, Darrell Whitley, and Keith E. Mathias. Op-

timization using distributed genetic algorithms. Parallel Problem

Solving from Nature, pages 176–185, 1991.

[TBB+07] Dirk Thierens, Hans-Georg Beyer, Josh Bongard, Jurgen Branke,

John Andrew Clark, Dave Cliff, Clare Bates Congdon, Kalyanmoy

Deb, Benjamin Doerr, Tim Kovacs, Sanjeev Kumar, Julian F. Miller,

Jason Moore, Frank Neumann, Martin Pelikan, Riccardo Poli, Ku-

mara Sastry, Kenneth Owen Stanley, Thomas Stutzle, Richard A

Watson, and Ingo Wegener, editors. GECCO 2007: Proceedings of

the 9th annual conference on Genetic and evolutionary computation,

London, UK, 7-11 July 2007. ACM Press.

[TG97] Ismail Taha and Joydeep Ghosh. Evaluation and ordering of rules

extracted from feedforward networks. Proceedings of the IEEE In-

ternational Conference on Neural Networks, pages 221–226, 1997.

[TH02] David Terrio and Malcolm I. Heywood. Directing crossover for re-

duction of bloat in GP. In W. Kinsner, A. Seback, and K. Ferens,

editors, IEEE CCECE 2003: IEEE Canadian Conference on Electri-

cal and Computer Engineering, pages 1111–1115. IEEE Press, 12-15

May 2002.

[THL94] James Ting-Ho-Lo. Synthetic approach to optimal filtering. IEEE

Transactions on Neural Networks, 5:803–811, 1994.

[Tho18] William M. Thorburn. The myth of occam’s razor. Mind, 27:345–

353, 1918.

BIBLIOGRAPHY 369

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York,

1998.

[vBS04] Richard van Basshuysen and Fred Schäfer. Internal Combustion En-

gine Handbook. SAE International, 2004.

[VL91] Michael D. Vose and Gunar E. Liepins. Punctuated equilibria in

genetic search. Complex Systems, 5:31–44, 1991.

[Vos99] Michael D. Vose. The simple genetic algorithm: foundations and

theory. MIT Press, Cambridge, MA, 1999.

[WA04a] Stefan Wagner and Michael Affenzeller. HeuristicLab grid - a

flexible and extensible environment for parallel heuristic optimiza-

tion. In Z. Bubnicki and A. Grzech, editors, Proceedings of the

15thInternational Conference on Systems Science, volume 1, pages

289–296. Oficyna Wydawnicza Politechniki Wroclawskiej, 2004.

[WA04b] Stefan Wagner and Michael Affenzeller. HeuristicLab grid - a flex-

ible and extensible environment for parallel heuristic optimization.

Journal of Systems Science, 30(4):103–110, 2004.

[WA04c] Stefan Wagner and Michael Affenzeller. The HeuristicLab optimiza-

tion environment. Technical report, Institute of Formal Models and

Verification, Johannes Kepler University, Linz, Austria, 2004.

[WA05a] Stefan Wagner and Michael Affenzeller. HeuristicLab: A generic and

extensible optimization environment. In B. Ribeiro, R. F. Albrecht,

A. Dobnikar, D. W. Pearson, and N. C. Steele, editors, Adaptive and

Natural Computing Algorithms, Springer Computer Science, pages

538–541. Springer, 2005.

[WA05b] Stefan Wagner and Michael Affenzeller. SexualGA: Gender-specific

selection for genetic algorithms. In N. Callaos, W. Lesso, and

E. Hansen, editors, Proceedings of the 9th World Multi-Conference on

Systemics, Cybernetics and Informatics (WMSCI) 2005, volume 4,

pages 76–81. International Institute of Informatics and Systemics,

2005.

[WAW04a] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Identi-

fying nonlinear model structures using genetic programming tech-

niques. In R. Trappl, editor, Cybernetics and Systems 2004, vol-

ume 1, pages 689–694. Austrian Society for Cybernetic Studies, 2004.

370 BIBLIOGRAPHY

[WAW04b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. New

methods for the identification of nonlinear model structures based

upon genetic programming techniques. In Z. Bubnicki and A. Grzech,

editors, Proceedings of the 15thInternational Conference on Systems

Science, volume 1, pages 386–393. Oficyna Wydawnicza Politechniki

Wroclawskiej, 2004.

[WAW05a] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Genetic

programming based model structure identification using on-line sys-

tem data. In F. Barros, A. Bruzzone, C. Frydman, and N. Gambiasi,

editors, Proceedings of Conceptual Modeling and Simulation Con-

ference CMS 2005, pages 177–186. Frydman, LSIS, Université Paul

Cézanne Aix Marseille III, 2005.

[WAW05b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. New

methods for the identification of nonlinear model structures based

upon genetic programming techniques. Journal of Systems Science,

31(1):5–13, 2005.

