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Abstract

Writing source code is a challenging task, requiring the understanding of complex
concepts, algorithms and programming paradigms. This task becomes increasingly
challenging when source code has to be optimized for non-functional properties such
as run-time performance, memory usage or energy efficiency. These properties often
depend on in-depth knowledge of the language, the compiler and even the hardware
architecture the source code will be run on.

This thesis deals with the identification and verification of patterns in software that
influence such non-functional properties. The goal is to help get an understanding, which
patterns should be considered or avoided when optimizing towards a certain feature, and
where to apply these patterns in the software. This is achieved by the novel combination
of two distinct fields of research. Software Pattern Mining and Genetic Improvement, a Search-
Based Software Engineering technique. The approach is applied directly at the compiler
and interpreter level. This enables mining of a fine-granular software representation,
combining it with in-depth information about the language, and gathering fine-granular
performance measurements.

A novel algorithm Knowledge-quided Genetic Improvement is presented that allows the
generation of multiple semantically equivalent versions of software. These are then mined
for discriminative patterns via the novel Independent Growth of Ordered Relationships
algorithm. Several bug patterns, often occurring in the mutation operation of Genetic
Improvement (GI), have successfully been identified and proven to produce bugs with an
average confidence of 90.1%. Fix patterns reduce these bugs with a confidence of 94%.
Identified patterns have been successfully applied in the field of Genetic Improvement
by doubling population diversity, and reducing failing individuals in the population to
36.9% compared to 80% identified in related work. This allows Knowledge-guided Genetic
Improvement to improve the run-time performance of 22 out of 25 algorithms by an average
of 33.5%. The work also successfully identifies anti-patterns and patterns in the run-time
domain that are responsible for this improvement.

This thesis lays a foundation for identifying and verifying patterns in the non-functional
domain. As a side effect, it also makes the results of experiments in the domain of Genetic
Improvement explainable. This opens up opportunities to drive research in the domains
Software Pattern Mining and Genetic Improvement even further. In the future, identified
patterns may even be directly applicable in a compiler or interpreter.



Kurzfassung

Das Entwickeln von Software ist eine anspruchsvolle Aufgabe, die ein Verstdndnis von
komplexen Konzepten, Algorithmen und Programmierparadigmen erfordert. Diese
Aufgabe wird noch schwieriger, wenn Software fiir bestimmte nicht-funktionale An-
forderungen, wie Laufzeit, Speichernutzung oder Energieeffizienz optimiert werden soll.
Dieses Verhalten ist oft von der Sprache, dem Compiler und auch der Hardwarearchitek-
tur abhéngig, auf der die Software ausgefiihrt wird und erfordert fundierte Kenntnisse
tiber diese.

Diese Arbeit beschiftigt sich mit der Identifikation und Verifikation von Patterns in
Software, die solche nicht-funktionale Anforderungen beeinflussen. Das Ziel ist es,
verstiandlich zu machen, welche Patterns, an welcher Stelle in der Software, bei der
Optimierung einer bestimmten nicht-funktionalen Anforderungen angewendet oder
vermieden werden sollen. Dies wird durch die neuartige Kombination zweier Forschungs-
felder erreicht. Software Pattern Mining und Genetic Improvement, eine Methode der
Suchbasierten Softwareentwicklung. Diese Methodik wird direkt im Compiler und In-
terpreter angewendet. Dadurch wird die Suche fein-granularen Reprasentationsformen
von Software ermoglicht und mit detaillierten Informationen tiber die Sprache sowie
fein-granularer Laufzeitmessungen erméglicht.

Ein neuartiger Algorithmus Knowledge-guided Genetic Improvement wird vorgestellt, der
die Generierung mehrerer semantisch dquivalenter Versionen von Algorithmen er-
moglicht. Diese werden mit dem Independent Growth of Ordered Relationships Algorith-
mus nach diskriminativen Patterns durchsucht. Identifizierte Bug-Patterns, die oft im
Mutations-Operator von Genetic Improvement entstehen, werden mit einer durchschnit-
tlichen Sicherheit von 90.1% bestitigt. Patterns zur Pravention der Bugs werden mit
94% Sicherheit bestatigt. Diese Patterns wurden erfolgreich in der Doméne Genetic Im-
provement angewendet. Die Populationsdiversitiat wird verdoppelt, und Individuen, die
Laufzeitfehler erzeugen, werden auf 36.9% im Vergleich zu 80% aus verwandten Arbeiten
reduziert. Dies erlaubt Knowledge-guided Genetic Improvement die Laufzeit von 22 aus
25 getesteten Algorithmen im Durchschnitt um 33.5% zu reduzieren. In Folge werden
Anti-Patterns und Patterns identifiziert, die fiir diese Verbesserung verantwortlich sind.

Diese Arbeit legt eine Grundlage fiir die Identifikation und Verifikation von Patterns
fur nichtfunktionale Anforderungen. Als Nebeneffekt konnen so die Ergebnisse von
Genetic Improvement erklarbar und nachvollziehbar gemacht werden. Dies eroffnet
Moglichkeiten diese Forschung weiter zu vertiefen und voranzutreiben. In Zukunft
konnen moglicherweise sogar Muster identifiziert werden, die direkt im Compiler oder
Interpreter anwendbar sind.



Contents

Contents vii

PATTERN MINING AND GENETIC IMPROVEMENT IN COMPILERS AND IN-

TERPRETERS 1

1 Introduction 3
11 Challenges . .. ... ... .. ... 4

12 Contributions . ... ... ... ... ... o 5

1.3 ChapterOverview . . . . ... .. ... . . 6

2 Background 9
2.1 Genetic Programming and Genetic Improvement . . . ... ... ... .. 10
22 PatternMining . . . . .. ... 11
23 Graal ... ... 13
24 Truffle . .. ... 14

3 Genetic Improvement in Compilers and Interpreters 17
3.1 Maintaining Semantic Equivalence . . ... ... ... ..... .. .... 18
Operators That Maintain Semantic Equivalence . . . ... ... ... ... 19
Test-Based Verification of Semantics . . . .. ... ........... ... 19

3.2 Test-Based Genetic Improvement. . . . .. ... ............... 20
TestCoverage . . . . . . . . . ... e 20
Evaluating Test Complexity . . . . ... ... ................. 22
Relationships Between Test . . . . . . .. .. ... ... ... ........ 23
Confidence in Semantic Validity . . . . ... ..... .. ... .. ..... 23

3.3 Dynamic Fitness Functions Based on Test Grouping . . . . ... ... ... 25
Sequential Fitness Evaluation . . . . . .. ................... 26

Parallel Fitness Evaluation . . .. .. ... ... ............... 28
Usefulness for Pattern Mining . . . . .. ... ................ 31

3.4 Knowledge-guided Genetic Improvement. . . . . ... ... ... ... .. 31
SyntaxGraph . . . . . ... ... .. 32
Collecting Information for the Syntax Graph . . . ... ... ... ..... 44
Operators in Knowledge-guided Genetic Improvement (KGGI) . . . . .. 45
Advantages and Drawbacks of KGGI . . . ... ... ... .. ....... 45

4 Mining Significant Patterns from Source Code 47
41 A Representation Form for SourceCode . . . ... ... .......... 48
4.2 Utilizing Taxonomies in Pattern Mining . . . . . ... ... ... ... ... 50
4.3 Extending Patterns With Wildcards . . . . . ... ... ... ........ 53
44 AST Normalization . . ... ... .. ... ... ... . ... ... ..., 56
4.5 Encoding Abstract Syntax Trees . . . . ... ... ... ... ........ 58
Taxonomy Encoding . . . . . ... ... ... . oL oo 59

Value Encoding . . ... ... ... ... .. .. 61
Structure Encoding . . . . . ... ... L L 62
Abstract Syntax Tree (AST) Encoding . . . . ... .............. 63

Operationson the Encoding . . . . .. ... ................. 64



4.6 Cluster Pattern Mining . . . ... ... ... .. ... .. .. ........ 64

Relationships Between Patternsand ASTs . . . . . .. ............ 65
Metrics for Mining . . . . . . ... ... . L Lo 66
Independent Growth of Ordered Relationships (IGOR) Algorithm . . . . . 68
4.7 Mining in Compilers and Interpreters . . . . ... ... .. ... ...... 74
Pattern Verification . . . ... ... ... ... .. ... .. .. .. ... 75
Co-Located Pattern Mining . . . . . ... ................... 77
5 Pattern Mining combined with Genetic Improvement 81
51 TypesofPatterns . . . . .. ... ... ... ... ... ... .. ... ... 82
5.2 Utilizing GI to Mine Patterns . . . . ... ... ... ............. 83
5.3 Verifying or Disproving PatternsviaGI . . . . ... ... ... ... .. .. 84
54 Contextof Patterns . . .. ... ... ... ... .. ... .. . . ... 86
5.5 Improving Genetic Improvement With Mined Patterns . . . . .. ... .. 87
Restricting Anti-patterns . . . . .. ... .. ... o L oL 87
Injecting Positive Patterns . . . . . . ... .. ... ... ... ... .. 89
Reducing a Subtree to Requirements . . . . . ... .............. 91
6 Experiments 95
6.1 Initial Analysis of the ExperimentSet . . . . . ... ... ... ....... 96
Performance of the Manually Written ASTs . . . . .. .. ... ....... 101
6.2 Experiment Baseline - KGGI Without Patterns . . . . . ... ... ... .. 103
6.3 Mining of Mutational Bug Patterns . . . . .. ... ... .......... 107
Pattern Verification . . . ... ... ... ... ... .. ... . ... 109
Identified Patterns . . . . .. ... ... .. ... . . L o 110
6.4 Application of Patterns inKGGI . . . ... .................. 119
Exceptions in KGGI With Mutational Bug Patterns . . . . . . ... ... .. 123
Run-Time Performance . . .. ... ...................... 126
6.5 Mining of Performance Patterns . . . . ... ... ... .. ..... .. .. 130
Pattern Verification . . . ... ... ... ... ... .. .. .. .0 ... 131
Identified Performance Patterns . . . . . ... ................ 132
OutlierCases . . . . . ... .. ... .. . e 135
Summary . . ... e 137
6.6 Threats to Validitiy . . .. .. ... .. .. ... .. ... ... .. .. .. 138
7 Related Work 141
7.1 Pattern Miningin SourceCode . . . . . ... .. .. ... .. ........ 142
Algorithms . . . . .. ... .. 146
7.2 Genetic Improvement and Genetic Programming . . . ... .. ... ... 149
Mutation and Crossover Operations . . . . . .. ... ... ......... 151
Previous Applications of Pattern Mining in GI and Genetic Programming
(GP) . . 152
7.3 Code Optimization for Compilers and Interpreters . . . .. .. ... ... 154
Application of Patterns in Compiler Optimization . . . . . ... ... ... 154
Superoptimization . . . ... ... Lo o oL oL 155
CodeMotion . . . .. ... ... ... 157
Application of Machine Learning in Compilers. . . . ... ... ... ... 157
8 Conclusion 159
Research Question Summary . . . . ... ... ... ... .. ... . ... 160

Future Work . . . . . . . . e 162



FrRAMEWORKS AND CASE STUDIES 165

9 MiniC 167
10 Amaru 169
10.1 Architecture . . . . . . . . . . 170
10.2 Language Analysis. . . . .. ... ... ... ... ... ... ... 171
10.3 Accurate Measurement of Non-Functional Properties . . . . .. ... ... 174
10.4 Pattern Mining Reports . . . . .. ... ... ... ... ... L. 175
11 HeuristicLab Connector 177
11.1 HeuristicLab . . . . . . . . . . . e 178
11.2 HeuristicLabConnector Architecture . . . . ... ... ... ........ 178
APPENDIX 181
A Performance Optimized Functions 183
Al Math Algorithms . . . . ... ... .. L 183
A2 Sorting Algorithms . . . .. ... ... o o 185
A.3 Neural Networks . . . . . . . . . . . . e 191
Bibliography 209

Acronyms 227






PATTERN MINING AND GENETIC
IMPROVEMENT IN COMPILERS AND
INTERPRETERS






Introduction

Non-Functional Properties (NFPs), bugs and functional issues, such as
security- or maintainability issues, and faults in a compiler or interpreter
can all be identified in the source code of software. This work deals with
the identification and verification of patterns in source code to help find
recurring patterns responsible for bugs, and gain an understanding of
patterns concerning their influence on NFPs.

Writing source code is a challenging task, requiring an understanding of
command structures, mathematics, algorithms, and high-level concepts
such as programming paradigms. This task becomes even more challeng-
ing when source code has to be optimized towards specific NFPs, such as
run-time performance, memory usage or energy efficiency. This requires
not only an understanding of the compiler and the virtual machine in
use, but possibly even the hardware architecture that the source code will
be run on [1]. Automatically identifying and verifying recurring patterns,
as presented in this work, can help developers gain an understanding of
what impact source code has on NFP.

The identification of patterns that impact software quality and bugs has
led to a variety of inspection tools in integrated development environ-
ments and external tools. Work in this area deals with the identification
of locations, patterns and often suggestions for fixes [2, 3].

The development of compilers, and code optimizations is a challenging
task as well. Modern programming languages need to support multiple
hardware architectures, automated optimization of code and utility
features such as garbage collection. Additionally, standard libraries and
handling of low-level tasks such as networking, file access, etc. have
become an expected standard. This makes the development of new
languages a challenging undertaking [4]. Maintaining the correctness of
source code during compiler optimizations and ensuring that no security
vulnerabilities are introduced is also a challenging task [5].

The identification of patterns in this work is done directly at the level
of the compiler or interpreter in the form of Abstract Syntax Trees
(ASTs), and a method to validate these patterns. The advantages of
this approach are the general applicability of identified patterns, as
the results can be directly integrated in said compiler or interpreter. In
addition, this enables direct access to feature not available to similar
pattern identification methods in the source code, such as access to the
stack and heap and knowledge of the intermediate representations used
during compilation and execution.

This work also deals with the domain of Genetic Improvement (GI) in
compilers and interpreters, in two different capacities. On the one hand, GI
can be used as a tool to produce multiple versions of source code without
manual overhead, enabling the evaluation of non-functional properties
and mining of recurring patterns according to these properties. On the
other hand, GI can benefit from pattern mining itself, as the search space

1.1 Challenges. . . . .
1.2 Contributions.. . .

1.3 Chapter Overview

1. INTRODUCTION
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can be tuned towards patterns, and patterns known to produce bugs or
unviable individuals can be excluded.

1.1 Challenges

The goal of this work is the identification of patterns in source code to help
developers understand how their code impacts NFPs, and how it may
be improved. Le. the identification of patterns that are semantically
equivalent but have different NFPs.The identification of patterns often
responsible for bugs is also a goal.

To achieve this goal, the following research questions have to be an-
swered:

RQ1. How can recurring patterns be identified that impact or improve a func-
tional or Non-Functional Property?
This question relates to identifying patterns with distinctive im-
pacts, e.g. patterns with a negative or positive impact on run-time
performance. Patterns identified in a similar domain can then be
used to identify the location of a negatively impacting pattern and
suggest replacing it with a semantically equivalent pattern that has
a positive impact.

RQ2. How can the confidence in patterns be improved?

Without verification an optimization can’t be guaranteed to be
always correct, and even then the context a pattern is embedded in,
or simply the differences in the hardware architecture or the virtual
machine executing the code may change the impact a pattern has
or may lead to unintended semantic changes. The confidence that
a pattern being replaced actually improves the target NFP, while
maintaining semantic equivalence, are both important.

RQ3. How can these patterns be utilized to lead to general optimizations?
The identification of patterns, and to make them understandable
for developers, is a significant first step. The logical next step is to
attempt an application of these patterns to improve source code.

These research questions, and the way chosen to answer them, lead to
several challenges that need to be overcome. Solving these challenges in
addition to the research questions has led to novel contributions in the
domains of GI and pattern mining:

Finding relevant patterns for specific NFPs The challenge herein lies
in the accurate measurement of a given NFP and reaching an
acceptable quantity of observations. Modern compilers have a
warm-up time in which they analyze code and then perform opti-
mizations most promising in the context of the observed execution
behavior [6]. Additionally, side effects from the operating system
and other processes may negatively impact the quality of measure-
ments taken. A larger quantity of code with similar functional-goals
but different syntax is also needed to enable identification of rele-
vant patterns and to minimize the risk of missing counterexamples
that would disprove a pattern to have an impact on a NFP.



Large search spaces Programming languages have a multitude of sup-
ported mathematical operators (+, -, mod, ...) branching constructs
(if, loops, ...) and concepts [7]. These pose a challenge in GI which
usually deals with a manual restriction of the operators and
operands used in experiments [8], which is not applicable to a
generalized optimization technique in a compiler or interpreter.
Similarly, the mining of patterns has to deal with a more intricate
and fine-granular search space than comparable approaches, as
the source code is considered at a more detailed level.

Validation of patterns reliably verifying that a source code change has
a desired impact is challenging. A pattern may only be applicable
in a specific context, such as an algorithmic domain, and not
generalizable.

Unviable solution candidates in GI . A large part of candidates gen-
erated by GI fails to compile, or alternatively produce run-time
exceptions during execution [9, 10]. Similar to the search space, this
is in part reduced by manual selection of operators and operands,
as well as which parts of the code will be modified.

1.2 Contributions

This thesis makes several contributions to the state-of-the-art. These are
summarized by their respective areas of research, i.e. in pattern mining
and GI. This is provided open source to ensure reproducibility of this
work and to make a technical contribution as well.

Contributions in the domain of pattern mining are:

Independent Growth of Ordered Relationships (IGOR) is a novel dis-
criminative pattern mining algorithm based on the concept of
pattern growth. It is highly efficient due to only evaluating signifi-
cant patterns, and extends discriminative pattern mining beyond
two groups to an arbitrary amount of groups that can be compared
at the same time with multiple metrics (see Section 4.6).

Pattern evaluation due to the combination with GI, confidence in pat-
terns can be strengthened by applying the patterns in experiments,
i.e. verifying the assertions about a NFP by creating mutants around
the pattern or checking if a bug still occurs when an anti-pattern is
excluded from the search space (see Section 4.7).

Programming language specific pattern mining is an extension of the
state-of-the-art pattern mining in source code. It groups the con-
structs of a language into a taxonomy and allows the mining of
patterns at any layer of the taxonomy. This enables a generalization
mechanism of patterns, and makes the mining approach applicable
on different levels of granularity (see Section 4.2).

Bit-based encoding is a novel encoding for ASTs that separates the
structure of an AST and the content of the nodes. The encoding
mechanism aims for a minimal memory-footprint of encoded trees
and enables efficient comparison operations between ASTs (see
Section 4.5).

Contributions in the domain of Genetic Improvement and Search-Based
Software Engineering (SBSE) are:

1.2 Contributions
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RQ1: How can recurring patterns be iden-
tified that impact or improve a functional
or Non-Functional Property?

Knowledge-guided Genetic Improvement (KGGI) isanalgorithm that
can apply mined patterns in GI. It gains knowledge by an in-depth
analysis of a programming language, and utilizes this knowledge
in a dynamic operator graph to restrict the search space to viable
candidates (see Section 3.4). KGGI uses patterns by excluding anti-
patterns from the search space or by attempting to modify ASTs by
inserting positive patterns.

Semantic verification in Genetic Improvement is an open challenge in
the field of GI usually solved with test-based verification [11]. This
work deepens the existing test-based approach in this area by also
considering the test coverage, and ranking tests by their complexity
and overlap of functionality tested (see Section 3.1 and Section 3.2).

Sequential and parallel Genetic Improvement algorithms using the
complexity of a test suite as a new type of fitness function and two
algorithms utilizing this function are introduced. The algorithms
work by splitting the suite according to observed metrics and
increasing the selection pressure over multiple iterations (see
Section 3.3).

Technical Contributions are:

MiniC is a subset of ANSI C 11 and was developed to evaluate and
showcase this work with a small language (see Chapter 9)

Amaru is a framework on top of the Graal compiler and the Truffle
interpreter. It integrates GI with Truffle and also provides access to
external heuristic tools. It also serves as a tool for mining source
code for patterns. Furthermore, it provides Java implementations
for the aforementioned algorithms in the GI and pattern mining
domains (see Chapter 10).

HeuristicLab Connector is a connector between the HeuristicLab frame-
work for heuristic and evolutionary algorithms and Amaru, en-
abling running experiments via HeuristicLab in a distributed
environment.

1.3 Chapter Overview

In Chapter 2 the necessary background from the state-of-the-art that this
work builds upon is summarized. Genetic Programming (GP) and Gl are
introduced in Section 2.1. Frequent, significant and discriminative pattern
mining and the state-of-the-art AST mining algorithm are discussed in
Section 2.2. The Graal compiler and the prototyping framework and
interpreter Truffle are discussed in Section 2.3 and Section 2.4. How they
work and represent source code has a lot of influence on the approach
introduced in this work.

Genetic Improvement in Compilers and Interpreters is discussed in
Chapter 3. The chapter deals with generating different versions of a given
program to enable analyzing its NFP and to identify patterns in later
chapters R2L In Section 3.1 the test-based approach towards preserving
semantics is discussed and compared to other approaches for maintaining
semantic validity in GI. Section 3.2 expands upon this by considering
the complexity and coverage of tests in Gl fitness functions. Two novel
algorithms, sequential and parallel GI are introduced in Section 3.3
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Figure 1.1: Overview of the chapters and their respective topics.

utilizing tests to divide and conquer the complexity of functions to be
optimized. Finally, KGGI is introduced in Section 3.4 explaining the
syntax graph designed to restrict the search space and the operators
utilizing the syntax graph.

Pattern Mining (Chapter 4) deals with identifying patterns that are
suspected to be responsible for differences in NFPsRQ. It discusses
the concept of applying taxonomies to source code in Section 4.2 and
enriching patterns with wildcards in Section 4.3. A novel encoding
presented in Section 4.5 is utilized during the mining process. The
expansion of discriminative pattern mining to multiple categories and
a developed novel algorithm for mining are presented in Section 4.6.
Found patterns can be verified or discarded by utilizing GI as shown
in Section 4.7 and outliers can be analyzed further by introducing a
multistep mining approach presented in Section 4.7.

Pattern mining combined with GI can verify patterns, as shown in
Chapter 582, Section 5.2 shows how GI can be specifically targeted
towards creating trees for pattern mining to find out which parts of
the search space should be explored, and patterns that can restrict the
search space to not produce run-time exceptions®?*. This can be done via
introducing requirements engineering to the KGGI which is discussed in
Section 5.5.

Chapter 6 contains the empirical evaluation to answer the research
questions. The preceding chapters do not contain evaluations, as the
relationship between KGGI and pattern mining is cyclic in nature. KGGI
is used to generate data that patterns are mined from. In return the
pattern mining provides anti-patterns that KGGI avoids in runs.

The related work in Chapter 7 analyzes the domains this work touches.
GI operators, algorithms and concepts are discussed in Section 7.2.
Approaches and application domains for pattern mining are shown in
Section 7.1 and algorithms for this purpose in Section 7.1.

The first part of this thesis ends with the conclusion and outlook of
how this work can be improved further, and directions research may

RQ2: How can the confidence in patterns
be improved?

RQ3: How can these patterns be utilized
to lead to general optimizations?

1. INTRODUCTION
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take in Chapter 8. The second part of the thesis is continued in Part 8
and summarizes the technical contributions and case studies®R?? for this
work.



Background

This chapter explains the underlying foundation that this work builds
upon. Genetic Programming (GP) and Genetic Improvement (GI) are
used in this work to create multiple versions of Abstract Syntax Trees
(ASTs) with different functional properties (e.g. bugs, or bug-fixes) or Non-
Functional Property (NFP), such as run-time performance. As compilers
and interpreters have much larger search spaces than regular GI, the
focus is set on the exploration of the search space and the use of test-based
methods to evaluate the validity of trees.

Pattern Mining is used to identify recurring structures in the source code
that have a positive or negative influence on functional or NFPs. This is
based on previous work in discriminative pattern mining and builds up
from there. In this work patterns are also applied in GI operators and as
independent rewrites for source code.

When considering the application of both of these fields in the context of
a compiler or interpreter, a lot is depending on them. Different compilers
will follow different optimization strategies, which will influence how the
GI approach has to work. One example is code motion, i.e. moving the
order of statements or parts of a boolean expression, which is also used
in GI operators [12]. It is also a compiler optimization [13]. In compilers
that already apply the optimization the GI mutation will have little or
no effect, but in compilers that do not, it can still be useful. Thus, the
Graal compiler and the Truffle interpreter are discussed, as they build the
foundation of how GI and pattern mining are applied in compilers and
interpreters in our work.

2.1 Genetic Programming and
Genetic Improvement . . . 10

2.2 Pattern Mining . . . ... .. 11
23Graal .............. 13
24 Truffle ............. 14
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Figure 2.1: The basic GP algorithm as de-
fined in [14]. Via an initial created popula-
tion of individuals, multiple generations
are bred via selection, crossover and muta-
tion, and evaluated via a fitness function.

2.1 Genetic Programming and Genetic
Improvement

GP can be applied as a Search-Based Software Engineering (SBSE)
technique, specifically based on genetic algorithms. It deals with the
creation of source code via an evolutionary process to serve a specific
task [14]. It is applied successfully in a wide variety of areas such as
symbolic regression, prediction and compression [15], even going as far
as producing models and code that is considered competitive to code
written by humans [16].

GI can be seen as a specialization of GP. Instead of broadly dealing with
the generation of code, it deals only with the improvement of existing
code. It has been successfully applied to improve run-time performance
[10], even genetic programming itself [17] and fixing bugs in software [18-
20]. In addition to dealing with existing code, GI also usually deals with
smaller parts of the source code compared to GP. This often concerns bug
locations, and the types of changes conducted, which often are moving,
copying or deleting single lines [12, 21].

GI as well as GP are based on genetic algorithms, and thus have the
main operators selection, crossover and mutation. The process is shown
in Figure 2.1, beginning with a configuration of the algorithm, such as
the selected operators, termination criteria and size limits of individuals
and populations. The genetic approach creates an initial population of
multiple individuals via the create operator. Individuals are evaluated
and assigned a quality score via a fitness function. These individuals
have a genome, i.e. a representation form that can be recombined. This
population is then evolved by breeding in which two or more individuals
are selected usually based on their quality calculated from the fitness
function, and used in a crossover producing offspring that contains parts
of both of their genes. Randomly a mutation happens to that offspring as
well. Elitism is sometimes applied in genetic algorithms to keep the best
n individuals and to transfer these individuals to the next generation
without changes. Elites and offspring from mutation and crossover are
then part of a new generation, which in turn continues the breeding
process. This process continues until a stopping condition is met, such
as reaching enough generations, no more diversity in the population, or
reaching a quality threshold [14, 15, 17].

Configure Return best solution

l yes T

Evaluate quality of
population via
fitness function

T no

Create next generation - Reproduction
Selection | Crossover | Mutation

Create initial
population

Termination criteria
satisified?




The create operation in GI, as it improves existing software, usually starts
out with mutants of the original, and is similar or equal to the mutate
operation. Both, create and mutate, often conduct grafting [22]. Grafting
is the process of taking existing source code from somewhere else, and
integrating it into an individual in the population. The graft often comes
from other functions in the same program. This process works well as
the same code base often works with similar concerns. For bug fixes,
some locations of a larger code base may already have a fix that was not
applied at all locations the bug might occur [23, 24].

Crossover operations are dealt with in a wide area of approaches, that
often also influence all other operations. For example homologous crossover,
i.e. crossover only at positions that are similar in type or are in a similar
context, has been proposed for genetic programming [25]. Genetic Im-
provement goes even further with Fertile Darwinian Bytecode Harvester
(FINCH), which conducts a crossover while maintaining control flow
and validity of local variables [26]. Grammar Guided Genetic Programming
(GGGP) works by using a grammar for the creation of code, reducing
compilation errors by ensuring that the produced code follows the given
grammar [27, 28].

The fitness evaluation in Gl is done via test-based evaluation [12, 29] or
in some cases via formal software specification measures [29]. The test
cases are usually part of a test suite, where the fitness is calculated via the
number of passed and failed test cases. If all tests pass, the individuals
are considered as semantically correct, i.e., the bug has been fixed or
the functionality has been maintained when improving a NFP. Halting
a program that would otherwise never finish is usually addressed by
introducing a time limit or restricting the amount of executions via
instrumentation [26].

Our work builds upon the very same basis of GI and also applies
concepts of maintaining control flow [26] and utilizing the grammar
of a language [27, 28]. However, it expands upon these concepts by
introducing requirements derived from mined patterns of the individuals
produced by the GI process, and improves Gl itself by adhering to found
good patterns and by preventing anti-patterns. This makes the larger
than usual search spaces of compilers and interpreters manageable.

2.2 Pattern Mining

This section discusses the background of frequent, significant and discrimi-
native pattern mining in source code. Frequent pattern mining works on
the assumption that in a given set of information, certain subsets will
be recurring more frequently than others. This information can be used
in different domains for mining [30]. It is also often called significant
pattern mining in a similar context, though frequent mining relates more
often to frequently occurring substructures, while significant generally is
used in conjunction with a metric that decides if a frequent pattern is
also relevant. This metric is the minimum support metric which is based
on how many occurrences a pattern has over the entire data set being
analyzed. This essentially introduces a ranking and filtering mechanism
for frequent substructures [31-36].

2.2 Pattern Mining
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Discriminative pattern mining expands the concept of frequent pattern
mining by separating the data set into two groups [2, 35, 37-39]. Discrim-
inative pattern mining is usually done in the domain of software fault
localization or fault mining, and is the reason why the search space is
usually split into the two groups of failing and succeeding. Thoma et al.
[35] are an exception to this. They use a classification approach combined
with discriminative pattern mining to identify relevant graphs rather
than just discriminative ones, without a specific domain.

Pattern Mining approaches in source code are either done statically,
meaning that the source code is mined but not executed, dynamically
meaning that only execution results of the code are analyzed or in a
hybrid mode.

Static approaches [31, 34, 40-43] primarily have the advantage of the
code not having to be executed. This saves the approach the need to
make the code executable, and saves time to execute it. Static approaches
often analyze snippets from code patches [43, 44]. As a disadvantage
non-functional properties can either not be recorded at all, or can only
be inferred, for example, from commit messages.

Dynamic approaches [2, 37, 38, 45] have the advantage of being able
to use the execution results. This enables the accurate verification of
functional properties such as test case executions or call-traces to the
executed functions, which are not always identifiable through static
analysis. NFPs (e.g. run-time) could also be measured, but this is usually
not done. The disadvantage is the overhead that the execution produces
before mining can begin.