[WAW06a] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Advances

in applying genetic programming to machine learning, focussing on

classification problems. In Proceedings of the 9th International Work-

shop on Nature Inspired Distributed Computing NIDISC ’06, part of

the Proceedings of the 20th IEEE International Parallel & Distributed

Processing Symposium IPDPS 2006. IEEE, 2006.

[WAW06b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Auto-

matic data based patient classification using genetic programming.

In R. Trappl, R. Brachman, R.A. Brooks, H. Kitano, D. Lenat,

O. Stock, W. Wahlster, and M. Wooldridge, editors, Cybernetics

and Systems 2006, volume 1, pages 251–256. Austrian Society for

Cybernetic Studies, 2006.

[WAW06c] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Heuris-

ticModeler: A multi-purpose evolutionary machine learning algo-

rithm and its applications in medical data analysis. In A. Bruz-

zone, A. Guasch, M. Piera, and J. Rozenblit, editors, Proceedings

of the International Mediterranean Modelling Multiconference I3M

2006, pages 629–634. Piera, LogiSim, Barcelona, Spain, 2006.

[WAW06d] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Sets of re-

ceiver operating characteristic curves and their use in the evaluation

BIBLIOGRAPHY 371

of multi-class classification. In Proceedings of the Genetic and Evo-

lutionary Computation Conference GECCO 2006, volume 2, pages

1601–1602. Association for Computing Machinery (ACM), 2006.

[WAW06e] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Using en-

hanced genetic programming techniques for evolving classifiers in the

context of medical diagnosis - an empirical study. In Proceedings of

the GECCO 2006 Workshop on Medical Applications of Genetic and

Evolutionary Computation (MedGEC 2006). Association for Com-

puting Machinery (ACM), 2006.

[WAW07a] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Advanced

genetic programming based machine learning. Journal of Mathemat-

ical Modelling and Algorithms, 6(3):455–480, 2007.

[WAW07b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Selec-

tion pressure driven sliding window genetic programming. Lecture

Notes in Computer Science 4739: Computer Aided Systems Theory

- EuroCAST 2007, pages 789–795, 2007.

[WAW07c] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Vari-

ables diversity in systems identification based on extended genetic

programming. Proceedings of the 16th International Conference on

Systems Science, 2:470–479, 2007.

[WAW08a] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Offspring

selection and its effects on genetic propagation in genetic program-

ming based system identification. In Robert Trappl, editor, Cyber-

netics and Systems 2008, volume 2, pages 549–554. Austrian Society

for Cybernetic Studies, 2008.

[WAW08b] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. On the re-

liability of nonlinear modeling using enhanced genetic programming

techniques. In Proceedings of the Chaotic Modeling and Simulation

Conference (CHAOS2008), 2008.

[WC99] Peter A. Whigham and Peter F. Crapper. Time series modelling

using genetic programming: An application to rainfall-runoff models.

In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J.

Angeline, editors, Advances in Genetic Programming 3, chapter 5,

pages 89–104. MIT Press, Cambridge, MA, USA, June 1999.

372 BIBLIOGRAPHY

[WEA+05] Stephan Winkler, Hajrudin Efendic, Michael Affenzeller, Luigi del

Re, and Stefan Wagner. On-line modeling based on genetic program-

ming. In Proceedings of the 1st International Workshop on Automatic

Learning and Real-Time (ALaRT’05), pages 119–130. Institute of

Real-Time Learning Systems, University Siegen, Germany, 2005.

[WEA+06] Stephan Winkler, Hajrudin Efendic, Michael Affenzeller, Luigi del

Re, and Stefan Wagner. On-line modeling based on genetic program-

ming. International Journal on Intelligent Systems Technologies and

Applications, 2(2/3):255–270, 2006.

[WEdR06] Stephan Winkler, Hajrudin Efendic, and Luigi del Re. Quality pre-

assessment in steel industry using data based estimators. In S. Cier-

pisz, K. Miskiewicz, and A. Heyduk, editors, Proceedings of the IFAC

Workshop MMM’2006 on Automation in Mining, Mineral and Metal

Industry. International Federation for Automatic Control, 2006.

[Wei06] William W. S. Wei. Time Series Analysis – Univariate and Multi-

variate Methods. Addison-Wesley, 2006.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, San Francisco,

2005.

[WH87] Patrick Henry Winston and Berthold Klaus Paul Horn. LISP. Ad-

dison Wesley, 1987.

[Whi95] Peter A. Whigham. A schema theorem for context-free grammars.

In 1995 IEEE Conference on Evolutionary Computation, volume 1,

pages 178–181, Perth, Australia, 29 November - 1 December 1995.

IEEE Press.

[Whi96a] Peter A. Whigham. Grammatical Bias for Evolutionary Learning.

PhD thesis, School of Computer Science, University College, Univer-

sity of New South Wales, Australian Defence Force Academy, Can-

berra, Australia, 14 October 1996.