Hybrid approaches [46, 47] combine the advantages and disadvantages
of both approaches. They produce promising patterns for functional and
non-functional domains, but are costly to conduct.

The domains that these mining approaches occur in are varied, and con-
tain localization of bugs [2, 39, 45], recommendations for improvement,
such as code quality for reviews [43], automating recommendations [41,
48] identification of crosscutting concerns [42] or code clones [40]. Often
this work goes on to identify patterns either for bugs [37, 46, 49] or how
code is used [31, 34, 44, 47, 50, 51].

All approaches use one of three representation forms. Sequences [34,
42,43, 46], trees [2, 41, 49] or graphs [31, 37-40, 44, 45, 47, 48, 50, 51].
Sequences most often represent the source code [42, 43], or logs of its
execution [34, 46]. Trees often represent an AST [41, 49] or the call tree [2].
Graphs most often represent the source code with additional information
such as control or data flow [39, 40, 44, 47], or relationships between
them [48, 50, 51]. Otherwise, they represent the call graph [31, 37, 38,
45]

Algorithms in pattern mining are well researched [30, 36, 39, 44, 47, 52,
53] and can be categorized into three different types.

Apriori algorithms [32] start out with all permutations of size 1 in the
search space, and continuously creates all permutations of the size n+1
until a stopping condition has been applied or the search space has
been exhausted. Pruning happens only after evaluation of each iteration,



leading to the creation of many patterns that are unnecessary and are
filtered later by pruning metrics.

Pattern growth algorithms such as SLEUTH [30] instead start out with all
size 1 patterns, and locations thereof in the search space. Patterns are
grown only if a given metric shows that the growth will be relevant in the
mining context. The growth usually has optimality guarantees, ensuring
that the same pattern is not evaluated multiple times. It also only grows
patterns that are relevant, as opposed to apriori algorithms that need to
grow all patterns since locations are not tracked. Thus, pattern growth
algorithms are more efficient than apriori algorithms.

Non-optimality guaranteeing methods were developed for search spaces
that are too large to be fully explored. They often do not guarantee that
all frequent patterns will be found, but rather use heuristics or clustering
[53] to move in a good subset of the search space, often in combination
with regular algorithms in the domain [41].

The foundation for this work lies primarily in the concepts of the discrim-
inative pattern mining approaches and algorithms. However, this work
expands the concept of discriminative pattern mining even further and
tackles the issues identified by Thoma et al. [35], namely redundancy
of frequent substructures, and that statistically frequent patterns do not
necessarily imply these patterns to be relevant. While Henderson and
Podgurski [39] tackle this with classification combined with discrimina-
tive pattern mining, our work utilizes the inherent qualities of source code
in its representation and natural hierarchies of code concepts. Our work
also expands the state-of-the-art concerning the representation form,
and introduces a multi-layered mining process. To achieve this, we intro-
duce the novel algorithm Independent Growth of Ordered Relationships
(IGOR) instead of using a known algorithm from the state-of-the-art.

The analysis of NFP is entirely absent from the field of pattern mining,
except for properties of the code itself such as maintainability or complex-
ity [43]. Features such as run-time performance or energy-performance
are not researched. This is another area our work discusses.

2.3 Graal

Graal is a compiler that is a part of the Open]DK project since JDK 9 [54]. It
is an aggressively optimizing just-in-time (JIT) compiler, which translates
the bytecode into an intermediate representation (IR), and from there into
machine code that is executed. Graal directly integrates with the Truffle
framework (Section 2.4), and compiles languages implemented in Truffle.
It contains many feedback-directed optimizations, such as inlining, loop
unrolling and partial escape analysis for compilation [55-57]. Among
those optimizations some are speculative, such as the performance
estimation of its own optimizations to choose which optimization to
apply [58]. In rare cases, speculative optimizations have to be undone at
run time if the assumptions on which they relied turn out not to hold.

The amount of optimizations and the complexity of Graal make it
challenging to use Graal in the context of GI. One reason for this is that
Graal has a warm-up phase in which it analyzes the behavior of the code

2.3 Graal
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to drive the speculative optimizations [57-59]. Also, due to the feed-back-
directed optimizations the same AST may have different behavior on
multiple compilations, or may behave differently depending on what
input is given, e.g. in the context of Gl if the test case suite drives a hot
path. This makes the evaluation of NFP challenging and time-consuming
as the warm-up has to be passed. Graal is so highly optimized, that it is
hard to find additional run-time performance optimizations.

The Graal IR is a directed graph made up of both the control flow and
the data flow of a given function. This concept is similar to the program
dependence graph (PDG) known from the domain of pattern mining
[44]. The primary difference is that the Graal IR views the source code
at a lower level than the PDG. While this level of granularity is not the
focus of this work, exploring the Graal IR for patterns and optimization
rewrites may be an interesting future research topic.

2.4 Truffle

Truffle is an interpreter, and framework for implementing and prototyping
programming languages. The representation of source code in Truffle is
based on ASTs. Truffle is written in Java and can execute on any Java VM.
However, it directly integrates with Graal and leverages high performance
compilation that is only available on a Graal VM. Truffle itself also has
several optimization techniques that it provides for its interpretation,
such as node specialization, and loop optimization [60-62].

One of the major advantage of Truffle languages is that they automatically
come with the optimizations that the framework offers, and that Truffle
is executed in the JVM with features such as garbage collection. Truffle
provides several such languages, including JavaScript, C, Python and
Ruby. These languages are often open source, and can even interact with
each other. For example a JavaScript Truffle node can produce a call to a
Python Truffle node [62].

Every node in the AST represents a concept of the language, e.g. "write
to stack”, "for each" "+". These concepts must be implemented by hand,
following the tools Truffle provides as a framework. Listing 2.1 shows
example implementations of a stack-read and an integer addition. When
looking at the class MinicIntReadNode, the access to the VirtualFrame is
shown. This is an access to the stack, and this frame provides run-time
information on which variables are available on the stack, if they have
been initialized, and what their value is. This frame is associated with a
frame descriptor providing information without an execution. A similar
concept exists for the heap in the form of a MaterializedFrame. This
is valuable information that can be provided for GI in its operators to
conduct data-flow-sensitive operations, as well as the pattern mining
which can identify the variables in the patterns.

The IntArithmeticNode shows how nodes are related. The manual imple-
mentation has the @NodeChild annotation, which maps to the parameters
of the function add, and in the implementation generated by Truffle,
MinicIntAddNodeGen, refers to other nodes in the language. MinicIn-
tAddNodeGen also partially shows the execution in executelnt, and the
execute and specialize operation. This operation conducts one of the
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Truffle optimizations. The Truffle nodes have specializations based on
the data types via the @Specialization annotation. Depending on which
data types are fed to the function, nodes can be specialized towards one
data type, and thus speed up the execution.

@NodeInfo(shortName = "read-local-int", description =
"Reads int from stack")

@NodeField(name = "slot", type = FrameSlot.class)

public abstract static class MinicIntReadNode extends
MinicIntNode {
protected abstract FrameSlot getSlot();

@Specialization
protected int readInt(VirtualFrame frame) {
return MinicFrameUtil.getInt(frame, getSlot());
}
}
@NodeInfo(shortName = "arith-int", description = "Abstract

base class for arithmetic int operations")

@NodeChildren({@NodeChild("leftNode"),@NodeChild("rightNode")})

public abstract class MinicIntArithmeticNode extends
MinicIntNode {

@NodeInfo(shortName = "+", description = "int + int")
public abstract static class MinicIntAddNode extends
MinicIntArithmeticNode {
@Specialization
public int add(int left, int right) {
return left + right;

@GeneratedBy(MinicIntArithmeticNode.class)
public final class MinicIntArithmeticNodeFactory {
@GeneratedBy(MinicIntAddNode.class)
public static final class MinicIntAddNodeGen extends
MinicIntAddNode {
@Child private MinicIntNode leftNode_;
@Child private MinicIntNode rightNode_;

@Override
public int executeInt(VirtualFrame frameValue) {

int leftNodeValue_ =
this.leftNode_.executeInt(frameValue);

int rightNodeValue_ =
this.rightNode_.executeInt(frameValue);

return add(leftNodeValue_, rightNodeValue_);

2.4 Truffle | 15

Listing 2.1: Sample implementations for
the concepts read integer from stack - Minic-
IntReadNode, and int addition - MinicInt-
AddNode from the MiniC language
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private int executeAndSpecialize(Object
leftNodeValue, Object rightNodeValue) {

}

What is important from how Truffle nodes are built and interact with each
other, is the granularity. This type of AST, which represents a function
that can be called, is much more fine-granular than other approaches in
GI as well as in pattern mining. It also is automatically executable, and
the framework itself enables swapping nodes with optimized ones.

How the nodes are related to each other, produces a natural hierarchy
represented by the class hierarchy the nodes are implemented in. For
example, an IntAddNode is an IntArithmeticNode, which in turn is an
IntNode, which is an ExpressionNode (a node returning a value). In the
other direction an Expression node has the Implementation IntNode,
DoubleNode, InvokeNode and so on. This can be leveraged for the pattern
mining as well as the GI approach.



Genetic Improvement in
Compilers and Interpreters

Genetic Improvement (GI) is a Search-Based Software Engineering (SBSE)
technique, focusing on fixing bugs (functional properties) and optimizing
Non-Functional Properties (NFPs) of existing software. It is an adaption of
Genetic Programming (GP) which has a broader context of using genetic
algorithms to synthesize source code. Primarily, GP is understood to
create new functionality, whereas GI modifies existing functionality
[63].

GI derives its success from two primary factors. The first being the much
smaller search space compared to GP. GI largely tackles localized bug
fixes, often modifying a single line or very few lines in a program. In
a similar manner, GI has a reduced set of operators (+, -, *, if, for) and
operands (literals, function calls, ...) that the generated source code may
contain [26, 63]. The second factor is that only existing source code is
tackled. Synthesizing new functionality is harder than fixing a bug in
existing source code, or adapting that existing source code to better fit
a specific NFP [29]. Contributing to this is the fact that code is often
repetitive in the same code base, and fixes can be grafted from other
parts of the software [24].

In the context of our work, GI finds its use in providing source code that
can be mined for patterns. Gl is used to create multiple variants of source
code, that are later analyzed for recurring patterns that have an impact
on NFP or on exceptions that occurred. Pearson et al. [64] shows that this
may impact the quality of the pattern mining approach, as artificially
introduced faults are vastly different from real faults and thus mining
one can’t predict the other. However, in the context of compilers and
interpreters which need to modify code in a generic and automated way
as opposed to an individual and manual change for observed code, this
should not be as much of an issue, compared to mining patterns for
manual fixes.

3.1 Maintaining Semantic
Equivalence . ........ 18

Operators That Maintain Se-
mantic Equivalence . ... 19

Test-Based Verification of Se-
mantics . ........... 19

3.2 Test-Based Genetic Improve-
ment.............. 20
Test Coverage . . . ...... 20

Evaluating Test Complexity 22
Relationships Between Test 23
Confidence in Semantic Va-

3.3 Dynamic Fitness Functions
Based on Test Grouping . 25

Sequential Fitness Evalua-
tion............... 26
Parallel Fitness Evaluation 28

Usefulness for Pattern Min-

ing ............... 31
3.4 Knowledge-guided Genetic
Improvement ........ 31
Syntax Graph . . . . ... .. 32
Collecting Information for
the Syntax Graph. ... .. 44
Operators in Knowledge-

guided Genetic Improve-

ment (KGGI) ........ 45
Advantages and Drawbacks

of KGGI

Genetic Improvement in

Mining Significant Patterns

» Compilers and Interpreters > from Source Code >
Software to to create variants (RQ1) to identify patterns (RQ1) Improved
Optimize Software
for NFP &
improvements or T ¢ Patterns for
bugfixes Application
>

Pattern Mining combined with Genetic Improvement
to verify (RQ2) and apply (RQ3) patterns

Foundation

Graal Compiler, Truffle Interpreter, Heuristic Lab

3. GENETIC

IMPROVEMENT IN
COMPILERS AND
INTERPRETERS



3. GENETIC
IMPROVEMENT IN
COMPILERS AND
INTERPRETERS

18 | 3. Genetic Improvement in Compilers and Interpreters

This chapter deals with the specifics of utilizing GI in the context of
a compiler or interpreter. This comes with several challenges that GI
usually does not have to deal with, or can deal with in ways that are not
an option in this context:

Semantic validity is handled in GI almost exclusively via test-based
validity [29]. The research in this area focuses on automated test
input generation, using the original source code as a test oracle, and
optimizing test suites for coverage. Our work does not go beyond
these approaches, but does attempt to improve the confidence in
test-based verification.

Large search spaces are usually managed in GI by tackling smaller parts
of the source code, and manually adapting the used operators and
operands [26, 63]. The issue herein lies with the genericity of
the approach. In the context of a compiler or interpreter, manual
adaptions to the search space are infeasible. Similarly, mining
patterns from such manually influenced search spaces would not
lead to relevant patterns, but would only identify patterns that
reflect the manually pruned search space. Thus, ways to deal with
the search space have to be identified.

Infeasible individuals in a population are a common occurrence in GI.
Up to 80% of individuals [8, 9, 26] generated with GI techniques
cannot even compile. A large amount of individuals also produces
run-time exceptions. Knowledge-guided Genetic Improvement
specifically tackles this issue.

Expensive evaluations are a general issue in GI, as source code needs
to be run to be evaluated. This however is aggravated by the
use in compilers and interpreters, especially in the context of
NFP. Modern compilers have a warm-up phase in which code is
analyzed before it is optimized. To get accurate measurements,
they have to be performed after this warm-up phase. For example,
run-time performance often stabilizes only after 200,000 [65]. This
is aggravated by the large amount of individuals that have to be
evaluated in genetic algorithms.

Applying Glin a compiler or interpreter also comes with many advantages
that can be utilized, which would not be available otherwise. For example,
the approach has access to the information, which variables are available
on the stack and heap, as well as the functions that were linked in
the context. In addition, measuring during the execution has multiple
advantages. The approach can be utilized to exactly know what parts
of the code were executed via which inputs, and at which points the
compiler or interpreter has performed a modification.

3.1 Maintaining Semantic Equivalence

The key challenge in utilizing search-based software engineering methods,
such as genetic algorithms, to modify source code is to maintain the
semantics of that code during the modification of a NFP. This is less of
an issue when attempting bug-fixes, as the code is already proven to be
semantically incorrect. In GI there are two options to maintain semantics,
test-based verification and code modifications that do not change the
semantics of source code.



3.1 Maintaining Semantic Equivalence

Operators That Maintain Semantic Equivalence

The create, crossover and mutate operators are the three core operations
in Genetic algorithms. In GP these operators can be defined in such a
way, that they do not modify the semantics of source code while only
modifying the syntax. The major advantage of this approach is, that, as
the semantics of the source code are not changed during the operations,
the results will always be correct, and can be utilized in optimizations of
NFP. However, these operations are very localized and must be manually
crafted for each programming language, or alternatively restrict the
search space to such a small part of a language that the semantics can’t
be influenced very far (called simplification) [66-68].

As an example of such a method, McPhee, Ohs, and Hutchison [66] show
semantic building blocks in the context of binary AND, OR, NAND
and NOR operations. The behavior between these operations can be
manually coded in such a way that any operation can be replaced with a
semantically equivalent one.

In the context of compilers and interpreters, such methods are mostly
irrelevant, as modern compilers perform such optimizations already. For
example, superoptimization [69] is an optimization method that modifies
the execution order of code, similar to code motion [13]. This can also be
done with genetic algorithms. The MoveLine Operation from the GI in
No Time (GIN) framework is a very similar concept, though it does not
check if the line edit is valid [21, 70].

Looking at it from the other direction, GI could profit from existing
operations in compilers. The LIFT compiler was developed for a func-
tional, parallel programming language for graphics processing unit
(GPU) applications. Its optimizations are based on rewrite-rules that are
written by the compiler developers, and guarantee semantic equivalence
while rewriting the syntax of code. This has been successfully used in
Convolutional Neural Networks (CNNs) to optimize source code [71],
and similarly could be applied via GI, at least in the mutation operator.

This way of maintaining semantic equivalence is generally not suited for
mining patterns, as the patterns would only identify what the operators
are already doing or would identify optimizations already made by
the compiler or interpreter. Thus, this method of maintaining semantic
validity is not utilized in this work.

Test-Based Verification of Semantics

Test-based validation is widely used in GI, as the unmodified source
code can be utilized as a test-oracle, i.e., it can be executed against any
desired input to produce test cases on the fly. In addition, automatically
fixing bugs in software often means that bug-revealing tests already exist,
making it easy to utilize these tests to automate bug fixing [29].

Utilizing tests to verify semantics has the disadvantage, that tests do not
provide the same confidence in changes to the source code as formal
proof would have [29]. However, even well-tested compiler optimizations
that are based on formal proof have recently been shown to introduce
security bugs [5, 72]. Arguably, due to the complex nature of software,
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preservation of semantics can never be guaranteed to be perfect in any
circumstance, though when using optimizations in the context of a
compiler the confidence in the correctness of an optimization should be
fairly high.

GI can be used in this work via a test-based verification approach, as it is
used as a tool to find interesting optimization patterns. In any case, that
these patterns should be analyzed by experts before being introduced in
a compiler or interpreter, thus eliminating the disadvantage of test-based
verification.

3.2 Test-Based Genetic Improvement

Using tests to validate the semantic correctness of source code has many
advantages if done via a compiler or interpreter. The coverage can be
measured with a much finer granularity than usual in this setting. The
execution environment also provides access to information that would
otherwise not be available, such as the stack and the heap. This enables
improving the confidence, compared to line-level coverage, that a given
Abstract Syntax Tree (AST) is semantically correct, even after being
modified via GI, as even partial statements, such as conditionals with
short-circuiting, can be measured for coverage.

Much of what follows has been previously introduced in [73] along with
introducing two new algorithms and a novel utilization of tests in a
fitness function. Since it’s introduction, it has been refined and revised,
especially within the area of utilizing information available from the
execution environment.

Test Coverage

Depending on the compiler or interpreter being used, code coverage of a
test case can be done with a finer granularity than would be possible
otherwise. Code coverage usually goes to the granularity of branches
that are being covered. In some circumstances the coverage can be
more refined in an interpreter or compiler. One instance is short circuit
evaluation, i.e. the left to right execution of boolean operators, where
and conditions stop evaluating after the first false, and or conditions stop
evaluating after the first true.

For example, in the Truffle interpreter (see Section 2.4), the entire language
is implemented as nodes that are executed in an AST. An example AST
is shown in Figure 3.1, representing a recursive implementation of the
Fibonacci sequence. Nodes in green are executed via the given test case
f1ib(0). This enables a rather fine-granular definition of coverage, which
in our work is used for one AST being optimized. Let visited(test) be the
set of nodes visited in the AST during the test, and let nodes(AST) be the
set of nodes in the AST:

|visited(test)|

coverage(AST, test) = Inodes(AST)|

(3.1)
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This definition slightly deviates from the well-known test coverage
definitions of statement, branch and path coverage [74], but is of the same
intent as 1% of the code is covered in a test case. To be usable for a fitness
evaluation, the coverage of a function is always measured as node coverage,
via the amount of nodes executed in a given AST. The node coverage
also only considers the coverage of the first execution of a function. The

reason for this is to avoid direct and indirect recursion, as this often leads
to all or most branches being covered, and degrading the discriminative
qualities of single test cases, as well as increasing the overlap between
them. For example, a recursive call to Fibonacci Figure 3.1 would produce
a 100% coverage with just the test input (2) when not excluding recursive
calls. This would be desirable for regular testing, but prevents utilizing
the node coverage metric in a fitness function (see Section 3.3).

It is important to note that our work assumes that test cases are manually
provided or synthesized in a correct way, as generating the tests is beyond
the scope of this work. Coverage in this case is used solely to rank tests for
test-based GI, not to reduce or optimize the test suite used, which would
be inadvisable as research suggests that reducing overlapping test cases
does negatively impact the semantic correctness [75]. This also becomes
apparent in Figure 3.1, as, using the node coverage metric, two tests with
input (1, 2) are enough to produce 100% coverage and success rate of the
test suite. The function has an obvious bug, though. If it were to be called
with any negative value it would result in an endless recursion, and a
stack overflow at run time.

In addition to using the coverage of a single test for ranking that test, the
coverage for the entire suite is also used to verify that the entire AST is
covered. Let tests be the set of tests in the suite:

U visited(t)

tetests

[nodes(AST)|

coverageSuite(tests, AST) = (3.2)

Figure 3.1: AST representation of a recur-
sive implementation of the Fibonacci se-
quence, nodes with a green background
are visited when the input of the func-
tion is 0. In this case the second part of
the (|]) node is not executed due to short-
circuiting.
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This measure is relevant for both the original function that is being
optimized, as well as for the optimized AST. In the case of the original
function, this is an indicator if the selected test cases are sufficient. In the
case of the optimized function, the metric ensures that the AST that was
modified has no unintended behavior that is untested.

Evaluating Test Complexity

An additional indicator of tests beyond coverage can be provided by the
compiler or interpreter itself, though this feature is one exclusive to the
use of Truffle. One of the core concepts of the Truffle interpreter is that
it has generalized nodes, that can be specialized towards specific data
types (for additional information, see Section 2.4). Our approach uses
this information as a complexity measure that tests can be ranked by. It
can be more generally formulated for any given compiler or interpreter,
as stated in Definition 3.2.1.

Definition 3.2.1 A specialization occurs when any observable modification
of the source code happens via the executing or compiling system.

This specialization metric, among several others, is used in the presented
approach to measure the complexity of a test case, and is later used in
algorithms and fitness functions as an alternative to the coverage measure
for ranking and grouping tests:

Specializations , i.e., the amount of modifications the executing or
compiling system is performing on those parts of the source code
executed during the test case. This measure can help identify test
cases and AST that the compiler already optimizes.

Control Structures concern mostly loops, and branching statements that
are covered in the test case. The assumption behind this metric
is that tests that enter more or different control structures cover
different (and more or less complex) functional considerations of
the function being analyzed.

Function calls to other functions in the source code represent an opti-
mization boundary in source code. It is likely that a function serves
a specific purpose (logging to a database, reading user input, ...) or
must be called with exactly same input if the AST is modified by
GI. The more function calls there are in the AST, the more complex
the optimization becomes.

NFP of any kind can serve to distinguish the complexity of a test case.
For example, in the context of optimizing the run-time performance
of source code, a valid complexity measure would be the run-time
of a single test.

Any of the above complexity measures (defined in Equation 3.3), in
addition to coverage, can be considered a valid ranking mechanism
for test cases. Which of these mechanisms should be chosen may be
different depending on what is being optimized. For example, a purely
mathematical function will have no control structures, and thus all test
cases will have the same amount of control structures (0) and likely the
same amount of specializations towards a specific data type. In other
cases, the values will depend on the specific implementation. Considering
Figure 3.1 the recursive implementation of Fibonacci has a node coverage
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of 0.43 (10 out of 23 nodes), and 0 function calls with an input of (0). It
has a coverage of 0.92 (21 out of 23 nodes) and 2 function calls when
selecting an input of (2) or higher. An iterative implementation may have
a similar behavior, but would not have any function calls, thus showing
no difference in the function call metric.

metric(AST, tests)
max(AST, tests)

complexity(AST, test) =

Relationships Between Test

In addition to measuring the coverage of a test and its complexity, it is
important to understand the relationships between tests on a given AST.
This is done via calculating the overlap of given tests, defined as the
amount of nodes that two tests (A) and (B) visit compared to the total
amount of nodes in a given AST. Let tests be the set of tests. Let visited(A)
and visited(B) be the set of visited nodes in tests A and B:

|{visisted(A) N visited(B)}|
|tests|

overlap(A, B) = (3.4)

Confidence in Semantic Validity

The previously defined measures are utilized in the approach to rank and
distinguish different test cases in a fitness function intended for the use in
GI experiments. The metric confidence serves the purpose of identifying
how likely it is that a solution produced by such a run is semantically
correct, i.e., has the same behavior as the original AST when optimizing
a NFP.

Algorithm 1: Accuracy calculation of an AST against a given test suite. 0
is perfect accuracy, and a rising value is increasingly more inaccurate.
Data: testSuite
/* Initialization */
accuracy < 0;
/* Iterate through tests x/
foreach test € testSuite do
if test.exception — test.expectedException then
‘ accuracy <— accuracy + 10;
else if test.returnType # test.expectedType lor (test.result = nullA
test.expectedResult # null) then
‘ accuracy <— accuracy + 2;
else
‘ accuracy < compare(test.output, test.expectedOutput);
end

end
Result: accuracy
accuracy «— accuracy / count(testSuite);

To define how accurate a test is, the difference between the expected
outcome and the real outcome of a given test must be made measurable.
In addition, this must be done independently of a specified data type.
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One side effect from applying GI in a representation that the interpreter
or compiler use, is that the AST being optimized may even return a
different data type than the original AST, including null values instead
of expected values and vice versa. Also, the AST may throw an exception
that was not intended, or not throw an expected exception. Algorithm 1
summarizes how the accuracy is calculated.

The compare function in line 8 of Algorithm 1 serves to normalize any given
data type difference between 0 and 1. This is done by calculating "|output—
expectedOutput|/(double)largestOutput" where "largestOutput” is the
largest output of that data type observed over all tests cast to a floating
point value to prevent rounding errors. This allows the normalization
of any integer or floating point value. String values are compared via
computing the Levenshtein distance (the amount of single character edits
to transform word a into word b), the "largestOutput" in this case is the
length of the largest observed string, which would also be the maximum
number of edits possible. A complex data type (struct, object, ...) can be
transformed via this compare function by simply using the sum of the
compare results over all fields.

The confidence is a combined measure of the code coverage, along with
the correctness of the code. The coverage is included to verify that no
unexpected behavior is also covered in the result. This ensures that
additional behavior that was not tested is not contained in the resulting
AST. The correctness is a measure that, independent of any data type,
allows us to determine how close a given test was to the original result.
Depending on what is being optimized, this measure may not necessarily
be required to be 0 (i.e. 100% correct). Considering floating point data
types, slight deviations are acceptable. Considering the type of algorithm,
for example shaders for graphics applications, an AST that produces
a higher frame rate than the original but is not as accurate may be an
acceptable trade-off. As the coverage goes from 0 to 1 where 1is best, and
the accuracy from 0 to ? where 0 is best, 1 + accuracy is inverted resulting
in a perfect score of 1 if it is accurate, and moving closer to 0 the less
accurate it is.

confidence(tests, AST) =
1 (3.5)
1 + accuracy(suite, AST)

coverageSuite(tests, AST) #

Expanding confidence beyond coverage

There is a wide area of research in the topic of software testing, ranging
from automatic test synthesis [11], quality of test suites [75] and co-
evolution of test cases with a GP experiment [76]. These approaches go
beyond the scope of this work. They would, however, greatly improve
the confidence in the results that GI produced in this approach, and are
thus shortly outlined as possible future work. This work assumes that an
adequate test-suite is provided for a function being optimized.

Zhu, Hall, and May [74] elaborate on test adequacy or mutation adequacy,
which is defined by how many mutants of code that have intentionally
inserted bugs, would be detected by a given test set. Mutation adequacy in
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this context is interesting, as it can be integrated directly in the approach.
GI naturally produces mutants, that could be used to verify if a given
test suite is adequate for the purpose of optimization.

In a similar way, additional test cases could be synthesized directly during
the experiment [76], either via existing synthesis methods or directly
via a genetic algorithm, and this too could be supported by considering
coverage. While using the overall coverage of the entire test suite for the
original program as a starting point, the coverage against an AST in the
GI population can also be measured. If the coverage of the modified AST
is not similar to the original AST, this can either indicate that dead code
has been introduced by the algorithm or, alternatively, that new tests
should be synthesized as they do not cover the entirety of the program.

3.3 Dynamic Fitness Functions Based on Test
Grouping

The application of dynamic fitness functions, is based on the previously
introduced measures of complexity (Equation 3.3) and overlap (Equa-
tion 3.4). A fitness function in a genetic algorithm usually does not
change over the execution of an experiment. This section introduces two
novel algorithms extending the core genetic algorithm approach, which
modify their fitness function during an experiment.

The core idea of this concept, originally introduced in [73], is that this
modification moves away from a static fitness landscape, towards a
dynamic one, with the fitness function continuously increasing the
selection pressure towards the target functionality. This can help, as
maintaining the semantic correctness of a given AST produces a flat
fitness landscape with few optima over an entire test suite, but single
selected test cases or subsets of the test suite have a fitness landscape with
more optima, allowing the genetic algorithm more leeway to produce
valid code in one area.

Depending on how the test case is selected, and grouped or ranked, this
indirectly influences the hidden functional or non-functional properties
of code. For example, null checking at the beginning of a function may be
used as a form of defensive programming. Similarly, the if check of Figure
3.1 serves as the stopping condition for the recursion, but a check for
negative values is missing, resulting in a bug. The functional property of
this function is clear, "produce the Fibonacci sequence". Defensive code is
not among the non-functional properties. And a hidden non-functional
property would be the exponential run-time complexity of the function,
O(2"). This would be virtually unnoticeable with smaller numbers, but
becomes problematic with higher numbers, and would in a recursive
implementation as given also lead to a stack overflow relatively fast. Thus,
a hidden functional feature would be the upper limit of numbers that
could be given as input.

For this example, ranking the test cases by their measured run-time can
serve to control the search space. The core functionality would still be
served with the three test cases of a respective input of (0, 1, 2). A second
group (1000, 2000, 3000) can serve to measure how the approach scales,
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as well as if it is resistant to a stack overflow, and would not fail if the data
types used in the calculation are large enough. This very simple example
already shows that the selected complexity measure has an impact on
the fitness landscape. Just wanting to ensure the functional properties
would only require a split of (0, 1) and (2) as this would provide full
coverage as a complexity measure and would let the tests (0) and (1) be
different from (2) according to the coverage metric, as they only test the
stopping condition, still opening the search space to be controlled via a
dynamic fitness function.

Two algorithms are presented that utilize a dynamically increasing
fitness function to control the fitness landscape. Both work by producing
building blocks on a less restricted landscape and continuously adding
test cases to utilize the existing building blocks in later generations when
the selection pressure is increased by adding more test cases. The first
approach sequentially adds more and more tests to direct the population
growth. The second approach groups tests in parallel populations, which
are combined in larger populations containing building blocks that can
be combined to satisfy the entire test suite.

Sequential Fitness Evaluation

Considering a sequential increase of the fitness of a function is done
via the complexity measure of test cases. The core assertion being that
test cases with a smaller complexity score are easier to achieve from an
algorithmic viewpoint. Sequentially adding more and more test cases
during a GI experiment allows the search space to slowly mature towards
a more easily achievable goal, and then improving this goal towards the
next step in complexity.

The reason the sequential fitness function uses the complexity measure
and not the overlap, is that the complexity measure naturally ranks
the tests in a suite. Splitting testing groups by overlap often coincides
with complexity in smaller ASTs, but in larger ASTs less complex tests
often have little overlap with each other. Grouping those together via
complexity would defeat the purpose of the sequential fitness function.
In contrast, grouping by overlap, but not complexity, would not achieve
the goal of incrementally tightening the valid search space.

Figure 3.2 shows how a genetic algorithm behaves when utilizing a
fitness function, iteratively increasing the complexity, and therefore the
selection pressure, during the execution. The algorithm works by a given
complexity measure, that a test suite is supposed to be ranked by. The
AST that needs to be optimized is instrumented, and the complexity
measure is evaluated for each test, which is then ranked and assigned
into one of n groups. Instead of utilizing the entire test suite from the
start, the algorithm starts with the "simplest" test cases according to the
given metric and runs for several generations. After each step, the test
group is merged with the next increasingly complex test group, and the
algorithm is continued in a new iteration with the now more restrictive
fitness function. This fitness function obviously must contain the accuracy
measure (see Algorithm 1), but can also be geared towards one or more
NFP at the same time.
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Figure 3.2: Genetic Algorithm with multi-
ple repeats, iteratively increasing the tests
used in the fitness function to verify the
semantic validity of the individuals being
optimized in the population. The tests are
ranked and grouped via a given complex-
ity measure.
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The algorithm only carries over the top 7 individuals in a population to
the next generation, and newly seeds the rest of the population. The reason
for this is, to prevent the entire population from being trapped inside
the local optimum for the previous fitness function. This inserts some
individuals that provide good candidates for crossover and mutation
with newly seeded individuals to break out of the artificially introduced
local optimum.

As an example, assume that the sequential fitness function is not used
in the context of GI but rather for GP. Starting from no code at all, the
experiment shall generate a valid implementation of Fibonacci, according
to the test set (0, 1, 2, 3, 4, 5) with their respective outputs (0, 1, 1, 2, 3,
5), according to the complexity measure node coverage. Considering the
AST nodes in Figure 3.1 the assigned complexity values are (10, 13, 21, 21,
21, 21). When splitting these into several groups the tests would be (0),
(1), (2, 3, 4, 5). This allows the GP to only attempt to return the input
if it is 0, immediately creating the stopping condition. It also shows
that the approach has limitations, as the added value of 1 does not
represent another feature, and most likely the GP experiment will just
satisfy returning the input. A valid set of individuals in the population is
already provided when starting the third iteration with (2,3,4,5) which
then increases the selection pressure with the actual implementation of
the Fibonacci sequence.

An evaluation of the algorithm [73], has shown some limitations of the
sequential approach, as the "sudden" increase in the selection pressure
after several generations can lead to the algorithm becoming stuck in
local optima. Two possible methods could improve the algorithm. The
first is a specific mutator that attempts to create mutants of already good
solutions in the previous iteration before the next iteration starts. This
concept is comparable to the approach of grafting from GI. The other
is extending the genetic algorithm from very distinctive iterations that
run for several generations with just one fitness function towards an Age
Layered Population Structure (ALPS) genetic algorithm. This type of
algorithm allows the crossover and mutate operation over several past
generations that were already produced, instead of just the last one. This
would allow a smoother transition from a less restrictive fitness function
to a more restrictive one as there is a transition period where the older
population structures can still be taken from the previous optimum and
crossed or mutated with the new optimum [77].

Parallel Fitness Evaluation

The parallel fitness evaluation, as implied by the name, requires splitting
the population of a genetic algorithm in several closed off groups that are
evaluated in parallel. Every single one of these populations is evaluated
via a different fitness function. These fitness functions must contain the
accuracy measure (see Algorithm 1) and evaluate different groups of
tests. The grouping of these tests is done via the overlap (Equation 3.4)
function. Similar to the concept of the sequential approach, this separates
the search space into smaller, more manageable portions that have more
leeway in what is a valid solution.
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The approach is steered by overlap, as the core assumption is, that tests
that cover similar code regions / branches also cover similar functional
features. Unlike the sequential approach via complexity, this means that
the test cases in the same group may be more varied in how complex
they are. This also implies that a secondary ranking via complexity and
a possible combination of the parallel and sequential approaches are
feasible. However, this requires a larger amount of test cases that are
different in nature in the region of the AST that the GI experiment is
supposed to optimize, and thus a combination of both features is not
attempted.

The approach to utilizing a fitness function that parallelizes test cases is
shown in Figure 3.3. A given test suite is executed on the original AST
and the overlap of nodes between all test cases is calculated. Overlap
is only valid between two given tests. Thus, the grouping happens by
creating groups, and randomly selecting the first test in each group. Via
round-robin, each group is assigned the next test, by the test that has
the most overlap with the first test in the group. The algorithm then
creates a population for every group and conducts a regular genetic
algorithm approach for that population and test-case pairing. After
several generations have passed, the amount of groups is reduced, and
the tests from removed groups are assigned via the same round-robin
approach to all remaining groups until all tests are assigned a new group.
This is conducted until only one group is left, covering all test cases.

After every repetition that reduces the groups the population is re-seeded,
similar to the sequential approach, in order to reduce the likelihood of
getting stuck in a local optimum. The seeding happens with elites from
all groups that have provided test cases to the new larger group. A part
of the population is filled with newly created individuals. This is similar
to the sequential approach.

To better emphasize how the algorithm works, consider a GP experiment
attempting to create the Fibonacci sequence with the test set of (0, 1, 2,
3, 4, 5) with their respective outputs (0, 1, 1, 2, 3, 5). Omitting a random
assignment and round-robin, it is obvious to a human, that the tests (0, 1)
and (2, 3, 4, 5) have the best overlap options, where 0 and 1 represent the
stopping condition for the recursion, and 2 through 5 calculate Fibonacci
via recursion. This essentially represents the two core building blocks of
the original function, and lets the algorithm recreate these two blocks in
parallel, and then merge them.

The example also shows one limitation identified in the original publi-
cation [73]. The parallel approach carried the issue, that very distinct
building blocks often were not combined in a meaningful way. A specific
crossover operator, attempting to merge the elites from the respective
originating groups via different control structures, could improve this
flaw. An additional option for improvement would be the utilization
of Island GP. This type of algorithm already defines the use of several
populations that evolve in parallel, simulating evolution via natural
borders. In some cases, individuals traverse between these islands and
would thus introduce relevant building blocks to them [78].
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Figure 3.3: Genetic algorithm maintain-
ing multiple populations with different
fitness functions at the same time. Every
repeat it reduces the amount of popula-
tions by merging them and combining the
test cases driving the semantic validity in
the fitness function.
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3.4 Knowledge-guided Genetic Improvement

Usefulness for Pattern Mining

Both of the presented options for dynamically applying fitness functions
unfortunately present a major flaw that makes them unsuitable for mining
patterns in the NFP domain. How the test cases are ranked depends solely
on the existing implementation of the AST. This naturally encourages the
population produced by the genetic algorithm to be similar to the original
AST, and thus negatively influences patterns that can be mined, as the
differences between the original and new versions will be lowered.

This issue does not occur in the functional domain, i.e., when fixing
bugs. Quite to the contrary the ranking mechanism, especially via overlap
encourages evolution in very specific areas, meaning that locations
containing bugs are moved into the focus of some population groups,
which increases the likelihood that localized fixes for them will be found,
and patterns can be mined from these fixes.

3.4 Knowledge-guided Genetic Improvement

A large part of a population during a GI experiment will not compile
or produce run-time exceptions [8, 9, 26] . Knowledge-guided Genetic
Improvement (KGGI) specifically addresses this issue by first gathering
knowledge about a language being used in GI, and then applying this
knowledge in the form of a syntax graph that can be utilized to produce
AST in a way that excludes incorrect individuals in the search space.

KGGI is based on two existing implementations of genetic program-
ming. Grammar Guided Genetic Programming (GGGP) [27, 28] utilizes
a provided grammar of a programming language, and was developed
to improve the original crossover operator of GP [14]. GGGP only con-
siders crossover points that are syntactically correct according to the
provided grammar. Tree Genetic Programming (TGP) utilizes a tree
structure, usually an AST, to represent individuals, and base their genetic
algorithms on this representation form. TGP enables useful operators
such as the homologous crossover, e.g., crossing individuals at similar
positions, which can be easily applied to trees [25]. Both of these genetic
programming variants have previously been combined via Tree-adjunct
Grammar Guided Genetic Programming (T3GP) [79, 80], utilizing the
tree representation for the operators, which can also use the syntactic
information the grammar provides.

KGGI combines GGGP and TGP in a different way. It also uses ASTs as a
representation form, but the core functionality is provided via a syntax
graph that is synthesized from the grammar of a language. This syntax
graph enables the valid selection and creation of ASTs, and enforces
restrictions to the functional properties of software, i.e. preventing the
creation of ASTs that knowingly will produce an exception at run time. It
also allows restricting according to NFPs of code, e.g. restricting the size
of the AST or preventing it from reaching an upper limit in predicted
run-time performance.

Due to the application of this approach in a compiler or interpreter,
KGGI does not use a context free grammar, but rather utilizes the context
of a given AST under optimization. This enables restricting the search
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space represented in the syntax graph even further, for example with
information available about variables, both global, and local variables
in- and outside the subgraph. Information about the context, such as
connected nodes and functions called in the individual AST can also be
utilized.

Syntax Graph

At the core of KGGI is the syntax graph that can be utilized in all major
genetic operators (create, crossover, mutate), as well as for selecting good
positions to apply these operators (select). To achieve this functionality,
the syntax graph provides several core features. The graph restricts
the relationships between individual nodes in a given AST in order to
enforce the given grammar, i.e., to be able to compile the AST. It also
prevents ASTs known to produce a run-time exception. The syntax graph
restricts the non-functional search space by asserting upper limits upon
them via knowledge encoded in nodes. Finally, the syntax graph deals with
requirements, i.e. several nodes require another node to not lead to a
run-time exception. For example, a variable must be initialized before it
can be accessed. This is dealt with in the form of requirements that the
graph must satisfy whenever it is used to generate a new AST.

A syntax graph consists of nodes, just like an AST consists of nodes.
However, in this case the nodes of the syntax graph represent operations
that produce AST nodes. These operations are used in evolutionary
operators in GI experiments. To ensure that these very different concepts
can not be confused with each other, each concept is addressed with a
specific term. Whenever referring to nodes of the syntax graph the word
strategy will be used (Definition 3.4.1), as each syntax graph node follows
a strategy to produce valid nodes. A node always refers to an object that
is part of the AST (see Definition 3.4.2). An evolutionary operator is an
operator (Definition 3.4.3) in the context of genetic algorithms, i.e. create,
crossover, mutate, select.

Definition 3.4.1 A strategy is a node in the syntax graph. Its purpose is to
produce AST nodes, and to control the valid search space in the AST.

Definition 3.4.2 A node is a node in the AST. It is produced by a strategy
in the syntax graph.

Definition 3.4.3 An operator is an evolutionary operator in a genetic
algorithm. It utilizes the syntax graph to create ASTS.

Figure 3.4 shows a reduced example syntax graph for the language MiniC
(see Chapter 9). The syntax graph consists of a number of strategies,
with one roof strategy that has relationships to all other strategies. These
strategies in turn are always specific for one concept in a given language,
such as control structures (if, loop, ...) literals (int, double, ...) variable
access (read, write) and others. Additionally, there is an entry point
strategy, which serves to control the search space in the root of what is
being created.

The syntax graph has three primary goals:
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» Create a compilable AST.

» Restrict the search space, i.e. decide what (sub) AST can be validly
produced in a given context.

» When a branch in an AST is removed, produce a definition of what
must be done to replace it to ensure the remaining AST stays valid.

An AST that is produced must always be considered in the context of its
surroundings. These surroundings consist of the program the AST will
be executed in. For example, the AST may call functions defined in the
program, in addition to library functions the programming language
offers. Considering genetic operators, especially mutation and crossover,
only a sub-AST is mutated or crossed. Thus, the context must also include
information about the surrounding AST the new sub-AST will be part
of. As an example, a mutated sub-AST may be required to initialize a
variable that is used later in the surrounding AST.

The context during the creation of a syntax graph consists of:

Approximated NFP of current values. These NFPs range from the depth
and width of the AST to more complex information such as the
approximated run-time performance. All of these values can only
be seen as an approximation, as it is unknown how it behaves
during run time. For example, the depth may be miscalculated
as the interpreter or compiler may significantly modify the given
nodes.

NFP limitations that restrict the search space in that aspect.

AST as it has been previously produced, mainly to access information
for more specific strategies, such as those dealing with variable
access.

Requirements that must be fulfilled, including the Degrees of Freedom
(DOFs) remaining for later nodes in the currently synthesized AST
to fulfill these requirements.

Supporting Information about the program the AST will be embedded
in, such as the stack and heap variables, and available functions.

Figure 3.4: Syntax graph for a given lan-
guage. Operators (gray) represent the
grammar and contain knowledge about
their non-functional properties (white),
and edges to valid relationships according
to the grammar.
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All strategies in the syntax graph follow some core rules to achieve these
goals. Nodes are always generated with a given context, and the AST is
generated in a depth first way, from left to right. This enables continuously
updating the context during the generation, and thus allows later nodes
to access the context to decide what is valid in that context. For example,
the context contains already declared variables that may be accessed from
that point on. The context is also provided by evolutionary operators,
i.e., when only a part of a given AST is being modified, the context is
pre-filled to contain the information of already existing variables, the
depth of the tree that already exists, and so on.

The entry point strategy is responsible for preparing requirements imposed
by the GI experiment, or alternatively on the evolutionary operator being
used. Generally, this strategy will be restricted to all valid nodes that
may occur under a node that is the root of a newly generated AST.
For example, a function allows only the node type function body. In the
mutation operator, the entry point depends on what is being mutated.
For example, a single point mutator selects an if statement to be replaced.
The if statement is the child of a block (...) node, meaning that at this
position any statement node is allowed to be injected into the language,
and thus the entry point would directly point to these nodes. In another
example, if the condition node of the if statement, is selected for mutation,
the entry point strategy impose the requirement that the generated AST
produces a boolean value.

The root strategy is the reason why KGGI utilizes a syntax graph and not
a tree to represent the language. It serves as selection mechanism for all
strategies in a given language, whenever a strategy needs to create child-
nodes. Representing a language as a tree would represent an exponential
amount of possibilities, and even when restricting the space to a specific
depth, it would be too large to be utilized in a meaningful way. Thus, most
nodes, instead of pointing towards all allowed sub-nodes for a specific
relation (such as if—condition), they instead point to the root strategy.
The root strategy is given the context that is currently being generated
or searched for, and it has to identify child strategies that are allowed to
produce an AST node in that context, then select one to produce a new
node.

The root strategy serves as a selection mechanism which node should be
created. Whenever a strategy asks the root strategy for the creation of a
new node, the root strategy queries all available strategies, providing the
current context. Every strategy must decide if it can produce a valid AST
given that context. The root strategy then selects one strategy that can
produce a node given the context. This is also the reason, why in most
cases strategies will not refer to specific child relationships, but just to the
root strategy. To restrict the search space, instead of a specific link, a new
root strategy (see bottom left of Figure 3.4) can be injected that contains
only the valid subset of nodes.

Finally, to produce a valid node, strategies are specific for a given concept
and depend on the grammar of the language. For example, via mining the
given grammar, the required child relationships of a node can be decided
automatically. However, in some cases there must be a specialized strategy.
For example accessing stack or heap variables for concepts that deal with
data flow have to be manually designed. Specialized strategies already
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help prevent many bugs that would otherwise occur in individuals
generated during GI experiments. A specialized strategy for variable
access can check which variables were initialized by the previously
generated AST nodes, and thus only generate reads that will not fail.

There is one more strategy dealing with the occurrence of 0..n rela-
tionships between AST concepts. For example this happens in block
statements ({...}), which allow multiple statements to be placed inside
them. To avoid having to provide strategies that must consider a single
occurrence or a repeated one, the repeating strategy is utilized. The repeat-
ing strategy occurs as a child of every strategy having such a relationship
to child nodes. The reason being that the amount of repetitions can be
controlled in a more fine-granular way, as there often is a difference
between 0..n and 1..n to be valid for compilation or to prevent run-time
exceptions.

Terminal strategies are a specialization to inject literal values. These can
be, for example, variable names, integer or double values. Good starting
points for terminal strategies are frequently occurring constants such as
0, 1 or null. Also, selecting constants existing in the original AST being
optimized with GI or other parts of the source code via grafting can be
good selection strategies [22, 23].

At the core of these strategies is the concept that given a context, a strategy
must decide if it can produce a node that is valid in that context. This
decision-making process is based on the properties of that strategy
derived from the language’s grammar and knowledge gathered about it.
These properties are entirely non-functional and always restrict the search
space. For example the depth of the generated AST may be restricted to a
given value. An if statement knows that it has a minimalDepth of 2 - itself,
and at least one node for the condition. It can check if that depth would
be exceeded otherwise. Similarly, the maximum amount of child-nodes,
or the complexity can be restricted. For example, the amount of loops
can be restricted to a maximum, or the predicted run-time cost of nodes
can be restricted as well. Restricting the allowed child nodes, can also
prevent bugs. For example, a frequently recurring issue with generated
conditions in loops or if statements is that the condition is generated as
a boolean literal, always selecting one branch, or worse resulting in an
endless loop. This type of bug can be fixed by constraining the allowed
child nodes in the condition to not allow literal or constant values.

Restricting node creation to a valid range via the given context alone is
not enough, however. A very important concept concerning bugs is a
fault of omission [64]. This is a type of bug that is not introduced by code
that exists, but rather a bug that exists because code was missing. This
can include faults in defensive programming style, e.g., checking for null
values, or the failure to check for negative numbers as seen in Figure 3.1.
It can also include issues such as not initializing variables correctly or
misusing an API which requires a specific order of calls [31].

The syntax graph also contains a fix for faults of omission with the concept
of requirements engineering. Whenever a strategy requires another
strategy, it can inject a requirement into the context being processed,
which a node being generated later must fulfill. For example, a while
loop may enforce that it’s condition has a read to a variable to ensure
that an endless loop becomes less likely. An important requirement that
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Listing 3.1: Source code represented as
AST in Figure 3.5

int sum(int[] arr, int len) {
int i, sum = 0;
for (i = 0; i < len; i++){

sum += arr[i];

}
printf("calculated sum of
%d values", 1i);
return sum;

Figure 3.5: The shown AST is being modi-
fied by a single point mutator utilizing the
syntax graph. The highlighted part of the
AST is the subtree being replaced with a
new mutant. The requirement that i must
be written to from the node marked in red
must be fulfilled in the new mutant to be
valid. As sum is initialized in node 6, node
26 is not a requirement.

will be injected into the context is that the variable being read in the
condition must be modified in the loop.

Only injecting requirements into the context in which an AST is being
created, is not enough to prevent infeasible candidates from being created.
The question remains at which point a given requirement must be fulfilled.
Continuing the loop-example, modifying the variable value represented
in the stopping condition may happen at any point during the loop body.
Only defining the requirement would either enforce injecting it at the
beginning or at the end, with a chance that multiple requirements then
start interfering with each other. Thus, requirements have a corresponding
degree of freedom. This is calculated by a look ahead in the generation, to
see if any open space in the AST generation can satisfy one or more of the
given requirements. The more AST nodes are generated in the process,
the lower this degree becomes, and as a consequence, the more likely the
requirement will be fulfilled, until it must be fulfilled as no degree of
freedom remains.

In the rest of this section, the core algorithms that drive the selection
and creation process in the syntax graph will be explained. As these
algorithms operate recursively on the syntax graph and consider multiple
restrictions and requirements at the same time, they are fairly complex
to explain. Thus, a running example shown in Figure 3.5 will be used.
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The code being mutated is a simple algorithm to calculate the sum of a
given integer array. The example shows a case where an existing AST is
being mutated via a single point mutator. The highlighted part of the
AST was selected for replacement, and as a first step the context that a
new mutant must fulfill to be valid has to be identified. For the example,
we ignore NFP limitations and only concentrate on the AST and the
requirements.

Deriving the Context From an AST

Before the syntax graph is applied to produce a new sub-AST for node
8 in Figure 3.5, the context must be initialized. The calculation of the
context is shown in Algorithm 2. It iterates through the AST in a depth
first way (Lines 4-17) and considers node 8 (Figure 3.5) as the cutoffPoint,
e.g. the point that is cut out of the AST, possibly leaving unfulfilled
requirements (Line 5). The entire AST is iterated through from left to
right. Every node can add requirements, or fulfill them. For example,
every write nod (1, 3, 6) adds the variable being written to, to a list of
initialized variables. Read nodes (24, 26) can check if their requirement
that a variable exists is satisfied. When this is not the case, as is shown
with the node read int i (24), a requirement is added to the context, stating
that variable "i" must be initialized (Line 15-16). Nodes can also fulfill
requirements opened by other nodes (not shown in the example). For
example, a write node may create a requirement that it will be read, to
avoid dead code, and a later read node can fulfill this requirement.

Algorithm 2: Algorithm to identify context for AST creation.
Data: ast
Data: nonFunctionalProperties
Data: cutoffPoint
/* Initialization */
cutoff « false;
dfslterator «— ast.dfslterator();
context < {};
/* Depth first search of requirements and NFP */
foreach node € dfslterator do
if node = cutoffPoint then
cutoff « true;
context.cutoff(nfp, strategy.nfp(node));
/* Skip excluded part of tree */
dfslterator.skip(node);
continue;

end
strategy « findStrategy(node);
/* Add non-functional properties and requirements */
foreach nfp € nonFunctionalProperties do
‘ context.update(nfp, strategy.nfp(node), cutoff);
end
context.addRequirements(strategy.requirements(context, node));
context.fulfillRequirements(strategy.fulfill(context, node));

end
Result: context
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It doesn’t matter if the reading happens from left to right or from right to
left, as earlier nodes can impose requirements, and later nodes can have
requirements that were only fulfilled in the removed part of the AST.
Going from left to right however enables re-using the context. Everything
of relevance is added to the given context, including, for example, the
currently available stack variables. Lines 5-10 of Algorithm 2) denote
where the cutoff point happens (e.g. the node including all child-nodes
that will be removed from the AST). Line 7 marks the cutoff point in
the context. This is important, as the later node creation algorithm must
know what is available in the context for its use, e.g. which items are
available on the stack and the heap, or which anonymous functions have
been declared at this point.

Lines 7, and 13 (Algorithm 2) serve a similar context. They update the
non-functional properties in the context relevant for the creation of the
new subtree. Some of these properties are only relevant at the cutoff
point, like the depth, which states that the maximal depth may not be
exceeded descending from that point. Some others are relevant only for
some remaining nodes, for example the maximum width (how many
children a node has), and finally, some may require calculation over all
nodes. An example of this would be the projected run-time performance,
which has to be calculated for every node.

The findStrategy operation of line 12 (Algorithm 2) can be problematic
in several cases. One case is, if there is no strategy that can create the
node. In this case the algorithm has no choice but to ignore and skip
it, as the strategy is responsible for identifying requirements the node
has or fulfills. This may happen with artificial nodes introduced by the
runtime environment, or with nodes not addressed by a developer. The
other case stems from the design of the syntax graph. The syntax graph
intentionally allows using multiple strategies for the exact same node. As
an example, this is important for covering several valid versions of the
same concept, e.g. multiple valid patterns identified via pattern mining.
One while loop may require a write in the body, to update a read of a
local variable. Another while loop may require a specific function call
and a corresponding read to a global variable instead. This issue can be
solved via pattern matching and is addressed in Chapter 5.

Looking at the running example the variables arr[], (1) len (3) and sum
(6) will be available in the context, and the NFPs will be set at a depth of
2 (depth 1 above the cutoff point node 8). The context at the mutation
point will have one single requirement, that i (24) must be written to, as
it is used in node 24, and it’s corresponding writes (9, 14) are removed.
Figure 3.6 shows the context that will be provided to the syntax graph.

Creating a New sub-AST With the Syntax Graph

The following example shows how the syntax graph works. In this case,
a single point mutation operator uses the syntax graph to create a new
node with the given context from Figure 3.6. The context will be updated
alongside the example. For brevity, only changes made to the context
will be shown, and the AST will only be shown from the cutoff point and
below.
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AST: Supporting Information:

Stack: Heap:

Functions:

printf(string, obj...) |

‘ ° int sum

Requirements:

write int i

*approximated NFP and limitations omitted for example

The relationships between the strategies in the syntax graph are shown
in Figure 3.9. It shows the core strategies employed in the syntax graph
and their respective functionality with canCreate, which validates the
NFP and requirements, as well as create which will return a new AST.

The mutation operator calls the the entry point strategy @, which will
check what type of node must be created. It checks the cutoff-point and
identifies its parent, e.g. a block node ... (5). Then the entry point strategy
will be asked to create a new node. Through the given context, that node
will be of the type MiniC node, as a block node consists of a sequence
of nodes, without a specific type. Thus, the entry point strategy requests
the creation of such a node with the context (Figure 3.7) from the root
strategy.

The root strategy @ then queries all of its contained strategies with the
given context (RootStrategy.create() Figure 3.9). The contained strategies
return nothing if they can't satisfy the NFP, or alternatively the given
DOFs they provide in satisfying the given requirements. The DOF
describe how often a requirement can be satisfied. This is used as a metric
in the syntax graph, to enforce that all requirements are met, but not
enforced immediately. For example, consider the requirement write int
i which enforces that the variable 7 is written to, before it is used. To
satisfy this requirement, the root strategy would have to create a write
int node, essentially restricting the search space to just this one type of
node. Instead, all specialized strategies are queried by the root strategy
(canCreate @). A specialized strategy can either satisfy a requirement,
or check if it can generate child nodes that can satisfy the requirement
instead. In the case of a write int node, the DOF is 1. In the case of a
block node, the DOF is 5. The block node, could not directly satisfy the
requirement. But a block consists of a sequence of statements (in this
example limited to 5 statements at most), and would delegate the query
to the repeating strategy @. Since the block node could potentially contain
5 write int nodes, the DOF is 5.

After all strategies have been queried, one strategy that can fulfill all
requirements is selected. This selection is done just like how regular GI
algorithms would select a node, for example randomly, via tournament
selection, or biased towards a specific type of algorithm. The selected
strategy is then tasked to conduct the actual creation. For our example,
the {...} block node was chosen (Figure 3.8).

3. GENETIC

Figure 3.6: The initial context for the AST
shown in Figure 3.5 generated from Algo-
rithm 2.

AST: - Requirements:

Type=MiniC Node

Figure 3.7: Context after entry point strat-
egy.

AST: - Requirements:

write int i
Type=Block

Figure 3.8: Context after the first node
type was selected by the root strategy.
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Figure 3.9: Algorithms for the major strategies in the syntax graph. The boxes in white describe the operations, and give examples of how
this operation works.
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AST: -

Requirements:

write int i - 5

Type=Minic Node

Figure 3.10: Context generated by the re-
peating strategy for the first node.

AST:

Requirements:

Type=Minic Node

Figure 3.11: Context generated by the re-
peating strategy for the second node.

AST:

Requirements:

Figure 3.12: Context generated by the spe-
cialized while strategy for the condition

node.

AST:

Requirements:

Type=Boolean

read int i

Figure 3.13: Context returned to the while
strategy by strategy that created the <

condition node.

The specialized strateqy @ for block nodes first generates all needed child
nodes. As a block node only consists of statements, it delegates the
generation to the repeating strategy @. This strategy checks how many
nodes are required to fulfill all requirements. In this example, at least one
node is required. The repeating strategy randomly selects an amount of
child nodes between this minimum, and the allowed code size limit (5).
For this example, 2 is chosen. The repeating strategy then delegates the
creation of the first node to the root strategy (Figure 3.10).

The root Strategy repeats the process of collecting strategies that can create
in the given context, this time selecting the write int strategy. This would
not have to happen, as the DOF are 5, thus allowing all nodes to be
selected, and in this case just happens randomly. This specialized strategy
© for write int has one child relationship to the value that will be written
to the variable. It also has a terminal, the variable name, that it will write
to. For brevity, the generation of the child-node int literal 0 is skipped
(it repeats with root strategy.create() and a requirement on type = int
node). Next the specialized strategy creates the terminal. In this case the
strategy does not refer back to the root strategy, but rather to its terminal
strateqy @ of selecting a variable name available in the stack. As it selects
i, the terminal strategy also fulfills the requirement write int i. This causes
all later-produced nodes to be free of the requirement. The requirement
is removed from the context and returned to the repeating strategy. The
repeating strategy also updates the fulfilled requirements before it uses
the root strategy to create the next individual (Figure 3.11).

The root strategqy @ now creates the next individual. As no further
requirements apply, the selection process is significantly faster, since not
having to evaluate DOFs in requirements allows strategies to rely on
the pre-existing knowledge encoded in them about the NFP alone. This
time a while specialized strategy @ is selected. This particular strategy has
been restricted via a structural requirement as shown in Figure 3.14. This
structural requirement was injected via a pattern (explained in Chapter
5). The while strategy adds a new requirement to the context, requiring a
boolean operator for the condition. Due to the pattern, the while strategy
also adds an read int variable 0 requirement (Figure 3.12).

The creation of the condition node is again delegated to the root-strategy.
The root strategy randomly selects the less than (<) specialized strategy
© which fulfills the boolean requirement. This strategy in turn has two
child nodes, left and right, either one of which must satisfy the remaining
read int variable 0 condition. For the example, assume that the left node
generated is read int i, which also fulfills the read int variable 0 requirement.
The less than specialized strategy injects i in the fulfilled requirement, to
replace the 0 placeholder (placeholders are numbered in case a pattern
must be satisfied with multiple variables). The right node generated is
read int len. This expresses the condition i <len, which is returned to the
while node strategy (Figure 3.13).

The specialized while strategy @ next has to create the body. The strategy
injects the second part of the structural requirement (Figure 3.14). As the
variable i has been returned by the child context, this variable is now
used in the new requirement write int i. The process continues until the
entire body is created, which also contains a write int i node, satisfying the
remainder of the structural requirement. The while specialized strategy
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while strategy

condition body
Y A 4
require require
read write
int 0/ int 0
read write
int 0 int 0

finally creates the while node, and links the already created child nodes
condition and body. Then the process ascends back to the {...} block strategy
which is finally created with the write to i, and the while node as children,
finishing the process with a completed sub-AST.