[Whi96b] Peter A. Whigham. Search bias, language bias, and genetic pro-

gramming. In John R. Koza, David E. Goldberg, David B. Fogel,

and Rick L. Riolo, editors, Genetic Programming 1996: Proceedings

of the First Annual Conference, pages 230–237, Stanford University,

CA, USA, 28–31 July 1996. MIT Press.

BIBLIOGRAPHY 373

[WHMS03] Ju Wen-Hua, David Madigan, and Steven L. Scott. On bayesian

learning of sparse classifiers. Technical Report 2003-08, Avaya Labs

Research, 2003.

[Wig60] Eugene Wigner. The unreasonable effectiveness of mathematics in

the natural sciences. In Communications on Pure and Applied Math-

matics, volume XIII, pages 1–14. John Wiley & Sons, Inc, New York,

1960.

[Win04] Stephan Winkler. Identifying nonlinear model structures using ge-

netic programming. Master’s thesis, Johannes Kepler University,

Linz, Austria, 2004.

[WK90] Sholom M. Weiss and Ioannis Kapouleas. An empirical comparison of

pattern recognition, neural nets, and machine learning classification

methods. In J. W. Shavlik and T. G. Dietterich, editors, Readings

in Machine Learning, pages 177–183. Kaufmann, San Mateo, CA,

1990.

[WK96] Gerhard Widmer and Miroslav Kubat. Learning in the presence of

concept drift and hidden contexts. Machine Learning, 23(2):69–101,

1996.

[WL96] Annie S. Wu and Robert K. Lindsay. A survey of intron research in

genetics. In Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg,

and Hans-Paul Schwefel, editors, Parallel Problem Solving From Na-

ture IV. Proceedings of the International Conference on Evolutionary

Computation, volume 1141 of LNCS, pages 101–110, Berlin, Ger-

many, 22-26 September 1996. Springer-Verlag.

[WMD96] Jürgen Warnatz, Ulrich Maas, and Robert W. Dibble. Combustion -

Physical and Chemical Fundamentals, Modeling and Simulation, Ex-

periments, Pollutant Formation. Springer-Verlag, Heidelberg, 1996.

[WWP+07] Stefan Wagner, Stephan Winkler, Erik Pitzer, Gabriel Kronberger,

Andreas Beham, Roland Braune, and Michael Affenzeller. Bene-

fits of plugin-based heuristic optimization software systems. Lecture

Notes in Computer Science 4739: Computer Aided Systems Theory

- EuroCAST 2007, pages 747–754, 2007.

[ZC93] Mark H. Zweig and Gregory Campbell. Receiver-operating char-

acteristic (ROC) plots: A fundamental evaluation tool in clinical

medicine. Clinical Chemistry, 39:561–577, 1993.

374 BIBLIOGRAPHY

[Zha97] Byoung-Tak Zhang. A taxonomy of control schemes for genetic code

growth. Position paper at the Workshop on Evolutionary Computa-

tion with Variable Size Representation at ICGA-97, 20 July 1997.

[Zha00] Byoung-Tak Zhang. Bayesian methods for efficient genetic program-

ming. Genetic Programming and Evolvable Machines, 1(3):217–242,

July 2000.

[ZM96] Byoung-Tak Zhang and Heinz Mühlenbein. Adaptive fitness func-

tions for dynamic growing/pruning of program trees. In Peter J.

Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Pro-

gramming 2, chapter 12, pages 241–256. MIT Press, Cambridge, MA,

USA, 1996.