The example also shows that the syntax graph is only as good as the rules
that are encoded in it. The {...} block node contained inside the other
block node is unnecessary, and could be avoided by encoding additional
rules. The results of the process, without the redundant block node, are
shown in Figure 3.15.

@
‘w@o
N

4 6
ead int!
arg_1
7

Figure 3.14: While statement strategy with
a structural requirement that a local read
is injected in the condition, and a corre-
sponding requirement to write updating
that variable in the body of the statement.
The corresponding pattern is shown on
the right side.

Listing 3.2: Source code represented as
AST in Figure 3.15

int sum(int[] arr, int len) {
int sum = 0;

{
int i = 0;
while (i < len){
sum += arr[i];
1++;
}
}

printf("calculated sum of
%d values", 1i);
return sum;

Figure 3.15: The shown AST after it has
been modified using the syntax graph of
KGQGL The highlighted part of the graph is
the new subtree, fulfilling all requirements
of the original example.
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Collecting Information for the Syntax Graph

To enable the advantages that the syntax graph provides, it is necessary
to gather the necessary information for a given programming language.
This foundation can be utilized from the grammar of that language, and
is highly dependent on the compiler or interpreter being used. In general,
the Extended Backus-Naur Form (EBNF) can be utilized to build up the
structure of the syntax graph. The primary difference is that the EBNF
produces a parse tree whereas the syntax graph produces an AST (a more
abstract representation of the program). In a parse tree, inner nodes are
nonterminal symbols, while operators such as add (+) or multiply (*) are
leaves. In an AST, however, inner nodes are operators and the leaves are
operands (variables or literals). An AST does not contain nonterminal
symbols of the grammar.

It is important to identify and extract down to the smallest operator or
operand a programming language can have, and create a strategy for
each one of them. In the case of the Truffle interpreter (see Section 2.4)
this is fairly simple, as it is an AST interpreter, that already implements
every possible operator as a specific node. For the operators of a language,
how they are connected to each other is relevant, i.e., which operator
can have which type of child nodes. This builds the basis for the syntax
graph.

Additionally, the syntax graph has to be attributed with knowledge
about NFP. These properties serve purely to restrict the search space to
manageable levels. Some of these are fairly simple, such as depth (distance
between root and leaf nodes) and width (distance from leftmost leaf to
rightmost leaf). Some others must be identified and measured from code,
or must be modelled. Advancing the state-of-the-art in this area is outside
the scope of this work. Instead, specific to the Truffle interpreter, a code
measurement approach is utilized (further discussed in Chapter 10). In
short, this is done via Java reflection and by identifying the relationships
between node implementations of a given Truffle language. NFP are
then measured by a brute-force learning approach. This works via a
method-stub containing a callable function, and a block statement where
nodes can be injected. A node to be measured for NFP, such as run-time
performance, is injected into that method stub 10,000 times to measure
in-process iterations, and executed 1,000,000 times of which the first
100,000 times are discarded to take the warm-up phase into account.
From the remaining executions, the NFP are calculated (e.g., average
run-time over the 900,000 executions) to ensure that the side effects in
the measurement are minimal [81]. As the operators in the language are
evaluated independently of each other, the measurements cannot be seen
as an absolutely trustworthy behavior of the code, as during compilation
code will be optimized, which will for example change the run-time
performance. They do however provide a useful upper limit to the search
space.

An alternative to the selected approach would be modelling. Kommenda
[82] uses a recursive complexity metric for mathematical functions
depending on the type of expression used. Constants are assigned to
leaves (e.g., variables and literals), and aggregation functions to inner
nodes (e.g., operators such as + or square root). Using a modelling
approach to approximate the real behavior of code is also done directly
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in compilers. Leopoldseder et al. [58] uses a cost model for the selection
of code duplication optimizations in the Graal compiler. Yet another
alternative may be predicting the NFP via unsupervised learning instead
of a model [83]. However, this option may not be as easy to utilize in
the syntax graph, as a predictor would have to be able to be applied on
individual operators during the recursive creation of AST nodes.

Finally, the requirements needed for the syntax graph to prevent infea-
sible individuals, are also necessary. These often cannot be collected
automatically, but must be hand-coded. For example, access to the stack
and the heap are different in every execution environment and will be
represented differently in interpreters and compilers. This requires a
manual implementation. The only requirements that can be collected
through semi-automated means, are structural requirements, such as
shown in Figure 3.14. These structural requirements can be derived from
patterns. An approach to mine and utilize these patterns is discussed in
Chapter 5.

Operators in KGGI

The presented syntax graph provides the core functionality for KGGI,
and can be applied in every genetic operator, though it is not necessarily
required. The syntax graph can be applied in a single operator as well,
mixing KGGI with other existing approaches. The following explains
how the syntax graph can be utilized in every major genetic operator.

In the creation operator, i.e., the genetic operator that is responsible for
creating the first individual population, the syntax graph alone can be
the operator. Given the limitations of the selected experiment, a new AST
can be created without any other information. Often creation operators in
GI use mutation of the original AST, combined with the grafting from
other parts of the source code, to create the initial population [22, 23].
This is a form of mutation operation, which can utilize the syntax graph
via Algorithm 2, on pruned mutants of the original code, or alternatively
grafts from other parts in the source code.

Finally, the crossover operation, which can also have a grafting adaption
where an individual is crossed with ASTs from other parts of the code, is
the most complex to handle. The syntax graph can be utilized for this
via Algorithm 2 to identify requirements from one crossover point, and
also requirements from another crossover point. Combining this with
an optional mutation to create fixes for non-matched requirements in
both AST candidates is one way to conduct crossover. The other depends
on the selection operation. The syntax graph can be utilized to identify
requirements for different candidate positions during a crossover. The
selector, in this case, can use the generated context of Algorithm 2 to
match crossover points that either produce no issues, or solve each other’s
requirements.

Advantages and Drawbacks of KGGI

The primary drawback of KGGI is its complexity, relative to other ap-
proaches. Not only does the syntax graph require a rather complex set of
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algorithms and needs specific functionality for measuring NFP, it also
requires handling non-structural requirements manually. The recursive
nature of the syntax graph strategies also has a rather large run-time
overhead, as the mechanism for selecting which node is created requires
evaluation of multiple nodes. This can be somewhat mitigated by a
random walk that simply selects the first evaluated strategy that fulfills
all requirements. This makes the genetic operators using the syntax graph
less lightweight than more random approaches.

The primary advantage of KGGI is the reduction of individuals that
are infeasible due to run-time exceptions and complete removal of
individuals that can’t be compiled, as the grammar of the language
is adhered to at all times. Conversely, this negatively impacts the run
time of a GI experiment from start to finish, as evaluating feasible
individuals is more costly than evaluating infeasible individuals that
produce exceptions. Section 6.4 shows that KGGI can double the amount
of successful ASTs in an experiment and can generate solutions that
significantly outperform manually written algorithms concerning their
NEFP run-time performance.



Mining Significant Patterns from
Source Code

Patterns in source code can be discovered via mining the frequency of a
section of code. This can be done statically by mining the source code and
by gaining information such as the data flow graph using static analysis
[31, 34, 40-43]. It can also be done dynamically via analysis of how the
code behaves by extracting information from call traces or execution
traces [2, 37, 38, 45]. Of course these approaches can be mixed into hybrid
approaches [44, 46].

This work follows a hybrid approach of pattern mining, using an Abstract
Syntax Tree (AST) representation of the source code. While the source
code is utilized in a static way, it is enriched with information gathered
from the execution of that source. This information consists of the
functional properties of that source code, i.e. the results of executed tests
and exception traces if a run-time exception occurred, as well as the
Non-Functional Properties (NFPs), such as the run-time performance
and energy-consumption.

Pattern mining can be done via comparing multiple different source
code fragments from different programs or frameworks. It can also be
done on one single structure, such as large graphs, to find frequently
recurring substructures. In the context of our work, the search space always
consists of several different ASTs. This can be multiple algorithms being
mined for recurring bugs (see Section 6.3), or multiple versions of the
same algorithm represented as different AST, being mined for NFP (see
Section 6.5).

Mining of patterns via the frequency of sections of code has a major
drawback. The larger the code sections, and the more relationships
between them, the more the search space will grow. For example, a single
tree has 2" components, where 1 is the amount of relationships in that
tree. A component of a tree is any subset of nodes with its corresponding
relations in order. This is similar to the permutations, in which all
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4. Mining Significant Patterns from Source Code

variants independent of order are considered. Evaluating every single
component would require exponential runtime. Thus, significant pattern
mining follows a bottom-up approach via apriori or pattern-growth
algorithms, and considers a minimum support threshold, i.e., a threshold
that requires a pattern to occur with a minimum frequency to be explored
any further. Naturally patterns occur less frequently the larger they are,
no matter if they occur over multiple trees or multiple times in a single
one, thus efficiently pruning the search space. Discriminative pattern
mining extends this concept by mining between two groups (e.g. efficient
ASTs compared to inefficient ASTs) which allows one to mine patterns
that occur more frequently in one group. The pruning can be done with
a variety of metrics, most prevalent the Information Gain metric [36, 38].
Our work also follows significant and discriminative pattern mining,
but introduces a novel encoding and algorithms with adaptions geared
towards the intricacies of source code under consideration of its NFPs.

The following sections explain the foundation of the mining approach
and extensions to the state-of-the-art such as the use of taxonomies,
wildcards and a novel encoding used in the mining. Simplified examples
are provided how these extensions can be used in a meaningful way. All
of these parts are tied together in a mining algorithm utilizing pattern
growth discussed in Section 4.6.

4.1 A Representation Form for Source Code

An AST representation was chosen for the mining approach, largely
because of the advantages identified from related work, and the natural
way source code can be represented as a tree.

Related work in this area focuses on three types of representation.
Sequences [34, 42, 43, 46], mostly represent the source code itself, or log
traces of function calls. With regard to the meaningfullness of patterns,
sequences are generally outperformed by tree and graph representations,
but have the advantage of a large background in text mining and highly
efficient algorithms due to the simple representation. Graphs [31, 37, 38,
40, 44, 45,47, 48, 50, 51] are used most often for dynamic information such
as call graphs or data flow graphs, but also to record class relationships or
method blocks. Their advantage lies in the ability to represent the strucure
of the source code as well as the ability to deal with cyclic relationships. In
sequential mining, to derive patterns from cycles, cyclic relationships are
resolved in sequences by transforming recurrences to 1..n patterns if they
are observed in traces. Similarly, trees can contain structural repetitions
or can use annotated relationships to deal with repetitions, but can’t
represent cyclic relationships. The major disadvantage of graphs is the
inefficiency of their mining algorithms, as graph isomorphism has to be
dealt with due to the cyclic relationships. Finally, tree representations
[2, 41, 49] are used to represent call trees or the source code as AST
or a variant thereof. Due to the acyclic nature of trees, highly efficient
algorithms have been developed for them [30]. Their disadvantage is,
that due to their acyclic nature the representation is not as versatile as
a graph representation, and algorithms developed for it can only work
with graphs that are preprocessed by removing cycles.
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Trees have the advantage of naturally representing source code and can
be produced by a parser from the grammar of a programming language.
Trees also can be transformed back into source code. ASTs are abstract
versions of syntax trees that do not represent the parsing hierarchy, but
rather the structure of the code in the form of operators and operands
[7]. They are used in compilers as a high-level representation in the early
compilation cycle [4], and interpreters use them as a primary represen-
tation [60, 61]. Utilizing ASTs as representation allows the recording of
observed information directly from the compiler or interpreter. Addi-
tionally, patterns mined from this information can be directly applied in
said compiler or interpreter for the optimization of NFPs.

This representation can be used for a wide range of granularity. For exam-
ple, when parsing source code via a grammar the code may be stopped at
control structures (if, loop, ...), at structures that create branches (control
structures, and, or, ...), or at the statement level. An interpreter may
provide a much more detailed AST down to the expression or terminal
symbol level. It may also provide this information with additional values,
such call targets for function dispatches or the data type that a specific
operation (+, -, assignment) will be executed with. While this granularity
is a necessity to really understand the impact of source code on NFPs
it may be a hindrance as well. Due to the detailed granularity, patterns
also become more diverse, reducing the amount of patterns that can be
found and also reducing the probability that patterns can be generalized.
This issue can be dealt with by considering a taxonomy when mining
a programming language. A taxonomy in this case represents a view
that can contextualize mined patterns, such as a taxonomy dedicated for
different data types operators and operands are written in.

Definition 4.1.1 summarizes our representation for mining, which is
extracted from the AST used by the interpreter or compiler. However,
an AST can also be manually created from source code. As the order of
operations in source code is significant, the names of relationships and
their order in larger cardinalities is utilized in the mining process. ASTs
in the context of a compiler or interpreter are always ordered, however,
related work often conducts unordered mining on AST representations.
In addition, values, such as the names of variables or literal values, are
used for mining as well. ASTs are also enriched with NFPs and test
results recorded during execution. Figure 4.1 shows an example of the
data considered in mining on the left, and the simplified representation
which will be utilized in showcases of the remainder of this chapter on
the right.

Definition 4.1.1 The representation source code is mined in, is an order
dependent AST. The AST represents one method, including literal values
and relationship names. The AST is enriched with NFPs and test results
used for discriminative pattern mining.

Listing 4.1: Source code represented as
AST in Figure 4.1

int timesTwo(int x) {
return x x 2;
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Figure 4.1: Representation of an AST. On
the left the complete AST is shown, in-
cluding literal values, and the names of
relationships. If a relationship is a one-to-
many relationship the order of the child
nodes is used as well. The right shows the
simplified version. Below the trees, the left
table shows the test results observed dur-
ing execution, while the right table shows
the properties observed from static analy-
sis (code size, complexity) and execution
(run-time, accuracy e.g. if any tests failed
during execution).
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body

Function Bodg

body
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statement 0 statement 1
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4.2 Utilizing Taxonomies in Pattern Mining

Programming languages and constructs follow a natural hierarchy that
pattern mining can take advantage of. For example, a class can extend
another class or implement an interface. This class consists of fields and
methods. A method has parameters and a method body consisting of
statements. As another example, a statement can be either a Return, If or
Loop statement, and a Return statement consists multiple operators and
operands. These operators may be of different data types, or have specific
data access patterns. These hierarchies, or hierarchical taxonomies, of the
programming language are not really represented in an AST. The AST
represents the structure of the source code but not higher level concepts.
Different layers in the taxonomy are important for mining, in part to
maintain control over the granularity and thus the general applicability
of a mined pattern, and also in part because depending on the property
(run-time performance, bugs, ...) patterns are being mined for, some
patterns may be combined into stronger, more generalized patterns and
thus can be found with a higher minimum support threshold.

Thus, in our pattern mining approach a hierarchical taxonomy structure is
utilized as defined in Definition 4.2.1. An example for such a structure
can be seen in Figure 4.2. This taxonomy enables the generalization of
a pattern along the hierarchy. An example of resulting patterns can be
seen in Figure 4.3. These contain less frequent specialized patterns and
more frequently occurring generalized ones. This results in an increased
amount of possible patterns in the search space, adding a layer of
complexity to the pattern mining. The amount of possible permutations
increases from 2" to 2"*") where 1 is the amount of relationships in the
AST and m is the amount of types a node can take. As seen in Figure



4.2 Utilizing Taxonomies in Pattern Mining | 51

dispatch Minic
= whiile expr return
builtin double int float
Eimie () — int read int int write int
P E arithmetic local logical local
int + int - int * s s
Il &&

Search space Patterns (subset)

a @ int |100% int | 66%
e read int read
int 0 lit int 0

oe

int o int
e arith 66% arith 66
int read int e
lit int 0 1lit

4.2 the amount of generalizations or specializations m can vary between
specific nodes in a language. For example, two specializations of builtin
compared to nine specializations over two levels for int.

Definition 4.2.1 A taxnomoy is used in mining. This taxonomy is an
acyclic hierarchy, that allows the generalization of individual AST nodes.

The use of taxonomies also comes with a caveat. As can be seen in Figure
4.2, the trees with the root of (int+) and (int—) can be generalized to (int
arith). However, as the sub-nodes can also take multiple hierarchies the
very same pattern is now represented with multiple abstraction layers
in each node, with all of these patterns having the same strength of
occurring in two out of three ASTs. While generalization can help to
produce stronger patterns, it can also lead to an information overload
in patterns, making the mining unhelpful for developers. Definition
4.2.2 says that the pattern that should be considered is the one which
produces the strongest pattern, with the least amount of generalizations
over all nodes. For example, if a pattern occurs exactly as often if one
of its nodes is (int—) and the pattern would not occur more often if
that node is generalized to (int arith), only the pattern with (int-) is
relevant. Of course, this increases the amount of patterns found overall,

Figure 4.2: Taxonomy for the language
MiniC, showing a small subset of the full
taxonomy. The taxonomy is specialized
towards the data types utilized in given
operations.

Figure 4.3: Patterns can be mined in
a more generalized way by using tax-
onomies. The search space in the top half
shows three ASTs that do not overlap in
their root nodes. A subset of resulting
patterns is shown in the lower half. Via
generalizing (int+) and (int—) to (int arith)
they can be combined into one stronger
pattern. Similarly, raising the nodes fur-
ther to (int) allows combining all trees into
one pattern.
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Figure 4.4: Within a given search space
of four ASTs failing due to uninitialized
variable access (top) two taxonomies are
used for mining. The bottom left, mined
with a data-type-specific taxonomy, shows
the data type as the most relevant pattern.
The bottom right, mined with a data-flow-
specific taxonomy, shows the reading ac-
cess as the most relevant pattern. The per-
centages show in how many of the ASTs
in the search space the pattern occurs.
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as with multiple combinations of ASTs in the search space, multiple
generalizations in different nodes of the same strength can occur. For
example, generalizing only the left side of an (int arith) allows the same
amount of combined ASTs as generalizing only the right side.

Definition 4.2.2 A given pattern is only relevant if no other pattern exists
that has the same amount of occurrences and has fewer generalized, or less
generalized nodes than the given pattern.

It is also important to consider different taxonomies in the same language,
representing different viewpoints that patterns can be mined for. These
viewpoints are dependent on what goal the mining is supposed to achieve.
For example when attempting to mine the NFP of run-time performance a
taxonomy could employ special consideration for looping and branching
structures. When considering the NFP of memory efficiency nodes
accessing the stack or the heap may be considered, or alternatively the
size of what is being allocated may be of interest.

An example is shown in Figure 4.4. This figure shows four different ASTs
at the top written in the MiniC language (see Chapter 9). All of these
ASTs fail for the same reason during execution, as the variable being
read was never set, which according to the C standard is undefined
behavior [84] and was defined in MiniC to lead to an exception. Consider
the already introduced default taxonomy (see Figure 4.2) and a second
specialized data flow taxonomy, which can be seen in Figure 4.5. Utilizing
these taxonomies the patterns shown in the bottom of Figure 4.4 with
size 1 will be mined (additional patterns omitted for size restriction). The
left shows patterns with the default taxonomy whereas the right shows
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patterns mined with the data flow taxonomy. The data flow taxonomy is
specifically geared towards finding exceptions that happen due to access
violations. They first generalize the data-type-specific nodes to nodes for
local and global data access, and then again generalize these two nodes
to one data read node independent of the access happening on the stack
or the heap.

The default taxonomy is considering the data type of expression nodes,
leading to the most relevant pattern being a specific data type, falsely
indicating that a data type is responsible for an access violation. The data
flow taxonomy correctly identifies the data access nodes, independent of
their data type or global vs. local accesses as the pattern responsible.

Even in this example it could also be interesting to consider different
variations of the data flow taxonomy. The presented taxonomy (see Figure
4.5) distinguishes data access as allocation, global and local accesses. An
alternative would be to first distinguish between stack (local) and heap
(global) acesses and later refine these into allocation, global and local in
the next specialization.

The concept of taxonomies also enables the possibility of restricting
the search space itself. When it is known that some specializations
are irrelevant for mining, the search space can be restricted to be only
evaluated in higher levels of the selected taxonomy. In a similar manner,
the taxonomy can only be defined containing the nodes that are relevant
for the patterns to be analyzed, e.g., only considering control- and
data flow nodes but not expression nodes. This however also requires
understanding if the order or structure of the ASTs is relevant for the
resulting patterns.

4.3 Extending Patterns With Wildcards

A challenge in mining source code for patterns is that the specific behavior
of a function may be influenced by multiple nodes. These nodes may
be located in close proximity. Consider Listing 4.2 in the context of
run-time performance. The two for loops and their respective conditions
for looping over a structure result in O(n?) and are in close proximity
to each other, making this pattern easily identifiable. When considering

Figure 4.5: Taxonomy for the language
MiniC, specialized towards mining pat-
terns considering the data flow of ASTs.
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Listing 4.2: Example of pattern locations
using bubble sort. The for—for contained
loop pattern is in lines 4 and 5 and the
read function argument -> arr[j] pattern is
inlines 1and 6

N

© 0 N o U o~ W

10
11
12

Figure 4.6: Bubble sort represented as
AST.

Figure 4.7: Use of the wildcard (%) in a
pattern to define that in any given AST
a read must have a corresponding write
earlier in the AST.

the same example in the context of data flow, the reason that the reading
access to the variable arr[j] succeeds, is because arr has been set on the
stack, via the function argument. These nodes are not in close proximity
to each other, and when several trees with successful data access would
be mined it is likely that two separate patterns, one for function argument
access, and one for reading access would be found with no connection
between them. This issue has been identified in literature concerning
function calls to API elements which build a usage pattern together
[48].

int[] bubbleSort(int arr[], int n)

{
int i, j;
for (i = 0; i < n-1; i++) {
for (j =0; j <n-i-1; j++) {
if (arr[j] > arr[j+1]) {
swap(&arr[jl, &arr[j+1]);
}
b
}
return arr;
}

To solve this issue, wildcards can be used to connect distinct patterns.
Figure 4.7 shows a combined pattern of (write)—(read), where the ()
wildcard represents that the (write) and (read) must be in the same AST
and that the order of these patterns must be upheld, but where exactly
they are located in the tree is not relevant. The pattern (write)—(read)
itself causes additional issues though.

This example leads to the question of how patterns are considered. From
the viewpoint that (write)— (read) will not produce a run-time exception,
the pattern is correct. When an AST accesses a global variable, the corre-
sponding write is not necessarily represented in the AST, thus creating
the valid option of the pattern read. This issue can be circumvented
with considering the taxonomy being mined and defining correct data
access with two patterns write-local—read-local and read-global. Another
option, that is outside the scope of this work, would be to add run-time
information to the ASTs and record global variables which are available
in the global scope.

read
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read

Definition 4.3.1 (%) is a wildcard node that fixes the order of occurrence
of its child nodes in an AST. It represents 1..n nodes of any structure in
between.

In the context of pattern mining, the wildcard pattern (%) as specified in
Definition 4.3.1 increases the search space even more than the utilization

of a taxonomy, as direct relations between nodes could simply be skipped.

Thus, the (%) wildcard is optional during the mining process. Pattern
mining in source code does not usually distinguish between that stem
from a direct or indirect relationship [30]. The star wildcard however
denotes explicitly any location where at least one node is in between nodes
connected by the (%) wildcard, i.e. an exclusively indirect relationship.

In addition to the wildcard pattern (x) for representing 1..n another
wildcard () is also considered. The (o) wildcard is always equivalent
to the highest point in the used taxonomy, e.g., a node of any type, and
thus requires no special consideration. It exists primarily for the purpose
of maintaining patterns where the (x) wildcard is too generic, and the
structure of how patterns are related matters, while the actual type of
the nodes in the structure matters less.

Definition 4.3.2 (e) is a wildcard that represents a node independent of a
type. It defines a relevant structural aspect of an AST.

This ties in with the concept of taxonomies not necessarily having to
represent the entirety of a programming language’s concepts, but rather
just the subset relevant for mining. Nodes observed in a search space that
do not occur in a given taxonomy can be generalized to () if the order in
which the nodes occur is relevant, but the structure is not. Alternatively,
if the structure is also important nodes not occurring in the taxonomy
can be replaced with (e).

Another challenge in pattern mining is faults of omission, i.e. faults
caused by the absence of code. When considering Figure 4.7 a fault of
omission would be the read to a variable that has never been initialized,
as shown in Figure 4.8. Such a pattern can be defined with a negation
wildcard (—). In the context of this work, the (—) wildcard is not applied
during the mining process, but rather during manual analysis of faults
compared to faults of omission.

Definition 4.3.3 (—) is a wildcard that negates a node to identify if the
absence of a given node is significant.

Figure 4.8: Use of the wildcard () in a
pattern to define a fault of omission. In an
AST a read without a corresponding write
earlier in the AST is a bug.
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Figure 4.9: Pipeline for AST normalization
before the mining begins. All shown steps
are optional, but each ensures that the
mining process produces more general
patterns in a shorter time.

Search Reduce Generate Prune & Mining space
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4.4 AST Normalization

When analyzing the pattern write—read (Figure 4.7) an immediate flaw
can be noticed concerning the data flow. A write to variable x with a
corresponding read from variable ¥ does not guarantee that i will be
initialized. This indicates the need for a normalization of ASTs. Nguyen
and Nguyen [48] suggest that in addition to variable names, several
special values such as null, the integer value 0 and empty string literals ””
should also be normalized instead of removing them completely. Thus, a
need for a generalized normalization to improve the mining of patterns
occurs for the following items in code:

granularity The chosen representation form is very fine-granular. This
results in large ASTs and thus large search spaces. This caveat
can be mitigated by pruning AST paths are not relevant in the
context (e.g. pruning terminals, etc.) or combining them into larger
structures (e.g. reducing large math-terms to a single expression).

taxonomy The taxonomy can be used to generalize unnecessary special-
izations of nodes. As it would be a performance impediment to do
this repeatedly during mining, the ASTs can be normalized before-
hand. In a similar manner, nodes not occurring in the taxonomy
can be replaced with the (x) or (e) wildcards, depending on if the
structure and indirect relationships matter or not.

variables variable names must be normalized and kept in a pattern. This
is a challenging task, as a pre-normalization of ASTs is not possible
since this would lead to patterns not matching due to incoher-
ent variable-naming between different ASTs. This normalization
must be applied during the growth phase of the pattern mining
algorithm.

literals that are interesting in the mining context, such as null or 0, can be
replaced by labels for each interesting literal, while uninteresting
literals are simply removed.

function calls are challenging to be normalized as what is being called
can change over different executions due to dynamic binding. What
can be done, however, is a normalization of the available static
information such as the function signature.

The above normalization steps can be categorized into modifications of the
tree structure, the type of node and the content of node. These normalization
steps have to be performed in that order, as the structure modifications
remove nodes, and changing the type of a node may require a change
of its contents. This results in a pipeline as shown in Figure 4.9 of
normalization steps which are done in the defined order.

Concerning the normalization of the tree structure, special consideration
needs to be taken towards the relationships to child-nodes that may not
be merged into a more general node but remain their own node. These
must remain in the original order of the ASTs related to each other.
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Modifying the type of a node only requires the consideration of its contents
and relationships. As several nodes are combined into one type, e.g. a
write node and a read node into a data-access node, the content needs to
be merged. When for example, the write node defines the field in which
the variable is stored as "slot" and the read node defines it as "varName",
the fields should be named the same when either is generalized to data
access node to strengthen found patterns. In some cases, this can be done
automatically, for example when both classes have only one field relating
to a variable, or when they are named the same, e.g. while and if both
have the relationship condition. In other cases, a manual mapping of fields
and relationships is required.

Concerning the content of a node, for variable names Nguyen and Nguyen
[48] utilize alpha renaming (also called alpha conversion). This would
rename an integer variable x into var(_int. Our work intentionally does
not use alpha conversion for two reasons. The first is, that this type of
renaming would prevent the advantages of the taxonomy, as variables
of different data types could not be combined into the same pattern
anymore. The second reason is, that when utilizing a pattern growth
approach, the variables can’t be numbered during a normalization phase.

4.4 AST Normalization 57

Figure 4.10: Variable labelling with three
different strategies. Considering the pat-
tern in the middle left, the expansion table
middle right becomes possible consider-
ing the search space at the top. When not
renaming the variables, or preprocessing
with alpha renaming, no expansion with
a minimum support threshold of 0.66 is pos-
sible. When renaming during the obser-
vation, two expansions remain possible,
while still correctly pruning the third tree
with m previously recorded as 0.

4. MINING SIGNIFICANT

PATTERNS FROM

Source CoDE



4. MINING SIGNIFICANT

PATTERNS FROM

Source CODE

58

4. Mining Significant Patterns from Source Code

To ensure that patterns uphold the data- and control-flow (for variable
names and function signatures, respectively) this normalization alone
has to happen during the growth phase, to ensure that variables already
in the current pattern are upheld.

Figure 4.10 shows a pattern in the middle section that will be grown
(extended by one node). From the given search space at the top, four
nodes can be expanded from the lower (+) node. Two of them are of type
read int and two are of type read double. Via accessing the variable names,
or via a preprocessing through alpha renaming, even without using the
data type in the alpha name, no expansion is possible that would keep
at least 2 trees, i.e. a minimum support threshold of 0.66. However, when
renaming during the growth phase, both the read int and the read double
can be expanded, as neither variable has been observed before and can
be assigned the value 1. The third tree in the search space, just like with
alpha renaming, gets pruned from the pattern as m has been observed
before and is assigned 0.

4.5 Encoding Abstract Syntax Trees

The chosen representation as a tree poses a limitation on the search
space because of it's composition. As an acyclic graph with variable
depth, it consists of nodes and relationships between the nodes. When
conducting mining on an object-oriented representation of such an AST,
memory becomes a bottleneck. ASTs consist of several hundred nodes,
with 2" components, and several hundreds or thousands of AST may be
mined together. In a similar manner, due to the object allocations and
continuous tree traversals, performance becomes an issue as well. Thus,
an encoding serves to reduce the size of the AST structures, and allows
efficient comparison operations.

To properly capture a pattern in any given granularity the following
values must be captured in a pattern:

type The type of the node at the pattern’s selected specialization/gener-
alization level in the taxonomy.

values Non-pruned values such as variable and function name replace-
ments or relevant selected literals (0, null, ...)

structure How the nodes are connected to form a tree.