375

List of Tables

6.1 Data based modeling example: Training data 78

6.2 Data based modeling example: Test data 82

8.1 Exemplary confusion matrix with three classes 122

8.2 Exemplary confusion matrix with two classes 123

14.1 Linear correlation of input variables and the target values (NOx) . . 184

14.2 Mean squared errors on training data for the NOx data set 185

14.3 Statistic features of the NOx data set II 190

14.4 Correlation of the variables in the NOx identification task II 192

14.5 Statistic features of the NOx data set III 194

14.6 Correlation of the variables in the NOx identification task III . . . 194

14.7 Statistic features of the Gearbox data set 197

14.8 Correlation of the variables in the Gearbox identification task . . . 197

14.9 Parameters and evaluation of NN models for the Gearbox data set . 201

14.10 Parameters and evaluation of NN models for the Gearbox data set . 202

14.11 Parameters and evaluation results for enhanced GP 203

14.12 Parameters and evaluation results for standard GP 206

376 LIST OF TABLES

15.1 Functions and terminals for enhanced GP based classification 209

15.2 Experimental results for the Thyroid data set 215

15.3 Best GP parameter settings for solving classification problems . . . 215

15.4 Training and test results for the Wisconsin data set 224

15.5 Average test accuracy of classifiers for the Wisconsin data set . . . 225

15.6 Confusion matrices for results for the Melanoma data set 226

15.7 Average test accuracy of classifiers for the Melanoma data set . . . 227

15.8 Summary of training and test results for the Thyroid data set . . . 228

15.9 Average test accuracy of classifiers for the Thyroid data set 229

15.10 Simplified nearest neighbor analysis for steel production data 238

15.11 Overview of the modeling results . 239

16.1 Results of the tests executed for the Thyroid data set 248

16.2 Analysis of the best model produced in test series (4) 249

17.1 GP test strategies . 252

17.2 Test results in genetic propagation tests 252

17.3 Overall genetic propagation . 253

17.4 Additional test results in genetic propagation tests 256

17.5 Test results in additional genetic propagation tests 256

17.6 Overall genetic propagation in additional tests 257

17.7 Data and algorithm specific settings of initial GP tests 258

17.8 Data and algorithm specific settings of systematic GP tests 263

17.9 References to input variables in test runs of strategy I 264

17.10 References to input variables in test runs of strategy II 264

LIST OF TABLES 377

17.11 References to input variables in test runs of strategy III 265

17.12 References to input variables in test runs of strategy IV 265

17.13 Average impacts of input variables in test runs of GP strategy I . . 267

17.14 Average impacts of input variables in test runs of GP strategy III . 267

17.15 Fluctuation of variable frequencies for test strategies I and III . . . 269

17.16 Fluctuation of variable frequencies for test strategies II and IV . . . 269

17.17 GP test strategies . 271

17.18 Solution qualities for NOx and Thyroid test series 272

17.19 Average solution similarities in NOx and Thyroid tests 274

17.20 Maximum solution similarities in NOx and Thyroid tests 275

17.21 GP test strategies . 280

17.22 Multi population diversity test results (Thyroid tests) 282

17.23 Multi population diversity test results (NOx tests) 283

17.24 GP test strategies for similarity estimators comparison 285

17.25 GP test strategies for similarity estimators comparison 286

17.26 Comparing similarity estimation results: Basic statistics 288

17.27 Partitions for detailed comparison of similarity estimation results . . 289

17.28 Detailed partition-wise comparison of similarity estimation results . 290

17.29 GP parameters used for code growth and bloat prevention tests . . 298

17.30 Code growth prevention strategies applied in these test series 299

17.31 Performance of pruning strategies 301

17.32 Formula size progress in test series (d) 302

17.33 Quality of results returned in test series (d) 302

17.34 Formula size and population diversity progress in test series (e) . . . 303

378 LIST OF TABLES

17.35 Formula size and population diversity progress in test series (f) . . . 304

17.36 Quality of results returned in test series (f) 304

17.37 Formula size and population diversity progress in test series (g) . . . 305

17.38 Quality of results returned in test series (g) 306

17.39 Formula size and population diversity progress in test series (h) . . 307

17.40 Quality of results returned in test series (h) 307

17.41 Comparison of best models on training and validation data 308

17.42 Formula size and population diversity progress in test series (i) . . . 311

17.43 Quality of results returned in test series (i) 311

18.1 Incorporation of physical knowledge about the formation of NOx . . 318

18.2 Results for test series I . 319

18.3 Results for test series II . 319

18.4 Results for test series III . 320

18.5 Results for test series IV . 321

18.6 Population diversity progress in test series III 321

18.7 Population diversity progress in test series IV 323

18.8 Impact of terminals and functions in test series I & II and III & IV 324

18.9 Results for test series V . 324

18.10 Standard GP results for test series V 325

18.11 Population diversity progress in test series V 325

19.1 Results similarity statistics for Melanoma tests 331

19.2 Results similarity statistics for Thyroid tests 331

19.3 Results similarity statistics for Wisconsin tests 331

LIST OF TABLES 379

19.4 Results similarity statistics for NOx tests 332