Literature rarely mentions the chosen encoding often (3 out of 34 publi-
cations on mining, see Section 7.1). [32] only mentions that the encoding
can reduce the size of the mined data. Those that do go into detail about
simplifying a representation for mining, choose a string encoding. For
example [30] chooses a depth-first string encoding via the labels of trees.
Every time a child returns to the parent node a $ is inserted into the
string. [40] encodes lines of code to hash values for further processing.

The following sections present an encoding of trees exclusively via integer
types, reducing the structure and type down to the bit-level.
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4.5 Encoding Abstract Syntax Trees

Taxonomy Encoding

Algorithm 3: Taxonomy to Bitmask Encoding

Data: taxonomy

Data: root

/* Initialization */

layer < 0;

bitSize « 0;

typesInLayer « { root };

taxonomyToBitmaskMap <« (root — 0) };

bitmaskToTaxonomyMap « { (0 — root) };

layerMap « {};

/* descend taxonomy layers */

while typesInLayer # ) do

/* find required amount of bits by largest group of
children */

size «— max(typesInLayer.map(type —

size(taxonomy.childrenOf(type))));

bitSize « bitSize + ceil(Vsize);

descendingTypes < typesInLayer;

typesInLayer < {};

/* Mask all children */
foreach fype € descendingTypes do
/* Skip single size children */

while size(taxonomy.childrenOf(type)) = 1 do
‘ type « taxonomy.childrenOf(type)[0];

end

bitCounter « 0;

parentMask « taxonomyToBitmaskMap(type);

/* Assign 0..n to each child in the layer */

foreach child € taxonomy.childrenOf(type) do

typesInLayer.add(child);

/* Bit operation combining the parent bitmask with

the child bitmask */

childMask « parentMask & (bitCounter << 64— bitSize);
taxonomyToBitmaskMap.add(child — childMask);
bitmaskTolaxonomyMap.add(childMask — child);
bitCounter < bitCounter + 1;

end

end

/* Add size of layer to map */
layerMap.add(layer — bitSize);

layer « layer + 1;

end

Result: taxonomyToBitmaskMap
Result: bitmaskTolaxonomyMap
Result: layerMap

The taxonomy in which the nodes are parsed are encoded to provide a
bitmask for the type of a node. The approach to encoding is targeted

towards identifying generalizations or specializations of a given type.

It allows fast comparison if a type generalizes another type, which is
relevant when filtering or comparing patterns in the mining process.
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Figure 4.11: Encoding of the taxonomy (left) into bits (right - 58 "0" to the right omitted). Each layer only requires two bits for encoding.

Irrelevant single item layers are omitted.
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Algorithm 3 is used to encode a taxonomy to a bit-encoding. The layers
of the hierarchy are reduced to bitmasks, identifying which bit identifies
which layer. Bits further to the left identify higher layers (more general) in
the hierarchy, bits further to the right identify lower layers. For each layer
inside the bitmask, each type is numbered from 0 to 7. This number is
then combined with the value of the current parent to generate a unique
identity of minimal size for each type in the taxonomy. Individuals with
only one child in the taxonomy are skipped, as they do not provide any
relevant information. For example considering IntRead— IntReadLocal and
IntRead has no additional child types, any pattern producing IntRead can
only be specialized to IntReadLocal and can thus be considered identical.
As this generates no value, but increases the search space and produces
irrelevant patterns, the encoding skips single-sized child nodes. An
example taxonomy and it’s encoded equivalents are shown in Figure
4.11.

Algorithm 4: Evaluate Generalization of Types

Data: bitMaskSpecialized

Data: bitMaskGeneralized

Data: taxonomyEncoded

/* Get mask size from layerMap in corresponding taxonomy

encoding */
size « taxonomyEncoded.bitMaskLength(bitMaskGeneralized);
/* Bitshift and compare */

if bitMaskGeneralized >>> (64-size) = bitMaskSpecialized >>> (64-size)
then
‘ return True

else
‘ return False

end

To ensure that the bitmask allows generalization and specialization it
is left aligned, meaning that a resulting bitmask can be read from left
(general) to right (specialized). This is the reason for the bit shift operation
in line 20 of Algorithm 3. This also enables fast checking if a given type
is a generalization or specialization of another type via bit shifting of the
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size of the bit-layer as defined in Algorithm 4. The encoding is optimized
towards size re-using the same bits in lower layers, as the upper-layers
already declare the difference. If the encoding would not reuse bits
(moving the bitCounter from line 16 before line 12 in Algorithm 3) a simple
bitMaskSpecialized [bitMaskGeneralized == bitMaskSpecialized would
be enough to validate generalization.

Value Encoding

Value encoding happens after the full AST normalization, including the
normalization of variable names during the mining process, has been
conducted. If a node has no content (field values such as IntLiteral.value)
the value "0" is assigned as label to represent the node content. Otherwise
all values remaining in the AST (see Figure 4.1) are sorted by the name of
the field, and then combined into one hash. During the mining process
this hash is stored in a map of (hash — long) mapping it to observed
content types. Only the long value is stored in the encoded AST. All
variable names that have been observed in the AST are stored in the
encoded AST as well to enable the variable renaming during pattern
growth. The mapping can be seen in Figure 4.12.

For analysis purposes, the values may be required to be displayed at
a later stage. As they are not preserved in the encoding, this can be
done via loading the nodes corresponding to the pattern and performing
the selected normalization steps again. For the same reason, there is
no need to store variable names in the specific nodes, but only which
variable names have been previously observed. This allows us to combine
variables, and other values in a node that were not removed during
normalization, into one single label.

Figure 4.12: Encoding of the values in a
node. The top shows the search space,
while the bottom shows from left to right
- the pattern, the map of observed values
and the encoded values in the pattern
per node. The list of observed variables
mapping to the original variable names
per tree is preserved in the encoding. The
encoding shows only the left and right
AST from the search space, as the middle
one does not match (read int[] is not equal
to read int).

4. MINING SIGNIFICANT

PATTERNS FROM

Source CoDE



4. MINING SIGNIFICANT

PATTERNS FROM

Source CODE

62 | 4. Mining Significant Patterns from Source Code

Figure 4.13: The AST node relationships
are recorded into opening 0 and closing 1
bits. Corresponding bits are shown at the
bottom.
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Structure Encoding

Algorithm 5: Depth First Encode AST

Data: ast

bitPos « 63;

node « ast.root;

structureBitmap « 0;

while node # @ do

if node.hasUnvisitedChildren() then

/* Descend, as all positions are 0 at the start, no
write is needed */

node = node.nextUnvisitedChild();

bitPos « bitPos - 1;

else

/* Write 1 to close the subtree and ascend */

structureBitmap <« structureBitmap +1 << bitPos;

bitPos « bitPos - 1;

node = node.parent;

end

end
Result: structureBitmap

The structure of a given AST is encoded independently of the content
of its nodes. This enables the creation of a structural encoding that uses
only two bits per node in a tree. The encoding utilizes the bit 0 to denote
the beginning of a subtree, and 1 to denote the closing of a subtree. As
every AST must have at least one node the root node is not encoded. This
enables encoding any given AST with a length < 33 nodes into a single
64 bit data type. ASTs are encoded in a depth first manner as defined in
Algorithm 5. Figure 4.13 shows the result of running the algorithm on a
given pattern.

\ x| len (arr)| | +=
write \mé read
: sum i \int[] arg
read J}
x /
0 01 01 1 00 01 0 01 1 11
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The previous three sections explained how the different parts of the
tree, types, values and structure are encoded into integer values. The
combination of these three encodings results in a single encoding for a
given AST or pattern. Figure 4.14 shows an example AST of this encoding
utilizing the previously defined taxonomy encoding (see Figure 4.11) and
a map of observations (see Figure 4.12). The top of the figure shows the
sample AST, the bottom shows the encoding consisting of structure, types
and values, with the node only as reference for comparison with the AST.
The final result is a lean encoding, enabling efficient comparison and
modification algorithms for the analysis and growth of a given pattern.

It is worth noting that the encoding as described has a theoretical
limitation with the chosen 64 bit representation, as evident in Algorithm 3
and Algorithm 5. For brevity, the solution to this limitation has been
omitted from the descriptions and algorithms. The encoding sizes can
be dynamically raised by checking if the structures fit into a single 64
bit value and otherwise expanding the representation to an array of 64
bit values. This is unlikely to happen in the taxonomy encoding, as the
taxonomy would have to either exceed a depth of 32 with 2 types per
layer, or have thousands of nodes more evenly distributed. For example,
the MiniC test language (see Chapter 9) has 357 types in its full taxonomy
and uses only 19 bits of encoding space. Due to the granularity it is more
likely that a pattern, or an encoded AST exceeds 33 nodes as can be seen
in Figure 4.6 which is a simplified version of bubble sort with fewer
nodes than the real tree produced by an interpreter.

Figure 4.14: Full encoding of a given pat-
tern on the left. The right shows the struc-
ture, type and value encodings as used in
the pattern mining algorithms.
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RQIL: How can recurring patterns be iden-
tified that impact or improve a functional
or Non-Functional Property?

Operations on the Encoding

The finished encoding allows several highly efficient operations to com-
pare patterns:

equals Equivalence checking in the best case has a performance of O(1)
if the structure of the pattern does not match. In all other cases, the
worst possible performance is O(n), whereby n is the amount of
nodes in the pattern.

contains performs slightly worse than equivalence checking, as a smaller
tree’s occurrence must be found in the structure. This requires
iterating through the bit positions of found matches.

generalizes/specializes is a combination of equals and the bitmask
comparison (see Algorithm 4), and has the same performance as
equals.

contains generalization/specialization can be done with the same com-
putational complexity as a regular contains operation.

The above operations find its use primarily in the cases of detecting
patterns in later stages, such as the analysis of mined patterns. It is also
relevant for identifying a (sub)AST generated with Genetic Improvement
(GI), parsed from source code, or produced by a step in the interpretation
or compilation process.

The primary operation that is important for the mining process is the
growth of a pattern, i.e. adding one single node to the structure. The
encoding also enables this with O(1) in most cases, as pattern growth
follows a rightmost-expansion process, i.e., in most cases a node will be
appended at the end of a pattern. However, as patterns have multiple
growth directions that must be evaluated they are copied, meaning that
pattern growth always results in a performance of O(n).

4.6 Cluster Pattern Mining

The previous sections explained the foundations, representation (Chap-
ter 4.1), taxonomies (Chapter 4.2), wildcards (Chapter 4.3), normalization
(Chapter 4.4) and encoding (Chapter 4.5) used in the mining approach.
These parts are now combined into one algorithm for mining.

In the context of compilers and interpreters, both significant pattern
mining, i.e. mining a search space for frequently occurring patterns,
and discriminative pattern mining, i.e. mining a search space for patterns
that show a discriminative difference between two groups (positive and
negative) are important. This work expands the concept of discriminative
pattern mining by introducing a mining algorithm that can differentiate
between any given amount of groups. This is necessary to answer
the research question on the relationship between patterns and their
properties®?!, as non-functional properties often have to be considered
in a range other than positive and negative. For example, the analysis of
what impact data types have on run-time performance, would require a
cluster per data type under analysis (e.g. int, double, and string). Thus, the
concept of cluster pattern mining and a novel algorithm for it is introduced.
The name has been chosen as the targets for mining are likely to build
clusters in one or more axes of the given search space over all ASTs.
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Cluster pattern mining has nothing to do with attempting to find out in
which cluster an AST lies (cluster analysis), but rather to mine patterns
that are discriminative in already known clusters.

As discriminative pattern mining (discriminating between two known
clusters) is just a subset of cluster pattern mining no separate algorithm
for it is needed. Similarly significant pattern mining, can be viewed as a
specialization containing only one (unnamed) cluster. Thus, only one
algorithm is needed to cover all three concepts. What is different, however,
are the metrics that can be applied depending on how many clusters are
utilized in the mining.

Relationships Between Patterns and ASTs

To understand how mining algorithms work, the relationships between
patterns and ASTs must be defined more clearly. The algorithm presented
in this section is a pattern growth algorithm for induced or embedded, ordered
patterns, with the ability to find all locations of a pattern over multiple
trees.

In the context of pattern mining, patterns are considered to be in an
AST in four different ways. Ordered vs. unordered combined with induced
vs. embedded. Figure 4.15 shows a tree, and a pattern with its locations
according to all four different ways. Ordered means that the original
order of child relationships must be preserved, whereas unordered means
that the order of child relationships is irrelevant. Induced means that the
nodes must be directly connected, whereas embedded means that 1..n
child relationships can be used to identify a pattern. Different algorithms
will be more or less efficient depending on the properties chosen for
mining, or may not be able to support them at all.

In the context of source code, it is relevant how statements and their
components are related to each other. The structure of the code is
important, and at the very least the fact if a node is a direct descendant
or anywhere below in the hierarchy should be taken into account. Thus,
induced and embedded patterns are considered via a clear separation of via
the (%) wildcard. In most cases, source code should also be considered in
an ordered fashion. Sometimes unordered may be preferred, as the order of
source code might not be relevant as long as the data flow remains the
same. This depends on the NFP being mined, as the order of nodes has
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Figure 4.15: Relationship between a pat-
tern and ASTs that it has been mined from.
The locations are shown according to to all
combinations of ordered, unordered, induced
and embedded
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an impact on some of them. For example, run-time performance changes
with the order of statements, as utilized in the code motion optimization

[4].

Metrics for Mining

Both significant pattern mining as well as discriminative pattern mining
have well-known metrics that are utilized to find relevant patterns, and
enable the ranking of found patterns. Significant pattern mining considers
support thresholds i.e. limiting the minimal or maximal occurrence of
patterns. Lucia et al. [85] give a comprehensive overview of metrics used
in fault localization that can be used when comparing two classes for
discriminative pattern mining.

Unfortunately, the known metrics cannot be utilized in the given context
of cluster pattern mining. Discriminative metrics can only differentiate
between two clusters and must be extended to consider n clusters. All
metrics, significant and discriminative, also need to be extended to
consider the concepts of taxonomies and wildcards. Thus, in this context,
the definition of significant and discriminative must be adapted.

Pattern Size

Redundancy in patterns, i.e., patterns that grow around a core pattern
and have the same significance or discriminative value, is an issue [35,
37]. Cheng et al. [37] propose that smaller patterns should be preferred,
as they hint towards the core issue being analyzed. In contrast to them,
Hanam, Brito, and Mesbah [49] suggest that the context in which a
pattern is embedded is of great help to understand the pattern, and other
work attempts to find larger meaningful patterns [44], even going so far
as to merge overlapping patterns into larger ones [40].

In the context of being significant or discriminative, both viewpoints lead
to meaningful definitions. A compact pattern as defined in Definition 4.6.1
can be utilized to reduce multiple branches around the same core pattern.
This may be relevant when identifying the exact location at which an
exception occurs. The definition always considers the largest pattern,
that other patterns branch away from. For example, if there is a pattern
A, that is contained in pattern B and C, pattern A would be compact.
However, if another pattern D exists, containing pattern A, Band C, A is
not compact, but pattern D is compact.

Definition 4.6.1 A pattern is compact when there are multiple patterns
containing it, but no other pattern exists that contains them.

In contrast, a compact pattern can have many closed patterns (Definition
4.6.2) growing around it. These closed patterns may give more informa-
tion towards the context in which a pattern exists, and with that possibly
the location of the bug causing the exception. If for example a pattern A
exists that is compact, and pattern A is contained in patterns B and C,
patterns B and C are closed, so long as there is no pattern D containing
either of them.



Definition 4.6.2 A pattern is closed when there is no larger pattern con-
taining it.

Significance Metrics

A pattern can be considered significant (see Definition 4.6.3) when it
adheres to a given significance metric. Considering the taxonomy, and
the (o) wildcard a pattern is only significant, if there is no pattern
that is equivalent in structure, but has nodes that are more specialized.
For example, consider two patterns A) (int write)— (int read), and B)
(write)—(int read). Both patterns are structurally similar, and since (write)
is more general than (int write), pattern B) will contain all ASTs that are
also contained in pattern A). If there are no ASTs that conduct a (write) of
a different type, both patterns are equivalent considering the frequency
the pattern occurs in. This means that according to Definition 4.6.3, only
the more specialized pattern A) is significant. If there are ASTs with a
(write) of a different data type, both pattern A and pattern B would be
significant. This allows the mining process to find the most specialized
patterns, while also finding more general patterns that represent more
sub-ASTs, which can identify more generally applicable patterns.

Definition 4.6.3 A pattern is significant when it lies within the thresholds
of a given significance metric, and there is no equivalent specialization of
that pattern with the same value assigned by the significance metric.

The significance metric can also be used to determine the strength of
a pattern, i.e. if it is more significant or less significant than any other
pattern. In most cases, more significant means that the metric is higher,
e.g., the pattern occurring in more trees. In some cases, however, for
example for outlier detection, the ranking may be determined by less
frequently occurring patterns.

The following significance metrics are relevant for this work:

support threshold Equation 4.1 - the minimum and maximum support
threshold is defined by the amount of ASTs a pattern occurs in,
over all ASTs in the search space. This is important to find patterns
that occur in multiple different ASTs. Let searchSpace be the set of
ASTs in the search space:

|{searchSpace|pattern € searChSpace}|

support(pattern) = (4.1)

|searchSpace

frequency threshold Equation 4.2 - the minimum and maximum fre-
quency threshold is defined by the amount of occurrences of a
pattern overall. Unlike the support threshold it considers multiple
occurrences in the same ASTs to play a different role. This can be
an important indicator if a pattern can be used for optimization, or
to detect code duplication in AST. To ensure that the frequency is
ranged between 0 and 1, it is via the amount of nodes in the search
space. Let occurences(pattern, AST) be the amount of occurences of
a pattern in an AST.

4.6 Cluster Pattern Mining
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occurences(pattern, AST)
ASTesearchSpace
frequency(pattern) = (4.2)

node € AST}
ASTesearchSpace

Discriminative Metrics

Similar to significance, a pattern can be considered discriminative (see
Definition 4.6.4) when it adheres to a given discriminative metric, and
there is no pattern that is equivalent in structure, but has nodes that are
more specialized. Most metrics as defined in literature [39, 85] could be
adapted towards supporting more than two groups.

Definition 4.6.4 A pattern is discriminative when it lies within the
discriminative thresholds of a given discriminative metric, and there is no
equivalent specialization of that pattern with the same frequency.

In the context of analyzing the difference between clusters, the most
interesting rankings are those that either ensure that a pattern is most
distinctive in one cluster, or that a pattern generates a distinction over
all clusters. Both of these metrics are the generalization of the Contrast
metric to multiple groups.

average contrast Equation 4.3 - calculates the support metric for each
cluster. The average contrast between all classes is calculated from
that. Let clusters be the set of clusters. Let support be Equation 4.1.

> |[support(a) — support(b)|

a,beclusters,ab

avgContrast(clusters) =
& ( ) |clusters|

(4.3)

maximum contrast Equation 4.5 - is also based on the support metric.
It calculates the largest distance of all clusters to their closest

neighbours.
minContrast(a) =min{|support(a) — support(b)| (4.4)
b € clusters,a # b} )
maxContrast(clusters) = max {minContrast(a)} (4.5)

aeclusters

Independent Growth of Ordered Relationships (IGOR)
Algorithm

Independent Growth of Ordered Relationships (IGOR) enables mining
patterns in a search space of multiple ASTs with ordered relationships. It
keeps track of all locations of a mined pattern, enabling an independent
growth of each and every pattern within a provided search space. This
means that the algorithm supports parallelization, as well as distributed
execution over multiple machines, and pausing or restarting the mining
approach at any given time.

The core approach of IGOR is a pattern growth process. This means
that it identifies all patterns of size 1, and from this point on grows
each pattern that satisfies one or more selected metrics, according to a
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range (minimum, or maximum) or alternatively according to a top-n
approach of the metric. This guarantee is upheld via a rightmost-growth
approach, meaning that patterns will be grown only to the right of where
the pattern was grown previously.

The following paragraphs explain how IGOR works, by explaining its
three core phases. Algorithm 6 is responsible for pre-processing the
entire search space of ASTs, and transforming it into patterns of size
1. Algorithm 7 then explains the growth phase, in which all possible
extensions of a pattern are analyzed, and conducted if the pattern is
significant or discriminative which is analyzed in Algorithm 8. The growth
phase happens iteratively, always growing patterns by one node until no
pattern can be grown anymore.

Algorithm 6: Independent Growth of Ordered Relationships Algorithm

Initialization Phase

Data: taxonomy

Data: searchSpace

/* Initialization */

patterns « {};

growthMap « {};

/* Find all size 1 patterns */

foreach ast € searchSpace do

/* Sort by user defined function */

orderedRels < sort(ast.getRelationships());

foreach node € ast do

nodeNorm «— normalize(node);

foreach faxonomyNode € taxonomy.hierarchy(nodeNorm) do

pattern « createPattern(taxonomyNode,

orderedRels.withParent(taxonomyNode));

growthMap.add(taxonomyNode.id — pattern);

if pattern € patterns then

/* When a pattern was already found in another
tree, add all locations to the already
observed one */

patterns.get(pattern).addLocations(pattern);

else
/* When the pattern is new, it is added to the
list */
patterns.add(pattern);
end
end
end
end
/* prune size 1 patterns */

foreach pattern € patterns do
if —metric.satisfied(pattern) then
patterns.remove(pattern);
end
end

Algorithm 6 first transforms the search space of ASTs into all patterns
of size 1. Each pattern has a map, in which every node that matches the
pattern, points towards all of its child nodes. This growth map is used
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during the later growth phase. Figure 4.16 shows an example search space,
and the patterns resulting from Algorithm 6. Line 4 of the algorithm
relates to an unspecified sort operation for the relationships in the AST.
This sort will create a map of a parent node to a list of all child nodes
in a specified order. For a compiler or interpreter, the order will be the
natural order of a construct. For example, if — (condition, then, else) or
block — (statement 1, statement 2, ...). Alternatively, the order can be via
the relationship names, or the order of the AST nodes. The algorithm
itself is agnostic to any specific tree, as long as the order is specified. Line
6 refers to the normalization as described in Section 4.4. Line 7 refers to
the taxonomy in Section 4.2. Depending on the generalization level, a
pattern can be grown from many more locations than its specializations.
This makes it necessary to mine all required generalizations until the end
of the process, unless they have the exact same locations (see Definition
4.6.3 and Definition 4.6.4). Line 8 transforms the given node into an
encoded pattern of size 1 (see Section 4.5). How locations are tracked
and how additional locations are added in line 11 is discussed in the next
section.

The first time patterns can be pruned according to metrics (see Section 4.6)
is after the entire search space has been evaluated (Lines 18-22), as all
trees in all clusters must be considered for the metric.

Algorithm 7: Independent Growth of Ordered Relationships Algorithm

Growth Phase

/* From this point onwards patterns can be grown
individually */

foreach pattern € patterns do

/* Iterate through pattern and grow all possible
positions */

foreach position € pattern do

growthOpportunities = pattern.getGrowthOpportunities(pos);

combinedOpportunities < {}; foreach gOpportunity €

growthOpportunities do

opportunity < growthMap(gOpportunity);

/* combine equal extensions for new pattern */

if opportunity € growthOpportunities then
combinedOpportunities.get(opportunity).

addLocations(opportunity);

else
‘ combinedOpportunities.add(opportunity);
end
end
/* Expand pattern in all directions that satisfy the
metric */

foreach combinedOpportunity in combinedOpportunities do
if metric.satisifed(pattern, combinedOpportunity) then
grownPattern < pattern.grow(combinedOpportunity);
patterns.add(grownPattern);
end
end

end
end
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Starting with the growth phase of the algorithm (see Algorithm 7) it
can be executed in parallel or in a distributed way without any form of
synchronization. The reason for this, is that the algorithm guarantees
that every individual pattern produced will be unique and evaluated
only once. The only exception where a synchronization is necessary, is a
top-n ranking of the metrics, e.g., only when mining and growing the
top n relevant patterns. This requires a synchronization of the currently
evaluated ranking. Figure 4.17 shows an example for how one pattern is
grown.

From Line 25 in Algorithm 7 onwards, every position of the pattern
is iterated and checked for growth opportunities. This is necessary, as
a rightmost growth does not guarantee that only the last position in
a pattern has growth opportunities. However, the next growth must
only extend to the right of the newly injected position. Lines 26-34 are
essentially repeating the size 1 growth phase for the currently evaluated
pattern. They group and combine extensions that will lead to 7 locations
for one new pattern. This also enables metrics to utilize these values before
the actual growth happens, guaranteeing that only relevant patterns will
be grown. The growth operation from Line 37 is discussed in the final
subsection of this algorithm.

Algorithm 8: Independent Growth of Ordered Relationships Algorithm
Pattern Reduction Phase

foreach pattern € patterns do
foreach otherPattern € (patterns \ pattern) do
/* Satisfy significant and discriminative (breaks
omitted) x/
if otherPattern.generalizes(pattern) A metric(pattern) =
metric(otherPattern) then
‘ patterns.remove(otherPattern);
end
/* Satisfy closed or compact */
if otherPattern.contains AndGeneralizes(pattern) A metric(pattern) =
metric(otherPattern) then
if prune = compact then
‘ patters.remove(otherPattern);
end
if prune = closed then
‘ patters.remove(pattern);
end

end
end

end

The first two parts of IGOR provide the essential initialization phase,
and pattern growth, which is extending only relevant patterns. These
patterns do not yet satisfy the definition of significant or discriminative.
The final part Algorithm 8 deals with this. These conditions can actually
be satisfied earlier (only the most specialized version of a pattern needs
to be grown) as well as the closed definition, can be satisfied while adding
a grown pattern in line 38 of Algorithm 7, but are discussed here for
clarity. The only condition that can only be satisfied after evaluating the
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Figure 4.16: Tracking of locations in pat-
terns. The top shows the search space. The
bottom shows all generated patterns, in the
order they are generated by Algorithm 6.
To the left, all patterns from T1 of size 1are
shown. Then T2 (middle), creates the new
(+) and (read int x) patterns. (123) is not
generated as a new pattern, as it already
exists from T1. Finally, all patterns from
T3 are added (right). The pattern map cov-
ers all locations of all ASTs they are in.
The growth map contains all not-yet ex-
plored relations to child nodes from the
respective location and position. An exam-
ple of how the pattern map and growth
map are extended is shown by the pattern
map of P4 (middle), being extended after
analyzing T3 (right).

Search space
Cluster A

Search space
Cluster B

Patterns Patterns

T2 T3

Pattern Map P4:
Pl P4 Tree: Location:Growth Map:
T2 21 [(22,23)]

Patterns

Tl
Pattern Map P4: T3 34 [(35,36)]
P2 Tree: Location: Growth Map: |T3 38 [(39,40)]
T2 21 [(22,23)]
@PG p7 (not shown
(not shown pattern bool pattern map
P3 P5 map expansions for expansions
P1, P2, P3) P8 P9 cor 1, v2,
P3, P5)

entire search space is compact, as patterns that are closed can grow into
larger patterns that are compact again.

Tracking Node Locations

The locations of a pattern in ASTs are important for mining. As a pattern
can occur multiple times in the same tree, and will be able to grow in
different ways, all existing locations in all ASTs in the search space must
be observed during the mining process. This requires an extension of the
encoding to also consider all locations where a pattern is found, and all
possible options for it to continue growing.

Figure 4.16 shows all patterns in a corresponding search space after they
have been created as size 1 patterns via Algorithm 6. THe bottom left
shows all patterns for the first AST in the search space (see Algorithm 6
line 8), and after a location has been added to it from the second AST in
the search space (see Algorithm 6 line 11). It also tracks generalizations
and specializations of other patterns. This can be used to prune patterns
according to the significance metric. The trees are duplicated with the
locations, to clearly identify which location exists in which tree. This
allows evaluation of the existence in trees as well as the frequency of
a pattern. The tree identities can also be used by the discriminative
metrics to identify which cluster a tree is in. The growth map is a multi-
dimensional array, relating for each location and position in a location
which nodes can be grown from it.



P4 Tree: Location:Growth Map:

T2 21 [(22,23)]

T3 34 [ (35,30)]

T3 38 [(39,40)]
grow [22,35,39]

Tree: Location:Growth Map:
T2 21,22 [(23), (=) ]

T3 34,35 [ (36), ()]
T3 38,39 [(40), (=) ]
int 0

grow [23,36,40]

Tree: Location:Growth Map:

T2 21,23 [(=), (=)]

T3 34,36 [ (=), (=)]
@ T3 38,40 [(-), ()]

Growing a Pattern

From the locations, the opportunities for growth are returned per position
(see line 25 in Algorithm 7). Considering the pattern after T2 (see Figure
4.16), the growth opportunities would be returned as (22, 23), (35,36),
and (39,40). Algorithm 7 will cluster these three into only two growth
opportunities (ignoring the taxonomy for this example) (read int x) with

Tree: Location:Growth Map:
T3 31,33 [(37), (34)]
T3 31,37 (O, (38)]

B

grow

[37]
Tree: Location:Growth Map:
T3 31,33,37 10, (), (38)]

L1

all locations left
of 37 are pruned
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Figure 4.17: The pattern from Figure 4.16
is grown via both available opportunities.
The upper pattern can still be grown, as
the rightmost-growth approach leaves an
opportunity to grow the leaf node to the
right. The lower pattern cannot be grown
anymore.

Figure 4.18: A pattern loses a location dur-
ing growth if the larger pattern can’t ex-
tend to that position anymore. The growth
opportunities to any nodes left in the hier-
archy are pruned.
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the locations [22, 35, and 39], and (int lit) with the locations [23, 39, 40].

The actual growing algorithm applies these opportunities. The encoding
is expanded with a "01" at the correct location in the tree-structure,
and the corresponding node is injected with the hierarchy and value
encodings. The pattern locations are extended via a rightmost growth
approach, meaning that only locations sorted after the injected location
are considered as new growth points. Figure 4.17 shows the original
pattern (+) and both new pattern expansions with their corresponding
search spaces. In this particular example, no new growth points are
added as all new nodes are leafs in their tree, but any new location will
add all relationships of the injected nodes as new growth opportunities.
The upper pattern (+)<«—(read int x) can still be grown while the pattern
(+)« (int lit) has no more growth opportunities.

There is an additional pruning requirement to ensure that no pattern can
be generated twice or incorrectly. Any location that can’t be extended
must be removed. From Figure 4.16 the third tree T3 is one such case,
as both branches of the if statement have an assignment as child node.
As node 37 becomes a node in the pattern, all locations containing it
are removed. This prevents that the pattern has node 37 at two separate
positions after the next growth phase. Figure 4.18 shows this process.
After every growth, the growth map needs prune all nodes that exist to
the left of the node that was injected (i.e., rightmost growth approach).
This ensures that only ordered patterns are mined.