19.5 Pruned results similarity statistics for Melanoma tests 332

19.6 Pruned results similarity statistics for Wisconsin tests 332

19.7 Pruned results similarity statistics for Thyroid tests 333

19.8 Pruned results similarity statistics for NOx tests 333

380 LIST OF TABLES

381

List of Figures

1.1 The genetic programming cycle and data based modeling 2

1.2 Evaluation of a dynamic and a classification model 3

2.1 Taxonomy of optimization techniques 8

2.2 Exemplary genetic operations in a GA 11

2.3 The standard genetic algorithm (GA) 13

2.4 Exemplary genetic operations in ES 16

2.5 The Gaussian probability density function for N(0, 1) 16

2.6 The standard evolution strategy (ES) algorithm 17

3.1 Exemplary programs given as rooted, labeled structure trees 27

3.2 Exemplary evaluation of program (a) 28

3.3 Exemplary evaluation of program (b) 29

3.4 Exemplary crossover of programs (a) and (b) 31

3.5 Exemplary mutation of a program 32

3.6 Intron-augmented representation of an exemplary program in PDGP 35

3.7 Major preparatory steps of the basic GP process 36

3.8 The genetic programming cycle . 38

3.9 The GP based problem solving process 39

382 LIST OF FIGURES

3.10 GA and GP flowcharts . 40

3.11 The Boolean multiplexer with three address bits 42

3.12 Correct solution to the 3-address Boolean multiplexer problem . . . 43

3.13 The Santa Fe trail . 44

3.14 Santa Fe trail solution . 45

3.15 Symbolic regression example . 47

3.16 Exemplary formulae . 47

3.17 Design of a 10 dB Amplifier . 49

3.18 Programs matching an exemplary schema 51

3.19 The GP schema ∗(=,= (x,=)) and three exemplary programs . . . 52

3.20 The GP schema H = +(*(=,x),=) and exemplary schemata 55

3.21 The GP hyperschema ∗(#,= (x,=)) and three exemplary programs 56

3.22 The GP schema H = +(∗(=, x),=) and exemplary building blocks . 57

3.23 Relation between approximate and exact schema theorems 58

3.24 Examples for bloat . 61

3.25 Design of a 10 dB Amplifier, excised 61

4.1 Offspring selection . 67

5.1 Basic concepts for parallel genetic algorithms 71

6.1 Data based modeling example: Training data 79

6.2 Evaluation of an optimally fit linear model 80

6.3 Evaluation of an optimally fit cubic model 80

6.4 Evaluation of an optimally fit polynomial model (n = 10) 81

6.5 Evaluation of an optimally fit polynomial model (n = 20) 81

LIST OF FIGURES 383

6.6 Evaluation of an optimally fit linear model on all data 82

6.7 Evaluation of an optimally fit cubic model on all data 83

6.8 Evaluation of an optimally fit polynomial model on all data 83

6.9 Training and test errors for varying numbers of parameters n 84

6.10 Basic steps in system identification 85

6.11 Basic steps in GP-based system identification 88

7.1 Structure tree representation of a formula 104

7.2 Structure tree crossover and the functional basis 106

8.1 Classification example: Class values and optimal thresholds 121

8.2 Exemplary ROC curves and respective AUCs 124

8.3 Exemplary graphical display of a multi-class ROC (MROC) matrix 126

8.4 Original class values, estimated target values and class ranges 130

9.1 A priori knowledge about the structure of a system 135

9.2 Models representing a priori knowledge 137

10.1 Simple examples for pruning in GP 146

11.1 Simple formula structure and genetic information items 155

13.1 Workflow of the on-line GP process 174

14.1 Dynamic diesel engine test bench 182

14.2 Evaluation of the best model produced by GP for test strategy (1) . 185

14.3 Evaluation of the best model produced by GP for test strategy (2) . 186

14.4 Evaluation of models for soot emissions of a diesel engine 188

384 LIST OF FIGURES

14.5 Distribution of errors caused by models for soot emissions 189

14.6 Cumulative errors caused by models for soot emissions 189

14.7 Target NOx values of NOx data set II 191

14.8 Target HoribaNOx values of NOx data set III 193

14.9 Target HoribaNOx values of NOx data set III, detail 193

14.10 Correlations of variables included in the NOx data set III 195

14.11 Correlations of variables included in the Gearbox data set 198

14.12 Evaluation of a linear model for the Gearbox data set 201

14.13 Evaluation of the NN model (13) for the Gearbox data set 202

14.14 Best model produced by GP for the Gearbox data set 204

14.15 Best GP model produced by GP for the Gearbox data set 204

14.16 Best model produced by GP for the Gearbox data set 205

14.17 Error distributions of the best model for the Gearbox data set . . . 205

15.1 An exemplary hybrid structure tree 210

15.2 Best result obtained for the Thyroid data set 216

15.3 ROC analysis of classification models for the Thyroid data set . . . 217

15.4 MROC analysis of classification models for the Thyroid data set . . 218

15.5 Exemplary classifier for the Thyroid data set 219

15.6 Classifiers and confusion matrices for the Thyroid data set 231

15.7 General steel production data processing framework 234

15.8 Model identified by GP for the steel production data set 240

16.1 Evaluation of the on-line GP result after three minutes 244

16.2 Evaluation of the on-line GP result at the end of the FTP cycle . . 244

LIST OF FIGURES 385

16.3 Model identified by on-line GP after the whole FTP cycle 245

16.4 Alternative model identified by on-line GP 246

16.5 Selection pressure progress and eventual best result 248

17.1 pctotal values for an exemplary run of series I 254

17.2 pctotal values for an exemplary run of series II 254

17.3 pctotal values for an exemplary run of series III 254

17.4 Selection pressure progress in test series III and V 257

17.5 Test run I: Impact of all variables over time 259

17.6 Test run I: Total occurrences at generation 1400 259