The previous examples only discuss mining of induced, ordered patterns.
To mine embedded ordered patterns, i.e., the (x) wildcard, the algorithm
works exactly the same, only changing the growth opportunities. For
embedded mining these also receive all indirect locations of a node. The
growth map for a single node represents a depth-first structure of its
subtree. Whenever a node is grown, the growth map of the new node
is removed from the parent node, in addition to itself and all growth
opportunities to the left of it. To easily identify if the nodes are a direct or
indirect relationship, all growth opportunities representing an indirect
relationship are negative (e.g. -39 instead of 39). Because of the depth-first
structure, this pruning process of the growth opportunities guarantees
that the embedded patterns with a (x) wildcard are always distinct from
induced patterns and do not share locations.

4.7 Mining in Compilers and Interpreters

Mining discriminative patterns according to any given metric still comes
with two flaws that impact the significance of patterns that must be
addressed:

Redundancy any discriminative pattern is likely to have siblings (pat-
terns that are super- or subsets of each other) [35, 37]. The reason
is the subgraph-supergraph relationship. I.e. an already discrim-
inative pattern will always remain discriminative when grown.
This leads to many redundant patterns identifying the same core
information.



4.7 Mining in Compilers and Interpreters

Frequent # Significant Many patterns, especially smaller ones, occur
very often in any search space but do not impact the functional or
non-functional property mined. For example, most functions in
code will have literals, but these literals are rarely relevant. To deal
with this issue, research sometimes considers a maximum support
thresholds in addition to a minimum threshold [35, 86].

The issue of redundancy is not solved easily. Any mining approach will
produce redundant patterns, and the approach presented here produces
even more redundancies through the generalization of nodes via a
taxonomy. This is one of the reasons why Cheng et al. [37] suggest that
smaller patterns are more useful, as the amount of redundancies grows
with the size of a core pattern, as larger sizes mean a larger amount
of possible relationships for a pattern to grow. The ways to solve these
issues in this work is primarily filtering. This has been discussed in the
compact/closed definition (see Section 4.6), which can reduce redundancies
somewhat. Similarly, the (%) wildcard also ties smaller patterns together.
Additionally, filtering of results can help. As these approaches primarily
depend on how results are filtered and visualized, they are discussed in
the second section of this work (see Chapter 10):

Filtering is already done via the applied metrics. However, filtering can
also be done via overlap, e.g. when several patterns are similar
enough only one is shown.

Merging as suggested by [40]. Patterns with enough overlap can be
merged, although their score according to the metric should be
similar.

Relationships Patterns have a contains and generalizes/specializes re-
lationship. Using these relationships for visualization can help
reduce information overload.

The following sections detail efforts to move from patterns mined as
statistically significant towards patterns that are significant to the intent
of improving functional or NFPs, all of them primarily tackle improving
the likelihood that a frequent pattern is also significant. For this reason,
the concept of pattern verification is introduced. An issue with granularity
and frequency of patterns is solved via co-located pattern mining to find
more complex sub-ASTs that are significant. Finally, Outliers, i.e., patterns
that may decrease the significance of metrics or negate a general pattern,
can be dealt with as well.

Pattern Verification

Pattern verification is not a new concept in the domain of pattern mining.
Any pattern that has been mined is only worthwhile if it has been
analyzed, and is shown to be responsible for the functional or non-
functional impact that the pattern was mined for. However, in the context
of working at the compiler or interpreter level, the verification of patterns
can be automated. This automation process ties in with how ASTs are
represented for mining. As this representation is taken directly from
the system that has run the source code, and the execution outputs (test
results) as well as observations are preserved, all information required
to verify a pattern is available.
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The automation stems from the use of GI. Anti-patterns, i.e. patterns
that are identified to be negative, can be verified via the search space
by selecting ASTs that contain the pattern. GI then can be utilized to
maintain the rest of the AST, but remove the offending pattern and
replace it with something different, possibly a matching pattern that
was identified to fix the negative issue. Similarly, positive patterns, for
example a pattern that fixes a bug, can be utilized in a search space
containing a bug. The pattern can be applied via GI and checked if it
really does fix the bug as expected.

Details of how this works on an algorithmic level are discussed in
Section 5.3. As an example, consider the pattern that has been identified
to fix the uninitialized variable access, the pattern (write int) was identified
as discriminative in the positive search space (ASTs that have no run-
time exception), and always occurs together with the pattern (read int)
thus merged with the (%) wildcard. As the pattern was identified in the
positive space, it is now applied to the negative space with GI. Running
the modified ASTs shows that the bug has been fixed successfully in one
of two AST, increasing the confidence in the pattern, as shown in Figure
4.19. The pattern is not completely valid, as in the second tree the pattern
injects into the then path of the if statement, which is not executed before
then else path containing the bug location.

The example also shows that the confidence in a pattern is no guarantee
that it is correct, as in theory the GI approach could have injected the
write before the if statement resulting in a 100% confidence, which would
not have been justified. To increase the quality of the confidence score,
several mutations of each original AST need to be produced and tested.

Automated pattern verification can help via introducing a confidence
score to a pattern (see Definition 4.7.1). The confidence itself varies greatly
from the question the mining is supposed to answer, but generally is
only applicable to Cluster Pattern Mining, and not significant subgraph
mining. The above example considers the two clusters "failing" and
"succeeding" ASTs. As the pattern was identified in the succeeding space,
it is supposed to be applied to "failing" ASTs which after the modification
should fit the criteria of the succeeding cluster, e.g., not failing the test
cases anymore. The confidence score is calculated as:

> test test[successful]
Dtest test

conficdence(pattern) = TS AST
AST

(4.6)

Definition 4.7.1 The confidence in a pattern identified in a cluster X is
how often it is applied successfully in an AST’, where the original AST lies
outside the cluster X, and the modified AST’ containing the pattern lies in
cluster X.

In this way pattern verification helps to increase the likelihood that a
pattern is significant and not just frequent. The concept can also help
to remove redundant patterns. A pattern that has been identified to
be significant throughout multiple experiments, but always has a low
confidence can be identified and generally excluded. This enables, for
example, the removal of smaller patterns, such as literals which usually
represent outliers.



T1

/” ‘\

/\

Failed ASTs
T2

/‘x

4.7 Mining in Compilers and Interpreters

Successful ASTs
T3

e / \

T4

77

write /j} AL\\\\L

\rcrurn‘ write

I

write

1/>\ //<\L \\\77{/' int x /Q:;j\\\\\\\L int x int x
N N //L\ /\ i (\ /\g i /\ /\
‘read \ [ \ /[ read ) J \ \ y / 77N\
mex) (5 ) Gnex) (5 J[ <= ) ‘rcfurnﬁ krctm/ (3 « ) (return) { 3 ) (ZFead)
Y S \. // x NN BN /““ ) ‘\ J N/ \meEl /’
- g g _ / 7& < . -
read [ 4 //read \ 77N N\
(3 \\123\\‘ ) read ( ) ( \
int x \ \int y o [ 3 J{ 123 )
N\ T 2R ANY
Pattern to be verified
TN
( )
‘/\7 x Confidence
50%
write read
0 0
T1' Tests TL1' T2" Tests T2'
/ — \ TN
IN OUT ({1 ) IN OUT
/ I\ 0 5 /7\ 0 Uninitialized variable y
1 9 i N 1 Uninitialized variable y
st ‘mtum‘ 2 7 e (i) 2 Uninitialized variable y
y /\ x \T/ 3 3 | z/\A\‘ 3 Uninitialized variable y
P 4 9 TN S ) /7 4 Uninitialized variable y
(o ) read \ read { 5 }{ <= ] Write Qreturn] c fig
\\ ) \int x ) int x, Confidence \v//L/\;/ int y \__/ onriaence
— — 100% PRSP Iy ' 0%
read \ read
int x [ 3 /\ \\123/; S

Figure 4.19: Within the search space at the top, the pattern (write int)« (x) —(read int) has been identified to fix the uninitialized variable
access exception. The pattern is applied to the negative search space, with the modified ASTs) and execution results are shown at the bottom.
As one AST still fails in one of two instances, the confidence is 50%.

Co-Located Pattern Mining

Literature considers pattern mining a single step process, assuming that
patterns become evident through discriminative metrics in two different
groups [36, 39, 87]. The base assertion is, that only patterns that occur in
one group but not the other are of relevance. However, this is often not
the case.

For example considering Figure 4.19, the pattern (write int)«— (%) —(read
int) would be found via discriminative pattern mining, as a successful
pattern in the positive cluster. However, the actual reason the bug occurs
is not identified, i.e. (—write int)«— (%) —(read int). The (read int) itself
occurs in both the positive and negative cluster and the (write int) is
discriminative, as it occurs only in the cluster that has no failed executions.
This shows one fundamental issue with discriminative pattern mining.
When phrasing the example as a question, it would be Why does the
uninitialized variable exception occur? The answer that discriminative
pattern mining finds is The uninitialized variable exception does not occur
when a (write int) is present, whereas the true answer should be The
uninitialized variable exception occurs when there is a (read int) operation
without a preceding (write int).

Pearson et al. [64] define this issue as a fault of omission, i.e. that a bug
in a program is not caused by existing faulty code, but rather by the
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absence of code that should be there. 30% of changes to source code add
new code to fix a bug rather than modify existing code. Discriminative
pattern mining can identify such a fault of omission, but it can’t identify
a fix on its own.

A process to solve this in the mining process is cluster pattern mining.
This process of mining attempts to find differences between the groups.
This step answers the question Is there a difference between several clusters
that can explain a functional or non-functional property? In many cases,
this step is enough. If the identified patterns lie within the negative
space, for example, an incorrect loop condition leading to endless loops,
anti-patterns can be successfully identified that should be avoided to
prevent the negative result. An example for the positive space is which
list type should be chosen for run-time performance, depending on the
ratio of read to write actions.

To achieve the answer of What influences a functional or non-functional
property?, and How can this be modified to change the functional or non-
functional property? a multi-step process is required leading to co-located
pattern mining.

The Process of Co-located Pattern Mining

1. Identify pattern size In many cases ASTs in the same cluster
are similar. Doing an initial mining per cluster with a maximum
support threshold can help identify at which point the ASTs start
to become different. This provides a good search area for mining
discriminative patterns between the clusters.

2. Mine via Cluster pattern mining with the selected metrics and
pattern target size to find discriminative patterns.

3. Co-located pattern mining

a) Identify co-located patterns in cluster For each pattern deemed
relevant, mine only the ASTs from its original cluster contain-
ing the pattern via significant pattern mining (one cluster),
and find patterns that are located in the same tree. This step
can be merged with b) when a metric is used that searches for
a high support per cluster and a low discriminative value at
the same time. These patterns can be combined via the (%) or
(o) wildcards to create a target pattern.

b) For each pattern deemed relevant identify co-located pat-
terns outside of cluster and mine only the ASTs from its
original cluster, and all other clusters. The metric should pre-
fer less discriminative patterns, i.e. patterns that have a large
overlap over the clusters.

c) Identify pattern replacements likely pattern locations are
those from outside the cluster mined in b). This means that
if such a pattern is identified, it should be likely replaced or
expanded to become the target pattern identified in a).

4. Pattern Verification can be conducted from this step on. From 2)
anti-patterns can be removed, or patterns can be injected via GI.
Alternatively, pattern replacements can be conducted using the
patterns identified from 3)



It should also be mentioned that the process as described can lead
to patterns that are improved over a singular discriminative pattern
mining step. As an example, Step 2 of the process could identify that
nested for-loops within ASTs often occur in trees that have a long
run-time performance. As the secondary mining attempts to identify
co-located patterns, the pattern may become larger by including the
looping conditions, showing that the reason is an O(n?) behavior in
the loop condition. Similarly, the process is able to identify outliers that
would otherwise negate the pattern. As the pattern is now extended
to include the conditions, a pattern containing nested for-loops in the
search space for shorter run-time performance may be negated as its
conditions are different.
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Pattern Mining combined with
Genetic Improvement

The application of genetic improvement in compilers and interpreters
has already been discussed (see Chapter 3). The chapter had a focus on
how to manage search spaces in that area, and how to deal with unviable
solution candidates. All of this serves to produce Abstract Syntax Trees
(ASTs) to let pattern mining (discussed in Chapter 4) identify recurring
patterns for functional or Non-Functional Properties (NFPs).

This chapter discusses the relationship between the two areas, and
explains how Genetic Improvement (GI) can be utilized to mine patterns
for a given type of functional feature, or NFP. This is primarily done via
applying the fitness function towards these goals, as well as by modifying
the search space via patterns.

The relationship built between the two fields can also be utilized to
improve the confidence in a found pattern by verifying or disproving
it using GI. This increases the confidence in found patterns®?2. This
can be done by intentionally attempting to produce counter-examples
to disprove the pattern, or alternatively by attempting to introduce the
pattern into ASTs and observing changes in behavior.

Found patterns can be applied directly in the GI algorithms to improve
the quality of produced individuals. This is done via Knowledge-guided
Genetic Improvement (KGGI), by introducing structural patterns into the
syntax graph (see Section 3.4). This helps to prevent infeasible individuals
in the population, i.e. anti-patterns. Alternatively, individuals that will

contain patterns with a positive impact on a given NFP can be generated
RQ3
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Figure 5.1: Example for an anti-pattern
identifying endless loops. An endless loop
occurs if there is no read in the condition
that has a corresponding write to the same
variable 0 in the loop body.

5.1 Types of Patterns

A pattern needs to be put into a context to determine how it is applicable
in a search space, and how it impacts NFPs or functional properties. For
example, a pattern that has a positive impact on run-time performance
may be considered an anti-pattern for code-size or memory use. There
are differences in how patterns can be applied. A pattern, in general, is
something understandable to a human. But to make a pattern useable to
change an AST, it must satisfy some conditions to make it applicable for
automated processing.

Patterns always have to be considered with one specific NFP or functional
property / bug in mind, to be considered a pattern or anti-pattern (Def-
inition 5.1.1). In a different context, e.g. another NFP, the pattern may
become an anti-pattern and vice versa.

Definition 5.1.1 A pattern is an AST consisting of wildcards and nodes
in a taxonomy that has a positive impact on one selected functional or
non-functional property. If it has a negative impact, it is an anti-pattern.

Both pattern types have their individual merits. Anti-patterns are often
enough to improve the GI approach to limit the search space. The same
goes for patterns, which can be introduced in GI to focus the search in
more positive directions. Patterns may also be injected into a given AST
without the need of an anti-pattern. For example, to introduce logging
into a function, or to apply defensive programming.

Figure 5.1 shows an example for an anti-pattern that can be applied in
KGGI. A while loop in which no variable that is read in the condition that
also has a write in the body will lead to an endless loop. The pattern
can be processed automatically since the branches of the pattern are
defined (condition and body). If that were not the case, the pattern
would be ambiguous to where the read and write should appear, as both
appearing in the body would also be inferable without the clarified paths.
Additionally, the pattern contains the anywhere wildcard (%) in both
branches to allow the variable to occur anywhere under the condition or
body. The underlined 0 is a reference to a variable. The name and type of
the variable are irrelevant, but both the read and write node must access
the same variable.

condition



5.2 Utilizing GI to Mine Patterns

The meaning of the (—) wildcard also needs to be clarified, as this is
different for an anti-pattern or a pattern. In the case of an anti-pattern,
the (—) means that the absence of a node is an issue, e.g. in KGGI the
node must be generated at this point. If writing Figure 5.1 as a pattern,
both nodes would not have the (—) wildcard, instead indicating that they
are needed to be a positive influence on an AST.

The example also shows a possible future research direction. The wild-
cards in the approach can be more refined, to indicate more clearly
where in an AST the best possible location for the fix would be, or that
multiple options of sub-AST would be valid within one branch of the
pattern. Considering Figure 5.1 the write in the loop condition may not be
necessary if a break statement were in the method body. Furthermore, it
is possible that patterns should be mined in different views of the source
code. The pattern fails to account for branches, i.e., the control flow of the
AST, making it possible that the pattern is satisfied with the write node
being in an unreachable branch of an if statement. This either makes a
wildcard necessary that is control-flow-sensitive or requires a pattern
being identified in the control flow graph, also opening the question if
the data flow graph and other representations should be considered in
the future.

Another area to be explored in the future could be rewrite patterns, e.g.,
the combination of anti-patterns that are identified in a given AST and
replaced with a positive pattern. This would improve the applicability of
patterns in compilers and interpreters, as the patterns would be directly
applicable to source code without the need for GI. Such rewrites have
been suggested before in literature primarily to deal with refactorings
based on a graph-based representation of source code [88-90].

5.2 Utilizing GI to Mine Patterns

GI can be utilized in two ways to mine patterns. The first is mining
from experiments that were conducted successfully. This is especially
promising in areas where the search-space is manageable and solutions
can be found, which is often true for attempting to fix bugs in source
code (see Section 6.3).

The second option of mining is to intentionally create experiments with
an inverted fitness function. This means that instead of attempting to
optimize a given AST towards run-time performance while preserving
the semantic validity, the fitness function should instead attempt to
increase the run-time performance while preserving the semantic validity.
Similarly, the fitness function can be utilized to introduce bugs.

Attempting to decrease the functional features via GI can work well,
given that literature already identifies that around 80% of solutions in
GI are not compilable or produce a run-time exception [8, 9, 26]. What
can also be considered, is to attempt breaking edge cases, i.e. modifying
the function in such a way that only some parts of a given test suite fail
and not all of them. This could lead to identifying mistakes in defensive
programming or to find security bugs and identifying patterns with
automatic fixes for them.
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Itis less obvious why attempting to decrease the quality of non-functional
properties is easier than improving them. The reason for this is the
mutational robustness of software [12]. Modifying source code via swap
operations, code motion, or adding code has an impact on non-functional
properties, with a lower likelihood of modifying the functionality of it.
Schulte et al. [12] in this case report slightly more than 30% of all mutants
being neutral concerning the functional properties of source code given
a test suite, even including a delete mutation, which arguably has more
impact than moving or adding code.

A serious limitation to the approach is, that artificial source code is
significantly different from manually written source code [64]. This
means that the patterns found can likely be applied to improve the GI
approach, as this is a synthetic method to create new ASTs. Patterns may
also be applicable to compilers and interpreters, as they need to be able
to manipulate generic code in a synthetic way. Another limitation to this
approach is that the NFP modified via a fitness function for them will
concentrate in one area, either the negative or positive. This is an issue
when discriminative pattern mining is applied, as this approach needs
positive and negative samples to work. If the experiment is done purely
for mining, another option is to design fitness functions only in the space
that should not be mined in order to gather a wider range in the NFPs or
functional properties for mining.

An alternative for utilizing GI to mine patterns that are useful for
developers would be mining software repositories [91-94]. This would
provide the advantage of mining patterns concerning faults and NFP
as introduced by developers, but provides a disadvantage in having to
make the code executable and evaluating functions with minimizing
side effects. In addition, this would prevent finding changes that can be
done to source code at the level of an interpreter or compiler, which may
not be an option in a pure text representation, or not applicable to the
compiler or hardware setting the repository is usually applied in.

5.3 Verifying or Disproving Patterns via GI

The verification of a pattern is done to improve the confidence that the
pattern works as expected, or to identify in which context a pattern is
applicable. Source code is the sum of its parts, so often one pattern is
not solely responsible for one exception or for the run-time behavior of
an AST. Instead, there may be multiple patterns leading to the same
outcome, or a group of patterns responsible for an NFP.

In general, this makes anti-patterns more easily provable than patterns
with a positive influence. Identifying the anti-pattern leading to unini-
tialized variable access would be that a read occurs without a given write.
All ASTs matching this pattern will produce the exception, making the
pattern easily verifiable. Similarly, a pattern with a negative influence
on run-time performance, for example nested for-loops iterating over an
entire collection in both loops, can be more easily proven to be a negative
influence via its existence. A positive pattern that is supposed to improve
the run-time performance or to repair a bug is not as easily provable.
Chapter 6, for example, shows bugs identified with a confidence of above
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90% but corresponding fixes often had different bugs occurring instead
of the fixed bug.

The verification can be approached in one of two ways. Modifying
existing ASTs or via GI. Both approaches have their advantages and
disadvantages.

Modifying an existing AST is the preferred way to prove a pattern, as
this allows a more direct comparison of the influence of the pattern on its
own, i.e., if only the pattern is introduced, it should be solely responsible
for the changes in functional and non-functional behavior of the modified
AST. Attempting to apply the same pattern in multiple ways to a single
AST is also a good way to increase confidence in the pattern or to identify
its limitations. A pattern can be applied at multiple locations, especially
if it contains wildcards or more generalized nodes from a taxonomy:.

For anti-patterns the preferred approach is GI. The reason for this is that
there is more confidence in the pattern itself, as not only known solutions
are explored, but many AST combinations and mutations are being
explored. This still introduces some risks, as not every AST may have
the intended effect. For example, when attempting to research the nested
for loop pattern, many ASTs may have bugs introduced that make them
fail instead of just increasing the run-time performance. The important
consideration is that all AST containing the anti-pattern should fail or
have the expected negative effect. If a bug-pattern is being explored, this
means that no AST in the population should succeed, but not necessarily
all failures need to be accountable for the specific bug. Concerning the
nested for loops, this means that either the individuals should fail or be
semantically valid and have an increased run-time compared to other
valid ASTs not containing the explored anti-pattern.

This in turn means that verifying patterns via GI should be done via
two experiments and not one. Anti-patterns are verified via excluding
them explicitly in one GI experiment, to create many valid mutants not
containing the pattern, to be compared with mutants containing the
pattern from a different experiment where GI was specifically tuned to
contain the pattern. How patterns can be introduced into the syntax
graph is discussed in Section 5.5. For the purpose of pattern verification,
the only thing that needs to be done is modifying the mutation operation
of the genetic algorithm. The mutator should either generate the pattern,
or at least have a high probability of it being introduced. The crossover
operation can be modified to ensure that the pattern is not removed via
crossover. Attempting to introduce a pattern via crossover might not
be possible if the required nodes are in none of the ASTs selected to be
crossed.

Of course, this approach of verifying anti-patterns has the issue that other
patterns of code can lead to a similar behavior in NFP or to the same bug.
This is the reason why it is primarily suitable for anti-patterns which are
less difficult to verify in the negative space. The experiment where the
anti-pattern was excluded may show other anti-patterns with similar
behavior that could falsely indicate that the pattern is not responsible.
This can be somewhat mitigated by applying co-located pattern mining
in the result of both experiments and finding and excluding additionally
identified anti-patterns in follow-up experiments.

85

5. PATTERN MINING

COMBINED WITH

GENETIC IMPROVEMENT



5. PATTERN MINING
COMBINED WITH

GENETIC IMPROVEMENT

86

5. Pattern Mining combined with Genetic Improvement

The approach via KGGI is not suited to mining positive patterns, as
those are more likely to be affected by other patterns. This can lead to
side effects when trying to discern if the pattern is responsible for an
improvement. The pattern may not impact the feature under test because
other parts of the source code counteract the positive effect of the pattern.
What such a dual-experiment set up can help with, is finding co-located
patterns or anti-patterns that may also influence the same function or
NFP.

Another challenge is the general applicability of identified patterns. For
example, a pattern may have just been identified because the entire
population of KGGI was stuck in a local optimum. To mitigate this issue,
GI can be used with a diversity fitness function, i.e., a function that
contains a measure of how different ASTs are from each other in the
current population, or over all populations. Such a diversity measure has
been previously used in Genetic Programming (GP) to prevent premature
convergence of the algorithm and for maintaining diversity to improve
the evolutionary approach [95-97]. In this case, it could be used to drive
the trust in the analysis of a pattern to diversity of the AST generated in
testing. As this work utilizes multiple mutations instead of GI to verify
patterns, diversity measures are not applied, but present an opportunity
for future research when analyzing the effects of multiple patterns in GI
experiments.

5.4 Context of Patterns

Patterns are often valid only in a specific context. This has been previously
discussed in the context of taxonomies (see Section 4.2) that are built
for a specific purpose such as mining patterns concerning data types or
patterns concerning access to variables. Similarly, patterns are identified
with a specific purpose in mind, such as fixing bugs or adding defensive
programming measures. Similarly, patterns may improve NFP, and
frequently there is a trade-off between them. An important aspect of
applying the presented algorithms and concepts lies in the quality of the
data. This requires recording the NFP measurements during tests reliably,
similar to how recording the ASTs and tests for them is critical. Measures
that have been taken to achieve an acceptable quality for experiments in
this work are discussed in Chapter 10.

This is especially important for mining patterns, considering what ASTs
will be used to search. Due to the approach being based on mining
significant patterns, in the form of often recurring sub-ASTs, the likelihood
of useful patterns is increased with a search space that is used for the
same purpose, and thus has to be selected manually. For example, one
experiment can consider sorting algorithms with a taxonomy for data
types to identify interesting patterns in that area. Mixing these sorting
algorithms with math functions (square root, etc.) that may be optimized
via completely different patterns using approximate computing would
likely have a negative impact on the quality of the found patterns.

A hitherto not specifically addressed consideration can be the signature
of a function, specifically its input and output. While this is beyond the
scope of our work, function signatures may imply a similar use context
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and similar patterns. The use of collections as input to a function is a likely
indicator that these collections will have to be fully or partially processed,
having a higher probability that patterns with looping structures will
occur. This correlation may in the future be used as an indicator if
different ASTs can be used as a search space to identify new patterns.

5.5 Improving Genetic Improvement With
Mined Patterns

KGGI, specifically the syntax graph of it, can be improved via mined
patterns, and anti-patterns (see Section 3.4). This section describes the
necessary algorithms to enrich a syntax graph with anti-patterns and
patterns, based on injecting requirements for the creation or prevention
of specific nodes. For a mutation, i.e. for creating a new AST, this works
by transferring this information from a pattern into the syntax graph.
To support selection and crossover, a selected AST is transformed into a
list of requirements that they have to still be considered valid in a new
context.

Restricting Anti-patterns

Anti-patterns are patterns that should never occur in a tree. Some of these
anti-patterns should always be injected into the syntax graph to prevent
completely infeasible individuals, i.e., those that will lead to run-time
exceptions, for example, uninitialized variable reads. Others depend on
the execution context, and should be added in that context, for example
patterns restricting multiple loop encapsulations when optimization
towards run-time performance is attempted.

Algorithm 9 works because the syntax graph of KGGI follows a left to
right, bottom up creation approach. This means that strategies creating
nodes closer to the root or strategies creating nodes further to the left can
impose restrictions on anything that is created later, i.e., further down,
or to the right. This is achieved by injecting do not create requirements at
the root of an anti-pattern. Note that the algorithm is highly abstracted
and actually happens over different strategies in the syntax graph (see
Figure 3.9).

During the canCreate phase of the syntax graph of any called strategy,
the strategy must consider all applicable anti-patterns (loop starting with
Line 1).

(*) wildcards allow skipping nodes, so their currently active node must
be validated (Lines 5-9). In case the pattern actually matches, the next
node in the pattern must be set active (Lines 21 + 22).

(=) negation wildcard nodes in a pattern do not lead to restrictions
in a pattern, instead they indroduce create requirements. If a strategy is
presented with such a requirement, it checks if it can fulfill the required
node or if later strategies may be able to create the node instead (Lines
10-14). Checking if later strategies allow anti-pattern prevention is done
to ensure the search space is not restricted too much. If every anti-pattern
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or pattern were to be satisfied at the first opportunity, the search space
would be severely restricted.

Algorithm 9: Update child node requirements to prevent anti-patterns.

Data: antiPatterns
Data: context
Data: nodeType
/* Process all matching anti-patterns and root wildcard
patterns. */
foreach ap € antiPatterns do
match < ap.node;
anyWildcard « False;
created < False;
if ap.node = * then
/* Select active child of . x/
match < ap.node.children.active;
/* Check if current node is relevant for node type.
*/
if match.type # ” nodeType then
continue;
anyWildcard < True;
if match.startsWith(—) then
/* Add create requirement if necessary. x/
if —walidateDegree of Freedom (DOF)() then
req «— createRequirement(ap);
context.requirements.add(req);
created < True;
else
/* Add do not create requirement if necessary. x/
if —walidateDOF() then
req < doNOTcreateRequirement(ap);
context.requirements.add(req);
created < True;

end

if anyWildcard A created then
/* Ensure that % wildcard is updated. */
updateActiveChild(ap)

end
Result: context

For regular nodes the strategy can either check if the anti-pattern in
question has later nodes that should not be created, in which case it may
opt to ignore the requirement, and instead replace it with a do not create
requirement of a later node (child or sibling). This allows us to partially
create anti-patterns which are never introduced completely (Lines 15-20).
This is also done to ensure that the search space is not overly restricted.

The restriction process has one caveat, which stems from its advantage
of pruning infeasible search space parts. Not all possible permutations
of a given anti-pattern are necessarily negative, if they aren’t detailed
enough. For example, preventing that variables don’t have a connected
write (anti-pattern (—write) — (read)), is not always correct. It is only
correct in the context of local variables. Global variables may have been
correctly initialized outside the currently modified AST.
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Additionally, the restriction has an impact on the search space, and
using several anti-patterns at the same time can unintentionally prevent
needed parts of the search space due to the overlapping exclusions of
anti-patterns. This mostly impacts node types that will be prevented
from creation. It also can impact anti-patterns if one anti-pattern requires
a (—) node to be created, while another anti-pattern has the same node
without a (), making only one of the two anti-patterns fulfillable. In
such a case, KGGI attempts to satisfy as many patterns as possible instead
of all patterns.

Even though anti-patterns can restrict a search space beyond the intent,
the approach provides an advantage of preventing infeasible individuals
in the population and raising the average quality of the solutions. As a
consequence, this improves the chance that new AST modifications are
found that show different NFP than previous ones. This in turn enables
mining to find new patterns.

Injecting Positive Patterns

Positive patterns, known to occur often in ASTs that are good in a
functional or NFP, are injected into the search space. This works by
introducing requirements into the syntax graph. Similar to anti-patterns,
positive patterns can prevent each other from occurring, i.e., one pattern is
possible but not the other. This is because some requirements may directly
contradict each other. For example, requirement A states create write 0,
and requirement B states do not create write 0. Creation requirements are
given to strategies being called during the creation process. For patterns,
this happens more often than for anti-patterns, as any node that has no
(—) requirement will be created via creation requirement.