17.7 Test run I: Total occurrences at generation 1450 260

17.8 Test run II: The impact of all variables over time 260

17.9 Test run II: Final impact analysis 260

17.10 Test run II: Alternative final impact analysis 261

17.11 Test run III: Occurrence of variables over time 261

17.12 Test run III: Impact of variables over time 261

17.13 Test run IV: Occurrences of variables over time 262

17.14 Test run IV: Impact of variables over time 262

17.15 Variables diversity over time in an exemplary test run of series II . . 266

17.16 Variables diversity over time in an exemplary test run of series IV . 266

17.17 Similarity values in a test run of series (A), generation 200 273

17.18 Similarity values in a test run of series (A), generation 4000 276

17.19 Similarity values in a test run of series (D), generation 20 276

17.20 Similarity values in a test run of series A, generation 95 277

17.21 Population diversity progress in test runs of series (A) and (D) . . . 277

386 LIST OF FIGURES

17.22 Exemplary multi-population diversity chart 281

17.23 Distribution of similarity values . 291

17.24 Partition-wise correlations of similarity values for NOx test series . . 292

17.25 Partition-wise correlations of similarity values for hyroid test series . 292

17.26 Comparison of similarity values (additive calculation) 293

17.27 Comparison of similarity values (multiplicative calculation) 294

17.28 Structural (additive) vs. structural (multiplicative) 295

17.29 Unlimited code growth . 301

17.30 Progress of formula complexity of (2g) test run 306

17.31 Progress of formula complexity of test series (h) test run 308

17.32 Model with best fit on training data 309

17.33 Model with best fit on validation data 309

17.34 Errors distributions of best models 310

18.1 Model representing knowledge about formation of NOx emissions . . 315

18.2 Target HoribaNOx values of NOx data set III 315

18.3 Terminal definitions and the “PKfuncNOx” function 317

18.4 Best model for NOx data set . 322

19.1 Synthetic example for results similarity analysis 328

387

List of Algorithms

1 The classical genetic algorithm . 13

2 The classical evolution strategy (ES) algorithm 18

3 Exhaustive pruning . 147

4 ES-inspired pruning . 149

5 Calculation of the evaluation based similarity of two models 154

6 Calculation of the structural similarity of two models 159

7 The sliding window based GP structure identification process . . . 178

388 LIST OF ALGORITHMS

CURRICULUM VITAE 389

Curriculum Vitae

Personal Data

Name: Stephan M. Winkler
Address: Semleitnerweg 76

A-4111 Walding, Austria
e-mail: stephan.winkler@heuristiclab.com

Dates of birth: Linz, October 26th, 1980
Nationality: Austrian
Marital status: Unmarried

Position: Research assistant
Translational Research Programm project L284-N04:
“GP-Based Techniques for the Design of Virtual Sensors”,
executed by:
- Upper Austrian University of Applied Sciences,

Research Center Hagenberg
- Johannes Kepler University Linz, Institute for

Design and Control of Mechatronical Systems

Education

1985 - 1990 Elementary schools in Newark, Delaware, USA
and Linz, Austria

1990 - 1998 Secondary school, high school:
Bischöfliches Gymnasium Kollegium Petrinum,
Linz, Austria

1999/10 - 2004/09 Studies in computer science
Johannes Kepler University, Linz, Austria

2004/10 - 2007/02 PhD studies in engineering sciences
Johannes Kepler University, Linz, Austria

390 CURRICULUM VITAE

Professional Career

1999 Programmer for Programmierfabrik GmbH, Hagenberg,
Austria

since 2000 Programmer and IT counselor for Altenbetreuungsschule
des Landes Oberösterreich, Linz, Österreich

2003 - 2004 Tutor for computer science at Johannes Kepler Universität,
Linz, Austria

2004/10 - 2006/01 Research assistant at the Institute for Design and Control
of Mechatronical Systems, Johannes Kepler Universität,
Linz, Austria

2005/02 - 2006/03 Junior researcher at Linz Competence Center in
Mechatronics (LCM)

2005/03 - 2005/06 Lecturer at Johannes Kepler Universität
Courses in Mechatronics: Analysis of Mechatronical
Systems

since 2006/02 Research assistant, Translational Research Program project
L284-N04 “GP-Based Techniques for the Design of Virtual
Sensors”, funded by the Austrian Science Fund (FWF)

since 2006/02 Research assistant at Research Center Hagenberg,
Upper Austrian University of Applied Sciences (FH OÖ)

since 2006/10 Lecturer at Upper Austrian University of Applied Sciences,
Campus Hagenberg

Courses in Software Engineering, Information
Engineering and -Management:

Modeling and simulation, generative programming,
software project engineering

Courses in Bioinformatics: Software project engineering

Military Service

1998/08 - 1999/03 PzB 10, Kopal Kaserne, St. Pölten - Spratzern, Austria

CURRICULUM VITAE 391

Awards

2002, 2003 Scholarship of the technical faculty at the Johannes Kepler
University for excellent merits in studies in the years
2002 and 2003.

2004/04 Best paper award of EMCSR 2004 for the contribution
“Identifying Nonlinear Model Structures Using Genetic
Programming Techniques” in the session “Theory
and Applications of Artificial Intelligence”

2005/07 Best paper award of WMSCI 2005 for the contribution
“Solving Multiclass Classification Problems by Genetic
Programming” in the session “Management Information
Systems”

392 CURRICULUM VITAE

LIST OF PUBLICATIONS 393

List of Publications

2004:

[1] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Identifying nonlinear
model structures using genetic programming techniques. Cybernetics and Systems
2004, pp. 689–694. Austrian Society for Cybernetic Studies. 2004.

[2] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. New methods for the
identification of nonlinear model structures based upon genetic programming tech-
niques. Proceedings of the 15th International Conference on Systems Science. Ofi-
cyna Wydawnicza Politechniki Wroc�lawskiej. 2004.

[3] Stephan Winkler. Identifying Nonlinear Model Structures By Genetic Programming.
Diploma thesis. Institute of Systems Theory and Simulation, Johannes Kepler Uni-
versity Linz, Austria, 2004.

2005:

[4] Luigi del Re, Peter Langthaler, Christian Furtmüller, Stephan Winkler, and Michael
Affenzeller. NOx virtual sensor based on structure identification and global opti-
mization. Proceedings of SAE World Congress 2005, Detroit, paper number 2005-
01-0050. 2005.

[5] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Solving multiclass clas-
sification problems by genetic programming. Proceedings of The 9th World Multi-
Conference on Systemics, Cybernetics and Informatics SCI 2005, vol. 1, pp. 48-53.
International Institute of Informatics and Systemics, 2005.

[6] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. GA selection revisited
from an ES-driven point of view. Artificial Intelligence and Knowledge Engineering
Applications: A Bioinspired Approach, LNCS 3562, pp. 262-271. Springer, 2005.

[7] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. Goal-oriented preser-
vation of essential genetic information by offspring selection. Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) 2005, vol. 2, pp.
1595-1596. The Association for Computing Machinery (ACM), 2005.

[8] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Genetic programming
based model structure identification using on-line system data. Proceedings of Con-
ceptual Modeling and Simulation Conference CMS 2005. 2005.

[9] Stephan Winkler, Hajrudin Efendic, Michael Affenzeller, Luigi del Re, and Stefan
Wagner. On-line modeling based on genetic programming. Proceedings of the 1st
International Workshop on Automatic Learning and Real-Time (ALaRT’05), pp.

394 LIST OF PUBLICATIONS

119-130. Institute of Real-Time Learning Systems, University Siegen, Germany.
2005.

[10] Daniel Alberer, Luigi del Re, Stephan Winkler, and Peter Langthaler. Virtual sensor
design of particulate and nitric oxide emissions in a DI diesel engine. Proceedings of
the 7th International Conference on Engines for Automobile ICE 2005. 2005.

[11] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. A genetic programming
based tool for supporting bioinformatical classification problems. Proceedings of the
FH Science Day 2005, pp. 3-10. Shaker Verlag, 2005.

[12] Peter Langthaler, Daniel Alberer, Stephan Winkler, and Luigi del Re. Design eines
virtuellen Sensors für Partikelmessung am Dieselmotor. Proceedings of the 14th
Styrian Seminar on Control Engineering and Prozess Automation, pp. 71-87. 2005.

[13] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. New methods for the
identification of nonlinear model structures based upon genetic programming tech-
niques. Journal of Systems Science, vol. 31, nr. 1, pp. 5-13. Oficyna Wydawnicza
Politechniki Wroc�lawskiej, 2005.

2006:

[14] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Automatic data based
patient classification using genetic programming. Cybernetics and Systems 2006,
vol. 1, pp. 251-256. Austrian Society for Cybernetic Studies, 2006.

[15] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Advances in applying
genetic programming to machine learning, focussing on classification problems. Pro-
ceedings of the 9th International Workshop on Nature Inspired Distributed Comput-
ing NIDISC ’06, part of the Proceedings of the 20th IEEE International Parallel &
Distributed Processing Symposium IPDPS 2006, IEEE Catalog Number: 06TH8860,
ISBN: 1-4244-0054-6, ISSN: 1530-2075, paper nr. NIDISC-012. IEEE, 2006.

[16] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Sets of receiver operating
characteristic curves and their use in the evaluation of multi-class classification. Pro-
ceedings of the Genetic and Evolutionary Computation Conference GECCO 2006,
vol. 2, pp. 1601-1602. The Association for Computing Machinery (ACM), ISBN
1-59593-186-4, ACM Order Number 910060. 2006.

[17] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Using enhanced genetic
programming techniques for evolving classifiers in the context of medical diagno-
sis - an empirical study. Proceedings of the GECCO 2006 Workshop on Medical
Applications of Genetic and Evolutionary Computation (MedGEC 2006), paper nr.
WKSP115. The Association for Computing Machinery (ACM), 2006.

LIST OF PUBLICATIONS 395

[18] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. HeuristicModeler: A
multi-purpose evolutionary machine learning algorithm and its applications in med-
ical data analysis. In: A. Bruzzone, A. Guasch, M. Piera, J. Rozenblit (ed.), Pro-
ceedings of the International Mediterranean Modelling Multiconference I3M 2006,
pp. 629–634. Piera, LogiSim, Barcelona, Spain, 2006.