Algorithm 10, shows how a pattern is processed in the syntax graph,
inducing new creation requirements to ensure child nodes of the pattern
will be generated. The algorithm essentially injects for the root of a
pattern (if it is not a wildcard node) a check in the strategy corresponding
to that node. If the pattern node equals a specialized class, this is a copy
of the original strategy without any pattern restrictions. If the strategy
handles a generalized node from the taxonomy, it will instead inject
into the strategies of all nodes that match this taxonomy part. The (—)
wildcard is not a valid root node for positive patterns. The (x) however
is a valid root and is injected into every single strategy. This happens
before the algorithm (not shown).

Every pattern has a random activation chance between 0 (never activated)
and 1 (always activated). To ensure that strategies that compete with
each other (e.g., have the same root node) do not prevent each other
in child-nodes only one strategy can be activated at the same time. For
example, if three strategies exist with an activation chance of 1, only one
of them will be chosen at random (Lines 3 and 4). The (%) wildcard is
handled exactly in the same way as when dealing with anti-patterns
(Lines 7-11 and 23-24). If the pattern matches, the active child of the
wildcard will be updated, otherwise the requirement remains unchanged
to be satisfied by a later node.

Each of the strategies injected with a pattern root creation check creates
new creation requirements for the child. This requirement is essentially -
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pattern x - node n, where x is the pattern, and n is the next node that the
pattern shall match. This requires the syntax graph to continue editing
the pattern on every creation with a syntax graph strategy (Lines 12-16).
This does not prevent multiple patterns from being active at once, as the
strategies needed are independent of each other. For example, a child
node that is a valid root of another pattern is allowed to introduce an addi-
tional pattern; only patterns with the same root node prevent each other.
To prevent endless recursion, one specific pattern can only be active once
and only be active again after it has been completely created (not shown).

Algorithm 10: Update child node requirements to inject positive patterns.

Data: patterns
Data: context
Data: nodeType
/* Process all matching patterns, and x root patterns. */
created <« False;
foreach ap € patterns do
/* Ensure at most one pattern randomly activates. */
if created V random.next() > ap.activationChance then
‘ continue;
match < ap.node;
anyWildcard < False;
if ap.node = % then
/* Select active child of % x/
match < ap.node.children.active;
/* Check if current node is relevant for node type.
*/
if match.type # ” nodeType then
continue;
anyWildcard < True;
if —match.startsWith(—) then
/* Add create requirement if necessary. */
if —ovalidateDOF() then
req < createRequirement(ap);
context.requirements.add(req);
created < True;
else
/* Add do not create requirement if necessary. */
if —walidateDOF() then
req < doNOTcreateRequirement(ap);
context.requirements.add(req);
created « True;
end
if anyWildcard A created then
/* Ensure that *x wildcard is updated */
updateActiveChild(ap)

end
Result: context

The creation check has two separate options. The first option is that
it only triggers if the matching create requirement exists, essentially
activating or deactivating paths that are currently needed for the pattern
to continue. Alternatively, the check can validate if the previous nodes
in the pattern already exist, only then the next pattern node is injected.
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This only happens if a sub-AST is being created where an existing AST
already contains part of a pattern. This is handled by injecting the context
of the existing AST via Algorithm 11. It is mostly needed during mutation
operations if a pattern must remain in the AST, but is partially mutated,
and crossovers if the pattern must remain intact.

Similar to the restriction of anti-patterns, patterns may also contain (—)
wildcards. These are handled by checking in the subsequent adjacent
nodes that they were not created. Previous nodes inject a do not create
requirement, but will not remove the relationship outright to leave some
leeway in the search space (Lines 18-21). If the optional requirement was
not injected, and the (—) node was injected, a following strategy that is
part of the pattern will remove all requirements related to the pattern
from the context, since the pattern cannot be continued. The injection of
the do not create requirement can be changed to be required if it is a pattern
that must be created (activation chance 1).

Injecting pattern nodes into the syntax graph influences the direction into
which the search space evolves. However, it does not outright restrict the
search space as long as all patterns remain optional (activation chance
<1). While positive patterns do not decrease the amount of infeasible
individuals, they can help to improve the overall quality of the population
and to focus the search in areas known to do well for a given problem

type.

Reducing a Subtree to Requirements

For the creation of a new subtree via the syntax graph, the surrounding
AST into which the new sub-AST is injected must be considered. This also
applies to completely new ASTs in relation to the entire program (heap,
other functions). The goal is to ensure that any AST being created is valid.
Similarly, crossing two existing trees must ensure that the crossover does
not break the source code in a way that would prevent execution. This
means that anti-patterns need to be considered during crossover.

Considering the context can be achieved by reducing a given partial AST
to a set of requirements that it needs to uphold. This is always seen in
the context of the remaining part of the AST, e.g. the AST being mutated
without the AST replaced by mutation. For crossover, this is the AST
being crossed into, without the subtree that will be replaced. Vice versa,
the sub-AST selected to cross into this place must also be analyzed for
anti-patterns.

Algorithm 11 performs such a reduction, essentially via a simulated
creation approach. It is a part of the syntax graph and iterates through
the AST asking the root strategy to return unfulfilled requirements. This is
done essentially via the same functionality that the previous algorithms
for anti-pattern and pattern injection outline. Instead of choosing a
strategy to create the selected nodes, the syntax graph root strategy
selects the strategy that was responsible for creating it. This is usually
unique, as all executable node classes usually have only one dedicated
strategy.

A strategy selected by the root strategy adds its requirements to child and
later nodes in the AST. Due to the depth-first iteration of the algorithm,
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later strategies for nodes will resolve the same requirements they would
remove when creating the node.

Algorithm 11: Recursively reduce AST to a set of unfulfilled requirements.

Data: node

Data: requirements

Data: patterns

Data: antiPatterns

context «— requirements.get(node.parent);

currentContext «— Context.create() patterns.add All(context.patterns);

antiPatterns.add All(context.antiPatterns);

foreach ap € patterns do

/* Use the anti-pattern restriction to find anti-pattern
requirements. */

currentContext.add(Algorithm 10)

end

foreach ap € antiPatterns do

/* Use the pattern injection to find pattern

requirements. x/
currentContext.add(Algorithm 9)
end
foreach node € node.children do
/* Recursively call this algorithm for all nodes. x/

Algorithm 11(node, requirements)
end
requirements.add(node, currentContext);
Result: requirements

After all nodes in the AST are processed, the root strategy selects a
change point change point (either mutation or crossover point) which
defines where a subtree will be modified. Requirements for all nodes
under this point are removed. For example, an injected write to a variable
is removed, so later nodes do not mistakenly identify the variable as
initialized. All following nodes validate if their requirements are satisfied
or not. This is done by the active strategy for the node checking its creation
check mechanics. If requirements are not satisfied, they add an unsatisfied
requirement to the context.

If Algorithm 11 fails for a node, this means that the strategy is not valid,
in which case the requirements are unresolvable. This can happen in
one of two cases. The first is that multiple strategies exist due to manual
manipulation of the AST. The other is introduced via grafting, i.e., via
ASTs that were introduced from other parts of the source code or from
other experiments. As these grafts weren’t necessarily created with the
same syntax graph, they may not adhere to it and the requirements can’t
be extracted. The algorithm in this case skips the node and ignores its
influence on requirements.

If multiple strategies can be selected, due to manual syntax graph ma-
nipulation, selection of one strategy can resolve the issue. The following
selection mechanisms can be used:

Random A random selection leaves open the most chances for the search
space.



Least Requirements Can be calculated in one of two ways. The fast eval-
uation is to evaluate all possibilities and select the one introducing
the least amount of requirements. The full evaluation is to run
the algorithm for the remainder of nodes through the AST and
choose the option with the least amount of requirements. Usually,
the fast evaluation is the better choice, as a full evaluation can lead
to uncontrollable search spaces if multiple nodes have multiple
options.

Pattern Tracing can be done only for ASTs that are created with the
syntax graph. The strategies can add tracing information to the
nodes they create, immediately allowing a match when they are
analyzed again at a later point. This does not work for grafted
nodes.

Pattern pre-identification Can be done for all patterns, and must be
done if the pattern is required to be in the individuals for the
GI experiment. Instead of letting the selection happen during the
requirement reduction, Algorithm 11 is used on the full AST (before
removing a subtree in mutation or creation), and one is selected.
Nodes that are in parts of the AST that are to be removed will be
added as requirements to the syntax graph before Algorithm 11
starts with the creation point.
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Experiments

The research questions of our work are answered via an empirical
evaluation described in the following sections.

A total of 25 Abstract Syntax Trees (ASTs) have been chosen for exploration.
All of these functions are executed in MiniC (see Chapter 9), to ensure
comparability :

Math Algorithms A suite of math algorithms, all based on the concept
of Newton Raphson approximation [98], was chosen, as these algo-
rithms provide a set of relatively compact ASTs and require a high
mathematical precision. These algorithms also have been a subject
of study in Genetic Improvement (GI) [99-102]. Previous research
also has been done by the author in collaboration with others,
successfully generating lookup tables to improve the accuracy of

6.1 Initial Analysis of the Exper-

imentSet ........... 96
Performance of the Manu-
ally Written ASTs ... .. 101
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Without Patterns . ... .. 103
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106].
Neural Network A neural network with several variations and activation
functions has been chosen as the final set of ASTs. In addition
to having large ASTs, they represent approximate computing,
meaning that the solutions generated via GI do not need to exactly
reproduce the functionality of their original counterparts.
The following sequence of experiments will be described in the next
sections of this chapter.
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RQI: How can recurring patterns be iden-
tified that impact or improve a functional
or Non-Functional Property?

RQ2: How can the confidence in patterns
be improved?

RQ3: How can these patterns be utilized
to lead to general optimizations?

To begin with, an initial analysis of the test set is shown, in order to further
explain the different scenarios under test and to provide an overview
of the Non-Functional Property (NFP) of run-time performance in each
of the 25 ASTs. The test suites, which are used to verify the semantic
validity of ASTs in the GI experiments, as well as the benchmarks used
to evaluate the run-time performance are explained in this section.

Following this, for each of the 25 ASTs an experiment is conducted
as a baseline. This experiment showcases Knowledge-guided Genetic
Improvement (KGGI), but without any identified patterns or anti-patterns.
It serves as a base to mine mutational bug patterns that often occur in GI.
This mining is the next experiment in line. It serves to partially answer the
primary research question *?!. Specifically, how mutational bug patterns
influencing the functionality of Gls can be identified.

In the experiment, the patterns are also validated and assigned a con-
fidenceR??. This is done to identify if anti-patterns are responsible for
bugs, and if the corresponding prevention mechanisms work.

The experiments using KGGI are then repeated with the identified
patterns and anti-patterns. This serves to further improve the confidence
in the bug patterns by evaluating if the identified bugs occur more or less
often. This also shows how the found patterns can be applied GIR.

Finally, the series of experiments is concluded with evaluating the
performance of ASTs generated by KGGI that are semantically equivalent,
as validated via a test suite, to their original solution. These performance
evaluated ASTs are then mined for performance patterns, to answer the
second part of RQ1, concerning patterns for NFPs, and to check if general
optimization patterns can be identified.

6.1 Initial Analysis of the Experiment Set

All experiments were conducted on the same test set of 25 ASTs, grouped
into three categories.

The math algorithms contain 8 different ASTs. Of these, 7 implement
variations of the Newton-Raphson approximation method [98]. The final
algorithm Square root - Java (2nd order root), one of three different ASTs
versions to compute the square root, uses a MiniC Builtin node that
calls the Java Math.sqrt() function. It primarily serves as a comparison
between calling native functionality of the JVM vs. implementing it
manually in the Truffle guest languages. For comparison, two different
implementations of square root exist. The first Square root - lookup table is
a reproduction of Krauss and Langdon [104], utilizing a lookup table for
the initial guess used by Newton-Raphson. Their lookup table guarantees
double precision (precision down to the last bit of a double value), with
just three iterations. The reproduction guarantees float precision, as all
algorithms either use integer or float as their base data type. Square
root - regular in comparison requires 30 iterations to guarantee float
precision over the entire range of the float values. Cube root (3rd order
root) requires 50 iterations, and super root (4th order root) requires 60.
The inverse square root (1/sqrt(x)) also uses 50 iterations. The final two
algorithms, Logarithm 10 and Logarithm Natural both do not use a fixed
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Table 6.1: Overview of the math functions in the experiments. The node count equals all nodes available for optimization and mining. The
invocations count how many functions are invoked during execution.

Function Node count | Invocations Amount Notes
of Tests
11t
Square root - java 8 1 10 .Ca o Java .
implementation.
Function, derivative and
Square root - lookup table | 42 3 16 lookutable position called
Function and
Square root - regular 36 2 10 derivative called
Cube root 39 0 10
Super Root 43 0 10
Inverse Square Root 38 0 10
L h
Logarithm 10 60 1 10 oop checks
remaining error
Logarithm Natural 56 1 10 Loop_checks
remaining error

iteration, but rather loop until the remaining error is less than 0.000001.
In addition to the two different strategies to achieve precision (fixed
loops, remaining error), the implementations contain a different amount
of invocations. cube root and super root have all functionality inlined,
whereas the other functions call some functionality such as checking the
absolute value, calls to the lookup table or the function / derivative used
by Newton-Raphson.

Except the square root - lookup table function, which works for a range
between 0.5 and 2.0, all functions were tested on the same input. For
all functions, the test set contains 10 tests with a corresponding floating
point input and output.

A total of 10 sort algorithms comprise the second test set. It consists of 8
different sorting algorithms, and two duplicates with different implemen-
tations. Both merge sort and selection sort have two versions implemented.
One version with function calls to parts of their functionality, and another
with all calls inlined. This was done to compare the effect of partial
functionality not being present in the AST under optimization. The AST
sizes range between 56 and 206 nodes. As all algorithms fulfill the exact

Table 6.2: Overview of the sort functions in the experiments. The node count equals all nodes available for optimization and mining. The
invocations count how many functions are invoked during execution.

Function Node count | Invocations Amount Notes
of Tests
Bubble sort 62 0 5
Heap sort 165 0 5
Insertion sort 56 0 5
Merge sort 70 1 5 Call to merge
Merge sort inlined | 152 0 5
Quick sort 11 5 5 Call to partition
and swap
Quick sort inlined | 206 0 5
Selection sort 56 0 5
Shaker sort 118 0 5
Shell sort 91 0 5

6. EXPERIMENTS
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Table 6.3: Overview of the neural network functions in the experiments. The node count equals all nodes available for optimization and
mining. The invocations count how many functions are invoked during execution.

Function Node count | Invocations Amount Notes
of Tests
Rectified
Linear Activation 587 2 1
Leaky Rectified
Linegr Activation 599 2 1
Sigmoid 587 2 1
Swish 607 2 1
Tanh 635 2 1
Fully Inlined NN 657 0 1 Sigmoid activation function
NN with all 545 4 1 All activation functions
Activation Functions available, but only one used

Figure 6.1: A previously undetected bug
in MiniC caused issues with invocations.
Quick Sort inlined is 30% faster than regu-
lar quick sort. Cube Root with 50 iterations
is much faster than the square root lookup
function with only 3 iterations.

same goal, sorting integer arrays, this test set also serves to investigate
the size of the AST that KGGI and Independent Growth of Ordered
Relationships (IGOR) can be utilized on. All algorithms are tested on the
same 5 randomly sorted int arrays to enable accurate comparison of their
run-time performance.

The final test set comprises 7 different versions of a AST neural network.
The neural network algorithm itself is the same in all versions. Only
the core activation function is different for all versions. Five well-known
activation functions sigmoid, swish, tanh, rectified linear activation and leaky
rectified linear activation are selected. The remaining two AST versions
are one inlined version using the sigmoid activation function, and one
version that allows invocation of all activation functions, using swish
in the implemented call. All versions are tested on the same in- and
output set. One test attempts to create an XOR gate. This test was selected
primarily to restrict the demand of the performance evaluation, and
was intentionally chosen as it executes on all implementations with less
than 10ms run-time. As the profiling of the run-time consists of 200,000
repetitions of the test, this means that each AST performance evaluation
will take less than 34 minutes to run. This may not seem much for
the original 8 ASTs, but the KGGI tests in the subsequent sections can
produce up to 2,000 unique ASTs that need to be measured, and these
ASTs can be less performant than the original implementation.

During the initial performance profiling, some odd behavior was ob-

Run time plot of executions (values above third quartile excluded)
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served. Functions with invocations were much slower than those that did
not contain invocations. Figure 6.1 shows four functions where this issue
is glaringly obvious. Quick Sort with two invocations to the partition
and swap functions takes 30% more run-time than the exactly same code
with these functions manually inlined. Both versions of Quick sort are
iterative, and the only difference is the manually inlined functions. The
cube root function which takes 50 iterations for its calculation is much
faster than the square root which has calls to a lookup table, the function
and derivative.

The four algorithms were mined via a differential pattern mining using
IGOR, grouped by:

imperformant quick sort, square root lookup table
performant quick sort inlined, cube root

The only difference that was identified, are the invoke nodes in the imperfor-
mant group. The Graal compiler does inlining as an optimization, which
means that this anti-pattern should not be the cause of the performance
differences. When utilizing the debugging options of the Graal compiler
!, the compilation trace indeed shows that an inlining is done for both
quick sort and square root - lookup table.

@NodeInfo(shortName = "write-local-int", description =
"Writes int to stack")
@NodeChild(value = "valueNode", type =
MinicIntNode.class)
public abstract static class MinicIntWriteNode extends
MinicWriteNode {

@Specialization

protected void writeInt(VirtualFrame frame, int
value) {

// The following line assigns the data type

for a frame slot. With this line absent the
performance is severely impacted.

frame.getFrameDescriptor().setFrameSlotKind(getSlot(),
FrameSlotKind.Int);
frame.setInt(getSlot(), value);

Figure 6.2 shows two Graal IRs for square root after it has been optimized
by the compiler already. In the left graph the inlining was done manually,
in the right graph no inlining is conducted. Both versions do not contain
any invocations to other functions anymore. The right side however
contains many more FrameWithoutBoxing, also known as materialized
frame. These types of frames are primarily used for the heap, where
global variables are stored. Apparently, Graal is being prevented from
optimizing the arguments given to the original invocation, forcing it
to introduce materialized frames. The true reason behind this is the
GuardedUnsafeLoad which can be seen multiple times in both sides of the
figure, whenever a reading access to the variable happens. This unsafe
load needs to happen when the compiler does not know what data type
is stored in a given frame slot. Listing 6.1 shows the applied repair for

1: polyglot.engine.Tracelnlining=true

Listing 6.1: Problem causing the issues
with inlining, and the fix to repair it.

6. EXPERIMENTS



6. EXPERIMENTS

100 | 6. Experiments

998 VirtualArray(0) Object[1]

65 Virtualinstance(@) FrameWithoutBoxing | [ 66 bjects] | [ (68 51|

T eer

1157 Virtwarray(o) long(1] 384 1
< |
e I
[ NE TR [3878egim | [1025 Loopext

O G
1016 P8, 12, 152

mﬁm.r
o0 =2;

lﬁ

vistore.

675 euavaeWnsa Gad
710 GuardedUneTatea

Figure 6.2: Difference in Graal intermediate representation (IR) between square root with inlined (left) and non-inlined (right) function and
derivative.
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Run time plot of executions (values above third quartile excluded)
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this bug. Figure 6.3 shows the Graal IR after this fix has been applied for
the entire MiniC Language. Only one IR is shown, as the graph is now
identical for both versions of square root.

This discovery has several consequences for our work. On the one hand,
it already shows the successful application of IGOR to identify patterns
that impact the run-time performance of software. On the other hand, it
also shows its limitations. The identified pattern is based on the genotype,
e.g. the AST, of the source code. Graal however works with the phenotype,
the Graal IR of the source code. While applying the anti-pattern invoke,
would have been possible with a mutation operation in KGGI that
inlines functions, which would have brought a significant performance
improvement to many of the algorithms in the test set, the true cause of
the performance loss, the missing metadata for the compiler in the frame
slots, would be entirely ignored. This fix improves the performance even
further than the pattern could have, but required manual investigation of
the root cause. Figure 6.4 shows the new performance of the algorithms
after applying the fix to MiniC.

Performance of the Manually Written ASTs

All the experiment suites were benchmarked on one input, over 200,000
executions, of which the first 100,000 executions are discarded. Each
individual benchmark was done in a separate JVM using the Amaru
framework (see Section 10.3) developed as part of this work. To ensure
comparability, all performance measurements are given in nanoseconds
in the entire chapter.

float cbrt_benchmark(float x) {

int i;

float sum;

sum = 0.0;

for (1 =0; i<100; i=1+1) {

sum = sum + cbrt(x+i) + cbrt(x+i+l) +

cbrt(x+i+2) + cbrt(x+i+3) + cbrt(x+i+4) + cbrt(x+i+5)
+ cbrt(x+i+6) + cbrt(x+i+7) + cbrt(x+i+8) +
cbrt(x+i+9);

b

return sum;

}

The benchmark for the math functions was performed on the input
0.5 for all functions. As the math functions execute too quickly for a

Figure 6.4: Fixed write nodes show a sig-
nificant performance improvement for all
algorithms.

Listing 6.2: Example of how the math
functions were benchmarked. Shown is
the cube root benchmark

6. EXPERIMENTS
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single benchmark call, the benchmark instead uses 1,000 in-process calls,
meaning that a benchmark function is called in the MiniC guest language,
which performs the 1,000 calls. To ensure that Truffle and Graal do not
optimize these calls away, or reduce them, 100 loops are conducted which
add the sum of 10 calls with incrementing input values. The benchmark
for the cube root function is shown in Listing 6.2.

Figure 6.5 shows the run-time for all algorithms in the suite. The access
to the square root implementation of java outperforms the lookup table
implementation, which in turn outperforms its pure Newton-Raphson
version. Since the Cube root and Super root implementations are just
increasingly complex adaptions of square root, their run-time is as
expected. Inverse Square root has a similar run time to regular square
root, which is expected, as the only difference is one division operation.
Logarithm 10 and Logarithm Naturalis have similar implementations,
only differing in the constant applied. It is likely that more steps are
required to reach the target accuracy threshold in Logarithm Naturalis.

The sorting algorithms were benchmarked on the same array with a size
of 1,000. As this already shows sufficient differences in performance, no
in-process interactions were used. In Figure 6.6 Bubble sort, Insertion
sort and Selection sort behave as expected, considering that their average
run-time complexity is ®(12). Shell sort (@(11(logn?))) and Shaker sort
(®(n?)) however have an unusually low run-time. Heap sort and Merge

4am
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Figure 6.6: Performance of the manually 0

written sort ASTS Bubble Heap Insertion Merge Merge inlined Quick Quick inlined Selection Shaker Shell
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sort (@(n(logn))) behave as expected, with Quick sort (@(n(logn)))
being slightly less performant than expected. Both inlined variants of
Merge and Quick sort have a better runtime than their counterparts not
using function calls.

The neural network algorithms were benchmarked on a test suite pro-
ducing an XOR gate. Figure 6.7 shows the performance of the respective
implementations. Rectified Linear Activation and its Linear variant, as
well as Sigmoid, have the best run-time performance. Tanh, as well as the
version with all activation functions also have a similar run time. This is
interesting, since the version with all activation functions uses swish as a
function call instead of having it inlined, making it functionally equiv-
alent to the version using Swish. This suggests that the Graal compiler
can apply different optimizations while the function is not inlined. The
fully inlined neural network having the longest runtime seems to confirm
this.

6.2 Experiment Baseline - KGGI Without
Patterns

To thoroughly evaluate the results of applying patterns in KGGI a baseline
is established. In this experiment, all algorithms described in the previous
section are modified via KGGI without any patterns. The goal of these
experiments is to showcase how a genetic algorithm would fare in the
search space of MiniC, and enable a comparison to the influence of
applying patterns to the search space.

To ensure reproducibility of the results, all 25 experiments utilize the
same parameters and set up:

Search Space Almost the entire language of MiniC is selected, the only
exception being the read from console built-in function. This function
is omitted in all tests, as it would disproportionally block any AST
since the tests are not interactive. This amounts to 108 operators and
59 operands, totaling 167 options.

Figure 6.7: Performance of the manually
written neural network ASTs.

6. EXPERIMENTS
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Initial population creation The initial population is created via mutants
of the original AST.

Crossover A single-point crossover is chosen. As KGGI considers the
validity of nodes according to the grammar of MiniC, the crossover
always creates compilable individuals. In addition, it has a strict
depth and width restriction, where depth means the distance
between the root node and the furthest leaf, and width means the
maximum amount of direct children that one node may have. The
limit is different for every experiment, with a depth and width
allowed to exceed the original solution by one.

Selection A tournament selection is applied with a tournament size of 10.
In addition, the selector only considers such ASTs for selection that
do not result in run-time exceptions, unless no AST runs without
exception. This was done, since not excluding such ASTs leads
to experiment runs with almost 100% of individuals producing
run-time exceptions.

Elitism Thebestindividual from the population is kept in the population.

Mutator The mutator is a single-point random mutator. Similar to the
crossover, it only creates mutants that are able to compile, and the
same depth and width restriction applies. In addition, to ensure
that the mutator does not create too large individuals, the width,
and depth limits are randomly reduced at the mutation point.
For example, if a mutation point close to the root is chosen, the
mutator is randomly assigned a maximum depth of between 3 and
11, instead of a fixed maximum depth of 11. This is done as the
random mutation in MiniC tends to create large sub-ASTs. The
mutation probability is 13%. While this is a high rate for GP, it is
quite low compared to current GI frameworks, which use local
search algorithms exclusively using mutation [70, 107-109].

Population size and Generations A population size of 100 with a gen-
erational limit of 20 is selected. This enables a generation of approx-
imately 2,000 ASTs per sub-experiment, totaling approximately
50,000 ASTs over the entire experiment.

Fitness Function The fitness function is the accuracy on the test cases
as defined in Algorithm 1. Every successful test case where the
expected output matches is rated 0, while tests that do not match
the output are rated between 0 and 1 depending on how far the
output is from the expectation. Returning the wrong data type is
ranked 2 and a run-time exception is ranked 10.

Timeout Every AST has a chance to never finish its execution or produce
an unrecoverable run-time exception. For example, an Out of
Memory exception crashes the Java Virtual Machine (JVM) without
the ability to catch the exception. A timeout was introduced so that
each AST has as upper limit until it is considered failed. For the
math and sort experiment suites, the timeout was set to 3 seconds.
For the nn experiment suite, the timeout was set to 10 seconds.

Over the entire experiment, 15,906 different solutions were created. 4,494
of them succeed every test case, 9,470 produce a run-time exception in
at least one test case, and 1,942 produce invalid results, either returning
the wrong data type, or not the exact value required by one or more test
cases. In total, all AST consist of 10,369,142 nodes.

The experiment performed 40,967 crossover, 6,058 mutation and 2,525
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Figure 6.8: Histogram of unique solutions per generation in the KGGI experiment run of shaker sort. Uniqueness is considered in the
generation, not overall. The groups are individuals succeeding all tests, failing at least one test, or producing a run-time exception in at least one

test.

create operations, for a total of 49,550 operations. 450 less than 50,000
due to elitism over the generations following the first generation. The
expected number of approximately 50,000 ASTs is not reached. The
diversity of the AST over all experiments results in every solution on
average being present 3.14 times over all populations and generations.
Considering the large search space, this shows a severe lack of diversity
in the populations. The reason for this can be seen in Figure 6.8, which
shows a histogram of all unique solutions per generation in the KGGI
experiment run on shaker sort. The first generation is created purely via
mutation, resulting in 100 different ASTs. The first generation produces
only 6 individuals that do not produce run-time exceptions, 3 of which
succeed all test cases. While all later generations, which rely on crossover
with only a 13% mutation chance, produce far fewer failing individuals,
there is far less diversity in the generations than expected.

Table 6.4 shows how likely each operation is to create successful individ-
uals. It should also be noted that many individuals repeatedly occur in
multiple generations, so the overall diversity is even less than visualized
in Figure 6.8, for example in shaker sort a total of 645 unique ASTs oc-
cured over all generations. This behavior is similar for all 25 experiment
runs, with some notable differences:

» In the math experiment suite some individuals also return the

Successful Failed test Exception Total
Create 128 (5,1%) 117 (4,6%) 2,280 (90,3%) | 2,525
Mutate 820 (13,5%) 290 (4,8%) 4,948 (81,7%) | 6,058
Crossover | 27,698 (64,8%) | 6,271 (14,6%) | 8,796 (20,6%) | 42,765

Table 6.4: Operation success rates in
KGGI without patterns. Successful is only
counted if all test cases are succeeded ex-
actly, or in the case of neural networks if
every test-value is within a 1% margin. If at
least one test case fails, ASTs are grouped
in failed test, and if at least one run-time
exception occurs, ASTs are grouped by
run-time exception

6. EXPERIMENTS
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Table 6.5: Unique AST individuals in math experiment baseline of KGGL

Experiment Successful | Failed test | Run-time Exception | Total
Square root - Java 278 (47.4%) | 23 (3.9%) 286 (48.7%) 587
Square root - lookup table | 164 (26,8%) | 45 (7,4%) 403 (65,8%) 612
Square root - regular 374 (44,3%) | 47 (5,6%) 423 (50,1%) 844
Cube root 347 (44,4%) | 98 (12,6%) 336 (43%) 781
Super Root 1(0,2%) 205 (35,9%) | 365 (63,9%) 571
Inverse Square Root 238 (30,9%) | 105 (13,6%) | 428 (55,5%) 771
Logarithm 10 238 (34,1%) | 15 (2,1%) 445 (63,75%) 698
Logarithm Naturalis 150 (27%) 18 (3,2%) 388 (69,8%) 556
Total 1,790 (33%) | 556 (10,3%) | 3,074 (56,7 %) 5,420

6. EXPERIMENTS

wrong data type.

» in the sort experiment suite, the diversity grows after the first few
generations, especially selection sort and merge sort inlined, which in
one generation contains 75 different successful ASTs.

» The neural network experiment suite generally has the lowest diver-
sity. While overall quality tends to improve over time, the amount of
successful individuals also tends to decrease, with tanh producing
no successful individuals in the last three generations.

In the math experiment suite, as shown in Table 6.5, 5,420 out of approx-
imately 16,000 expected unique ASTs are generated. Of these, more than
half produce an exception in at least one test case, and about one third
generates a successful solution. The super root has only one successful
individual in its population, but also the highest rate of individuals
that produce a result that does not match the desired test result. This
may indicate that math functions with a higher complexity are harder
to produce, which is also confirmed by the low success rates in inverse
square root, and the two logarithms. The square root - lookup table might
be an outlier or alternatively be more susceptible to failures since it has
invocations to three different functions.