[19] Stephan Winkler, Hajrudin Efendic, and Luigi del Re. Quality pre-assessment in
steel industry using data based estimators. In: S. Cierpisz, K. Miskiewicz, A. Hey-
duk (ed.), Proceedings of the IFAC Workshop MMM’2006 on Automation in Mining,
Mineral and Metal Industry, pp. 185–190. International Federation for Automatic
Control, 2006.

2007:

[20] Stephan Winkler, Hajrudin Efendic, Michael Affenzeller, Luigi del Re, and Stefan
Wagner. On-line modeling based on genetic programming. International Journal on
Intelligent Systems Technologies and Applications, vol. 2, NOs. 2/3, pp. 255-270.
Inderscience Publishers, 2007.

[21] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Advanced genetic pro-
gramming based machine learning. Journal of Mathematical Modelling and Algo-
rithms, ISSN 1570-1166 (print), 1572-9214 (online), DOI 10.1007/s10852-007-9065-
6. Springer Netherlands, 2007.

[22] Stefan Wagner, Stephan Winkler, Roland Braune, Gabriel Kronberger, Andreas
Beham, and Michael Affenzeller. Benefits of plugin-based heuristic optimization
software systems. Computer Aided Systems Theory - EUROCAST 2007. LNCS
4739, pp. 747–754. Springer, 2007.

[23] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. Self-adaptive population
size adjustment for genetic algorithms. Computer Aided Systems Theory - EURO-
CAST 2007. LNCS 4739, pp. 820–828. Springer, 2007.

[24] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Selection pressure driven
sliding window genetic programming. Computer Aided Systems Theory - EURO-
CAST 2007. LNCS 4739, pp. 788–795. Springer, 2007.

[25] Stephan Winkler, Bernd Brandl, Michael Affenzeller, and Stefan Wagner. Zeitrei-
henanalyse von Finanzdaten unter Verwendung von erweiterten Methoden der
Genetischen Programmierung. Accepted to be published in Proceedings of the
First Science Symposium of the Austrian Universities for Applied Sciences (Erstes
Forschungsforum der Österreichischen Fachhochschulen). 2007.

[26] Michael Affenzeller, Stefan Wagner, and Stephan Winkler. Aspects of adaptation
in natural and artificial evolution. Proceedings of the Genetic and Evolutionary

396 LIST OF PUBLICATIONS

Computation Conference 2007, pp. 2595–2602. The Association for Computing
Machinery (ACM), 2007.

[27] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Variables diversity in
systems identification based on extended genetic programming. Proceedings of the
15th International Conference on Systems Science, vol. 2, pp. 470–479. Oficyna
Wydawnicza Politechniki Wroc�lawskiej. 2007.

[28] Michael Affenzeller, Gabriel Kronberger, Stephan Winkler, Mihaela Ionescu, and
Stefan Wagner. Heuristic optimization methods for the tuning of input parameters
of simulation models. Proceedings of I3M 2007., pp. 278-283. DIPTEM Università
di Genova, ISBN 88-900732-6-8. 2007.

[29] Stephan Winkler, Michael Affenzeller, Stefan Wagner, Gabriel Kronberger, and An-
dreas Beham. Evolutionäres Design von Virtuellen Sensoren. Proceedings of the
Industrial Symposium Mechatronics 2007 on Sensorics, pp. 166-175. Clusterland
Oberösterreich, ISBN 978-3-9502270-1-7. 2007.

2008:

[30] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Offspring selection and
its effects on genetic propagation in genetic programming based system identifica-
tion. In Robert Trappl, editor, Cybernetics and Systems 2008, vol. 2, pp. 549–554.
Austrian Society for Cybernetic Studies, 2008.

[31] Andreas Beham, Stephan Winkler, Stefan Wagner, and Michael Affenzeller. A ge-
netic programming approach to solve scheduling problems with parallel simulation.
Accepted to be published in Proceedings of the 22nd IEEE International Parallel &
Distributed Processing Symposium (IPDPS08). IEEE, 2008.

[32] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. On the reliability of
nonlinear modeling using enhanced genetic programming techniques. Accepted to
be published in Proceedings of the Chaotic Modeling and Simulation International
Conference CHAOS 2008. 2008.

[33] Stephan Winkler, Michael Affenzeller, and Stefan Wagner. Fine-grained population
diversity estimation for genetic programming based structure identification and the
effects of enhanced selection concepts. Accepted to be published in Proceedings of
the Genetic and Evolutionary Computation Conference 2008. The Association for
Computing Machinery (ACM), 2008.

[34] Michael Affenzeller, Stephan Winkler, and Stefan Wagner. Evolutionary system
identification: New algorithmic concepts and applications. Accepted to be published
as chapter of Advances in Evolutionary Algorithms. I-Tech Publishing, ISBN 978-
3-902613-32-5. 2008.