The sort experiment suite (see Table 6.6), shows a similar overall behavior,
even though the suite has ASTs that are much larger than in the math
functions. With 6,733 out of an expected 20,000 AST it has a similar
diversity as the math functions and it’s distribution of successful to failed
tests and runs with exceptions is almost identical. Heap sort and quick
sort inlined, which are the two largest ASTs also are the least successful

Table 6.6: Unique AST individuals in sort experiment baseline of KGGIL.

Experiment Successful | Failed test | Run-time Exception | Total
Bubble 263 (36,9%) | 74 (10,4%) | 376 (52,7%) 713
Heap 92 (15%) 146 (32,8%) | 376 (61,2%) 614
Insertion 125 (31,7%) | 58 (10%) 394 (68,3%) 577
Merge 217 (33,1%) | 80 (12,2%) | 359 (54,7%) 656
Merge Inlined | 510 (55,3%) | 89 (9,7%) 323 (35%) 922
Quick 173 (27%) 14 (2,2%) 454 (70,8%) 641
Quick Inlined | 113 (21,7%) | 19 (3,6%) 390 (74,7%) 522
Selection 308 (41,5%) | 85(11,5%) | 349 (47%) 742
Shaker 152 (23,6%) | 83 (12,9%) | 410 (63,5%) 645
Shell 281(37,9%) | 62 (8,4%) 398 (53,7%) 741
Total 2,234 (33%) | 710 (10,5%) | 3,829 (56,5%) 6,773
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Table 6.7: Unique AST individuals in neural network experiment baseline of KGGI.

Experiment Successful | Failed test | Run-time Exception | Total
Rectified o o o

Linear Activation | 2 (12,3%) | 106 (20%) 358 (67,7%) 529
Leaky Rectified o o o

Linear Activation 94 (17%) 74 (13,4%) | 385 (69,6%) 553
Sigmoid 0 (0%) 136 (27%) 368 (73%) 504
Swish 96 (19%) 62 (12,3%) | 347 (68,7%) 505
Tanh 8 (1,5%) 162 (29,3%) | 382 (69,2%) 552
Fully Inlined NN | 107 (19,4%) | 75(13,6%) | 369 (67%) 551
All Activation o o o

Functions 100 (19,3%) | 61 (11,7%) 358 (69%) 519
Total 470 (12,7%) | 676 (18,2%) | 2,567 (69,1%) 3,713

runs. Merge sort inlined, however, which is the third largest AST is the
most successful run with more than half of all individuals succeeding.

Finally, the neural network suite shown in Table 6.7, produces 3,713 out
of 14,000 expected ASTs. Instead of averaging 56% of ASTs with run-time
exceptions, the failure rate is much higher with 69.1%. This may be due
to the much larger AST size than in the other experiments. The rate of
tests that do not produce the desired result of the target output within a
1% margin is also higher than in the other experiment suites. Sigmoid
has not a single individual that produces the desired result.

Opver all experiments, the baseline for KGGI shows a low diversity in the
populations as well as a high rate of ASTs producing exceptions. However,
all experiments, except the super root, produce multiple successful AST
solutions as a baseline. All experiments show a tendency to either
fulfill all test cases, or produce run-time exceptions. The fact that over
most experiments, the test cases that fail but do not produce run-time
exceptions is the smallest group is noteworthy.

6.3 Mining of Mutational Bug Patterns

As a first attempt to answer how recurring patterns that impact and
improve a functional or NFP can be identified, the exceptions occurring
due to incorrect mutations in ASTs during the baseline experiments are
analyzed. Depending on the context, these could be considered func-
tional patterns, since these mutational bugs negatively impact achieving
the desired test output. In GI however, this is considered as a NFP -
correctness.

This experiment is done using the IGOR algorithm as outlined in Sec-
tion 4.6. Due to the large search space size of 9,470 ASTs that produce at
least one run-time exception per test case, it is likely that IGOR would
only identify the most common issues, which would show the highest
discriminative threshold, and likely have many similar patterns growing
around the core.

Thus, the experiment is split into the different exception classes that
occurred during the baseline experiments. Table 6.8 shows all 12 classes
in descending order by occurrence that were analyzed via IGOR. Figure
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Figure 6.9: Distribution of the exception
groups in percent according to the occur-
rences in Table 6.8

Table 6.8: Overview of the number of
bugs that occur over all experiments
with KGGI. Occurrences are counted per
unique AST. Different test cases may re-
turn different exceptions, thus ASTs may
occur in multiple groups.

llegal State

lllegal Argument

Process crash with log
Unsupported Specialization
Timeout

Class Cast

Exception not serializable
Null Pointer

Array Index Out Of Bounds
Process crash without log
Runtime

Arithmetic

35.2%

0.0938%
0.198%
0.313%

0.959%
2.35%

6.9 shows the percentage that the bug class takes over all exceptions. It
should be noted that several ASTs had different run-time exceptions in
different tests. For example, almost all exception types occur together
with the Process crash with log exception. Most of the exceptions are
well-known exceptions from the JVM. The Unsupported Specialization
Exception is unique to the Truffle framework and occurs if an unexpected
node is child of another node. This can happen if a constructor for a
Truffle node is more generalized than the context would actually demand
during run-time. The Process crash with log exception means that there is
no known exception, but rather the Amaru (see Chapter 10) worker that
attempted to execute the AST crashed while still successfully writing a
log file. The Process crash without log exception is the same, but no log file
is available. Finally, the Exception not serializable class occurs if the AST
execution failed, but the reason could not be sent back from the executor
service.

The mining process for every exception class is identical and actually
happens four times, to analyze the effects of embedded vs. induced mining
as well as the effects of the hierarchical mining inherent to IGOR:

Induced Mining The induced mining uses the entire population of

Exception | ASTs | Nodes | Relationships

Illegal State | 3,380 | 847,015 843,713

Illegal Argument | 3,208 | 890,365 887,156

Process crash with log 867 | 171,718 170,851
Unsupported Specialization 513 | 134,468 133,955
Timeout 481 | 116,387 115,906

Class Cast 398 | 152,101 151,703

Exception not serializable 368 | 126,010 125,642
Null Pointer 225 60,445 60,220

Array Index Out Of Bounds 92 12,140 12,048
Process crash without log 30 4,738 4,708
Runtime 19 2,252 2,233

Arithmetic 9 1,703 1,694

Total | 9,590 - -

Successful | 4,494 | 593,367 589,338




6.3 Mining of Mutational Bug Patterns

ASTs per group compared to the entire successful population.
The induced mining is done once including the literal values of
the nodes, and once without the literal values, only retaining the
normalized variables.

Embedded Mining The embedded mining does not utilize the entire
population due to memory limitations. Table 6.8 gives an overview
of the amount of nodes and relationships in the corresponding
search spaces. The available memory of 120 GB RAM was exceeded
when attempting the runs on the entire population and ultimately
had to be reduced to 15 individuals per group in the embedded
space.

What is identical for all four execution settings is:

Pattern size is limited to 5,000. As all AST are smaller this means that
there is technically no upper limit.

Hierarchy is the default MiniC hierarchy as given by its implementation,
concentrating primarily on the data types.

Redundancy the strategy for redundancy reduction is closed, meaning
only the largest pattern containing sub-patterns survives.

Metric An expansion of the maximal contrast metric was used. In addition
to ranking all patterns by their contrast, the metric demands that no
outliers exist. This means that patterns occurring in the exception
class were only relevant if the pattern did not occur at all in the
successful group.

Faults vs. Faults of omission The mining was applied twice to identify
co-located patterns. First, the metric was applied to maximize the
discriminability in the exception class, and demands no outliers
there. Then this was inverted to identify patterns in the successful
group that had no corresponding outliers in the faulty group.

Growth For the induced mining the 200 most discriminative patterns
were grown every time the pattern size was increased. Again due
to memory limitations this had to be reduced to 30 for the embedded
mining.

Top N return Only the top 10 patterns according to the discriminability
metric were recorded in the final report.

Pattern Verification

After the pattern mining was conducted, the patterns as identified in
the reports were manually analyzed. They were then transformed into
machine-readable anti-patterns, responsible for a bug occurring and
additional anti-patterns to be prevented in future runs of KGGI. For bugs
that could not be prevented outright positive patterns were introduced.

All anti-patterns and patterns were analyzed via the verification mech-
anism outlined in Section 5.3. This analysis always consists of first
attempting to validate the reason why an exception class occurred, e.g.,
the anti-pattern, and then applying a fix (e.g., anti-pattern prevention or
pattern induction) in a second verification. Both verifications are based
on the mutation operation of KGGI.

A specialized mutator is introduced that allows enforcing a specific
mutation point, e.g., any point where the anti-pattern can actually be
validly introduced. The mutator only conducts one mutation to ensure
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2.02%
0.551%

lllegal Argument M lllegal Argument

B Successful
W lllegal State

lllegal State
Successful

19.3%

Process crash with log
Unsupported Specialization
Class Cast

16.4%

2.53%

1.01%

Figure 6.10: Example of pattern verification with mutated ASTs on the left, and original ASTs on the right. Shown is an attempt to prove an
anti-pattern responsible for the Illegal Argument group. When utilizing the ASTs modified by KGGI the confidence is only 56.8% as opposed
to 97.4% confidence in the pattern when utilizing the original ASTs, since the mutations have a large amount of dead branches.

that the anti-pattern or pattern are applied without side effects from
other mutations. This has to happen since ASTs when mutated may
actually produce a different bug than the one that should be identified
by the anti-pattern. In addition, the verification process is conducted
only on the original 25 ASTs of the experiment suite. The reason for not
attempting to introduce the exception in the valid solutions created in
the baseline can be seen in Figure 6.10. It shows the same anti-pattern
verification on the exception class of Illegal Argument, on the left with all
valid solutions and on the right with only the original manually written
ones. The solutions produced in the baseline have a large amount of dead
branches that never execute, severely impacting the ability to analyze
patterns from them. On average, the confidence in proving anti-patterns
drops by 40% when not utilizing the original AST solutions. This issue
with dead branches is also a hindrance for the pattern mining itself, as
successful individuals can have bug patterns in dead branches that do
not impact the solution. In the future the approach could be expanded to
only consider branches that are executed for mutation.

Every verification is done by conducting 100 mutations on randomly
selected ASTs, since only 25 ASTs are available this means that on average
every pattern is tested four times per AST. The confidence in a pattern
is calculated by how often the exception occurs per test case that is
available for the given ASTs, instead of just attempting one test case per
AST. This is done to verify a pattern over different branches that may be
taken during different test cases. When attempting to validate the fix for
an anti-pattern, the confidence is instead calculated by how often the
exception does not occur. For example, 98.1% confidence means that the
exception occurred in 1.9% of all tests.

Identified Patterns

In what follows, every exception group is discussed concerning their
identified anti-patterns and implemented fixes for them, grouped by the
cause of the issue. Table 6.9 gives an overview which type of mining
identified a bug pattern. For every discussed group, the confidence
is given. As every pattern is verified individually, this confidence is
sometimes influenced by bugs which are caused by similar issues. In



6.3 Mining of Mutational Bug Patterns | 111

Table 6.9: Overview over which pattern was identified via which type of mining. Overall, both induced and embedded mining find different
anti-patterns. Embedded mining identifies patterns more reliably than induced mining. If normalization is conducted or not seems to make

little difference as well.

Exception Induced Embedded Notes
Literals | Normalized | Literals | Normalized
Fault of Omission onl
llegal State X X X found in Embedded !
Illegal Argument X
Process crash with log Reason not in ASTs
Unsupported Specialization X
Timeout No provable patterns found.
Induced and Embedded
with Literals find
Class Cast X X X different pattern than
Embedded Normalized
Exception not serializable X X
Null Pointer X X
Array Index Out Of Bounds X X X X
Process crash without log Reason not in ASTs
Runtime X
Arithmetic X X X X

the figures of this section, patterns in red, are the cause of a bug. Green
patterns attempt to influence the search space positively to reduce the
bug and blue anti-patterns restricting the search space to prevent the
bug. In two instances, instead of creating new patterns a strategy was
introduced in KGGI that deals with the issue instead, shown in gray.

Data-Flow-Related Bug Patterns

Most identified patterns are related to data flow. This includes Illegal
State, Illegal Argument, Null Pointer, and some patterns of Class cast.

Illegal State is being caused by the only identified fault of omission. Figure
6.11 shows the cause, which is a read without a corresponding write to the
same variable (82.7% confidence). This means that an uninitialized stack
or heap variable is being read, causing the issue. The fix is to require a
write to a variable before a read becomes valid (94.3% confidence). This
fix has been applied in a new data flow strategy introduced in KGGI which
also handles the other issues related to data flow. This is done primarily
as underlying bugs together would consist of more than 40 anti-patterns

read read
Q [0]

(cause) (fix)

Figure 6.11: Pattern causing the Illegal
State exception when a read happens be-
fore the variable was initialized with a
write (left). A corresponding fix is only al-
lowing a read to variables with a preceding
write (right).
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Figure 6.12: An Illegal Argument excep-
tion happens whenever a heap read hap-
pens on a stack variable (left). The fix is the
separation of stack and heap reads (right).

Figure 6.13: A Null Pointer exception hap-
pens only on reads of the data types char,
string and array (left). The fix is to only
allow reads with a corresponding write
(right). In the case of string and char, the
data types were prevented completely via
anti-pattern since no experiment in the
entire suite uses the data types.

read loc

glob read

loc 0 a
(cause) (fix - heap) (fix - stack)

(each data type, heap vs. stack, chaining of data flow operations, ...),
which becomes more easily manageable as a single strategy conducting
this verification.

Illegal Argument is caused whenever a heap read is attempted on a variable
existing only on the stack but not the heap (97.4% confidence). The fix
is to extend the data flow strategy to consider which variables the read
and write nodes have access to (100% confidence). Since Truffle does not
restrict the implementation from having multiple materialized frames
(e.g. multiple separate heaps) the implementation was changed to be
frame-specific to allow extensibility.

Null Pointer happens on three types of read (see Figure 6.13). char read
(77% confidence), string read (77.7% confidence) and array read (85.9%
confidence) on an initialized variable cause a Null Pointer exception
instead of an Illegal State exception. If the variable is initialized and of
a different data type, the exception instead is Illegal State which is the
second most occurring issue. The reason why this results in a null-pointer
exception is due to how variable access is designed in Truffle. Since
Truffle is a framework for designing languages in the JVM the primitive

read read .
char str (fix - a,b)
0 0

(cause - Db)

(cause - c)
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data types will not always match the data types of the designed guest
languages. Such data types, in the case of MiniC char, string and arrays,
are represented as a generic Object type. As the frame slot type of null
cannot be verified, the Illegal State exception is not caused, resulting
in a Null Pointer exception whenever the non-existing value is being
transformed into the guest language’s primitive data type.

Unfortunately, for the three given causes of Null Pointer only the fix for
array read can be proven (97.9% confidence fix - c). The fix is already
sufficient since an Illegal State exception is already prevented via the data
flow strategy. The reason why char and string can’t be proven shows a
limitation of our approach. No experiment in the suite uses these two
data types. This would require two mutations in the available experiment
space, one to add a write and one to add a read, instead of only one as
designed for the verification. Since not a single experiment uses the string
and char data types, they were excluded entirely from the search space
via an introduced anti-pattern.

The final group is Class Cast which is partially caused because of data
flow. Figure 6.14 shows causes a-c which relate to data flow. Similar
to Null Pointer the cause is any node with an underlying object type
in Truffle reading from a variable. In this case, the variable is set to a
different object type. If, for example, a read-int-array node attempts a
read of a double array or a read-int-array node attempts to read a string
or char, this causes a class cast exception instead (93.5% confidence).
The same holds for a read-char node attempting to read a string or any
array type (94.1% confidence) or a read-string node attempting to read
a char or array (95.8%) confidence. The fix for this class cast issue, is to
extend the data flow strategy to enforce an order on any node accessing the
data flow. Valid orderings go beyond the identified patterns and include
for example (allocate int array)—(write int array)—(read int array). This
is not manually done, but instead conducted by mining the language
once, and deriving valid pairings as information applied in the data flow
strategy. Section 10.2 describes in more detail how the language analysis
is conducted. This approach has been proven with the array-read pattern
(85% confidence). It should also solve the char and string read patterns,
which are not provable due to the approaches’ limitation.

Figure 6.14: Class Cast has the most pat-
terns identified causing it. One reason is
a typed read on a variable that has a dif-
ferent object data type written to it. This
can be seen in a) on an array reading a
different array type (e.g. int array reads
double array), a char reading a string or
vice versa, or both data types reading an
array. The fix is to only allow reads on
variables with a matching preceding type.
The other two causes are because of cast
nodes (d, e) with a solution to enforce only
the correct source data type being cast.
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Figure 6.15: Unsupported Specialization
is caused by a function being invoked with
an incorrect argument type (left top). Run-
time exceptions are caused whenever a
function is called that does not exist (left
bottom). Both issues are fixed by synthe-
sizing invocations of all functions in the
function registry.

function arguments

invoke
in
(cause - Unsupported function arguments
Specialization)
gen.
args

(fix - Unsupported
Specialization,
Runtime )

function arguments

(cause - Runtime)

Ambiguous Language Implementation Bug Patterns

Three types of patterns are caused by how languages in Truffle are
designed, and may be specific to MiniC itself rather than generalizable
over multiple languages. This includes Unsupported Specialization, Run-
time Exception, and the remaining two patterns of Class Cast.

Unsupported Specialization as well as Runtime are both closely related, and
caused whenever invocations of other functions are attempted incorrectly.
Unsupported Specialization is caused by a function being called with
incorrect arguments (96.7% confidence). This is proven by injecting a
char as a function parameter, which will always cause the Unsupported
Specialization, since no AST in the experiment employs char nodes, as
shown in Figure 6.15. The root cause is an ambiguity, since function
dispatches need to be implemented generically. In the AST any node
returning a value is acceptable.

A Runtime exception is thrown instead when a function is attempted to be
called that does not exist. This is caused by an ambiguity in how MiniC,
and Truffle languages in general, are designed. The invocation is done by
a dispatch to another function. Which function is usually decided by the
parser or linker, which correctly injects functions. In the AST the function
node is simply a reference to the function, in the case of MiniC this is a
string literal referencing the correct node in the function registry. Thus,
the AST can be generated with non-existing function references.

For both issues, the same fix pattern can be applied. A new invocation
strategy synthesizes patterns for every function available in MiniC’s
function registry. The synthesis is conducted for each return type, and
consists of the function name, as well as the arguments by collecting
the argument read nodes in the AST of the function to collect the data
types. This approach can be improved in the future, as some read nodes
are generic and can't exactly determine the underlying data type. For
example, only one generic node exists for arrays, independent of the
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underlying array data type. The synthesized patterns fix both Unsupported
Specialization (99.3% confidence) and Runtime (100% confidence).

Two patterns in the Class Cast group are caused by the same issue that
is causing Unsupported Specialization and Runtime. The general issue is
that some Truffle nodes allow a more general data type in their interfaces
than is allowed at run time. This anti-pattern is most easily identified

by any node accepting any node type instead of a more specific type.

A manual search through MiniC was conducted and resulted in the
only two patterns not identified via pattern mining. Figure 6.14 shows
two nodes conducting casts, but accepting invalid child nodes that they
cannot cast. The cast of a char-array to string accepts any type, since
arrays are only identifiable as object during the parse process (d in
Figure 6.14). The anti-pattern is proven by injecting an int literal (97.1%
confidence). An acceptable fix would be to only allow nodes returning
the correct the data type, similar to how the data flow strategy matches
data types. However, this pattern is once again not provable, and the
node is excluded from the search space. The second cast (e in Figure 6.14)
is a specialized node for unboxing from Java. It accepts any object but
can only cast the float boxed data type. Other specializations of the same
node could actually parse an int, but cannot be used if the specialized
node is injected instead, which is why the anti-pattern can be proven
(97.4% confidence). The fix is to only accept nodes returning float values
as child nodes (90.2% confidence).

Data-Type-Specific Bug Patterns

The two classes Exception not serializable, and Array Index Out Of Bounds
are both caused by incorrect array handling.

Exception not serializable is caused by a bug in the transmission between
workers of the Amaru framework, as was later discovered. Even though
this obfuscated the actual bug message for mining, at least one pattern
causing this was still discovered. Whenever an array of any type is
allocated with a negative size (see Figure 6.16), the AST fails at run time
(97.3% confidence). This is the first of two instances where a part of the
presented pattern was not discovered via mining. Only the allocate was

Figure 6.16: Exception not serializable is
caused by at least one identified pattern.
Whenever an array is allocated with a neg-
ative size (left), the AST fails at run time.
No corresponding pattern to prevent this
was identified, and thus three positive pat-
terns were introduced to guide the search
space into a more sensible direction (right
three patterns).
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Figure 6.17: An Array Index Out Of
Bounds exception happens when read (top
left), or write (bottom left) happens out-
side the array bounds. This was proven
with a negative read. Positive patterns
were identified to guide the search space
for read (right patterns top), and write
(right patterns bottom).

/read \ read read
o) [ [ read
N4 0
(Gc ]}t‘ read
\(<O)// int / +| -
(cause read) (fix read a)
ead
e - int 1lit weeel 1nrt|1nt

[l i 1it

(fix read d)

read read read

q 13
int int int Hs AL

(fix read b) (fix read c)

write) write q q
( 0 ) 0 write write
N4 0 0
(gc J}t‘ read
\\(<O)// int / +| -
(cause write) (fix write a)
WELEE - int lit weeel int 1lit

[ int

(fix write d)

read read read

int 14
int int int s

(fix write Db) (fix write c)

discovered, and the negative array size was discovered when analyzing
an AST that produced the exception during validation. The reason is,
that not a single AST fails because of a negative literal. Instead, sub-ASTs,
conduct various math operations, casts and function calls that result in
a negative value. The way the negative value is reached is so diverse
that no discriminative pattern was found. To guide the search space in a
better direction, the succeeding ASTs were mined for positive patterns,
which resulted in similarly counter-intuitive sub-ASTs. Thus, the original
25 ASTs were mined for patterns allocating arrays instead. The result
are the three positive patterns shown in Figure 6.16), which allocate
a one-dimensional array (a), a two-dimensional array (b), or a single
dimensional array by subtracting two variables from each other and
adding a constant (c). The allocations are independent of any array data
type (97% confidence). However, this solution does not guarantee that the
bug will not occur anymore, since any variable being read for allocation
that has a negative value will still cause this bug.

Array Index Out Of Bounds is caused by two very similar issues. Instead
of an issue with the allocation, when an allocated array position is being
read out of bounds (79.8%) or a position is being written out of bounds
(71.4%), the exception is thrown. Similar to the array allocation, no pattern
entirely preventing the issue could be found, and the original AST were
mined for positive patterns. For read, four patterns were identified in
Figure 6.17. One with a variable read for a single dimensional array (read
a), a two-dimensional array (read b), a division of a read by a literal (read
¢) and an addition or subtraction of a variable with another variable
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or literal (read d) (confidence 79.8%). For write, four similar patterns
were identified, with the first three identical to read (write a-c), and the
fourth being slightly restricted as only a literal was added or subtracted
from the variable (write d) (confidence 82.7%). Similar to the allocation
issue, this does not prevent the bug, as out of bounds exceptions can still
happen with negative variables, as well as values that are too high. The
patterns in this section only tackle the symptom but not the root cause of
the issue. It is questionable if the locations where the variables are being
set outside the array range can be identified with static analysis at all.

Arithmetic Bug Patterns

The Arithmetic exception happens only in 9 AST, and is caused by two
patterns, as shown in Figure 6.18. The first cause is a division by 0
(98.6% confidence), and the second is a modulo by 0 (98.5% confidence).
Both patterns were only identified with int, and modulo division. The
corresponding fix was implemented data-type-independently for each
type preventing the corresponding 0 value, e.g., 0 for int, and 0.0 for
float and double. To ensure that this anti-pattern works correctly, the fix-
verification was conducted with patterns in addition to the anti-pattern
to be prevented. The patterns enforce a division (100% confidence) or
modulo (99.3% confidence) with int literals on both sides, to prevent
other bugs from occurring during verification. In the one instance where
modulo failed, the AST was generated as a divisor of a division, with the
modulo resulting in 0, showing that even in a rather simple anti-pattern
producing a 100% confidence is not guaranteed.

Unprovable Bug Classes
For Timeout, Process crash with log, and Process crash without log all identified
patterns turned out to be false positives during pattern verification.

For the Timeout class, primarily anti-patterns were identified that con-
cerned simple math expressions such as addition or subtraction, or

Figure 6.18: An Arithmetic exception hap-
pens when a division by 0 (top left) or a
modulo by 0 (bottom left) is conducted.
The fix is to omit the 0 literal in the divi-
sion (top right) and modulo (bottom right)
of all data types. To prove the anti-pattern
during the verification phase a positive
pattern is applied as well, forcing the AST
generation to consist of literals on both
sides of the operations (middle top and
bottom).
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allocation and access to simple variables and arrays. None of them prov-
ably affected a timeout. While they may have some foundation in leading
to endless loops, the connection to loops was not identifiable via patterns.
Curiously, some patterns identified as fault of omission contained loops,
identifying loops as something that will not lead to a timeout. There may
be two reasons why the timeout was not verifiable. The first is that the
difference between successful ASTs and those running into a Timeout
was not large enough for a mining approach depending on differences
between the ASTs. The second may be that run time as a NFP is so specific
that a mining can only happen under different circumstances, such as
only considering one experiment group, or single algorithm instead of
the entire suite of experiments. To mitigate the first possible issue, the
timeout for future experiments will be increased. The second issue will
be addressed in Section 6.5.

For Process crash with log as well as Process crash without log, all identified
anti-patterns were not provable. The only indicator that no issue in the
ASTs was responsible, was that for every attempt at pattern validation
the process crash with log occurred on average in 1% of all runs. After
investigation, this turned out to be an issue in the transmission between
the separate JVMs for evaluation in the Amaru framework, and was fixed.
As Process crash without log has never occurred in following experiments
and the occurrence of Process crash with log is significantly reduced, it is
assumed that the issue was causing both bug classes.

Summary

Out of 12 defined classes of mutatoinal bugs, for at least 9 of them patterns
and corresponding solutions for them were successfully identified. Table
6.10 summarizes the identified patterns shortly, and gives the identified
confidence for it. During validation of the reason the issues occured, the
worst confidence was 71.9%, and the best was 98.6%. In most cases, only
one single issue was identified, and it can be assumed that less often
occurring issues were obscured by more often occurring ones.

Applied fixes were validated with a confidence between 82.7% and 100%.
A confidence of 100% is not always guaranteed due to the complexity
of software. Much of the validation was impacted by co-occurring bugs,
such as Access out of bounds being impacted by arrays being allocated
at all, making it challenging to isolate the effects of patterns. Branches
and dead code are also a challenge (see Figure 6.10).

The amount of ASTs that are available for a mining seem to be irrelevant.
Between 3,380 ASTs of the largest group and only 9 AST in the smallest
group, led to the identification of patterns. Most patterns in the larger
groups were co-located with similar patterns, which occurred less in the
smaller groups.

These results show that pattern mining can be successfully identified
directly at a native representation of a compiler or interpreter, and can
be conclusively proven or disproven. The presented basis has room for
improvement, such as switching to a dynamic approach, also analyzing
which nodes are activated and how often, as well as including this
information in the pattern verification itself.
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Table 6.10: Confidence scores for all identified bug patterns, and corresponding patterns preventing them.
Exception Pattern | Conf. Resolution | Conf.
Tllegal State Read without | g, 7o, Generate read only with | o 50,
preceding write preceding write available
Read of stack o Validation which node o
lllegal Argument variable on heap o7 4% can access which variable 100%
Process crash Issue in F I« fi
with log Framework not AST ) ramewors ix )
Unsupported function called with Correct arguments
e . 96.7% 99.3%
Specialization incorrect arguments extracted from \gls{acr:ast}
Timeout no pattern identified - - -
array read array of Generate read only when
: 93.5% ) . : 85%
wrong type, char or string corresponding type write available
Class Cast char read of string or array | 94.1% char excluded in experiments -
asst-as string read of char or array | 95.8% string excluded in experiments -
cast'of charl] string 97.1% cast excluded in experiments -
casting wrong type
o cast restricted to cast o
cast of any to float | 97.4% from float to float only 90.2%
Exception not Array allocated Patterns to allocate
1 . o 97.3% . 93%
serializable with negative size array more sensibly
char read 77% char excluded in experiments -
Null Pointer string read | 77.7% string excluded in experiments -
array read without Generate array read only with
. . 85.9% : . : 97.9%
preceding write preceding array write available
Array Index Out Array read out of bounds | 79.8% | Patterns to read array more sensibly | 86.6%
Of Bounds Array write out of bounds | 71.4% | Patterns to write array more sensibly | 82.7%
Pro.cess crash Issue in Framework not AST - Framework fix -
without log
functions I T
Runtime | non-existing function called 91% unct10n.s 1dent% fed 100%
from function registry
) . division by zero | 98.6% 0 literal excluded for divisor | 100%
Arithmetic -
modulo by zero | 98.5% 0 literal excluded for modulus | 99.3%

6.4 Application of Patterns in KGGI

The next experiment in the series aims to answer the research question
how identified patterns can be utilized to lead to general optimizations.
In this case, the bug patterns from the previous sections are applied
to see how they influence the search space in KGGI to improve the
overall experiments, as well as to see if these experiments then yield
semantically correct ASTs with an improved run time performance. To
enable comparability to the baseline, the exact same algorithm suite of
25 experiments is used. The same parameters as outlined in Section 6.2
are applied. The following differences apply:

Patterns All three major operators have the anti-patterns as well as patterns
identified injected. This includes the string and char data type anti-
patterns, which are injected as anti-patterns rather than restricting
the search space outright. This was done purely for comparability
to the baseline. Due to how KGGI works, anti-patterns can still
occur if the algorithm has no choice other than limiting the amount
of generated anti-patterns. If the search space were to be restricted,
the generation of string or char data types would be impossible
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during the experiments. A total of 9 anti-patterns and 11 patterns
are applied.

Crossover The crossover is left as a single-point crossover. Unlike the
baseline crossover, however, the crossover now adheres to patterns.
This is done via Algorithm 11 as outlined in Section 5.5. The
crossover uses the algorithm to identify anti-pattern locations
via a simulated crossover of the selected ASTs. If the simulated
child-AST has an equal or lower amount of anti-patterns than
identified in the left parent, e.g., the parent that has the single-point
injected from the right parent, then the crossover will actually be
conducted. If after 5 attempts no such simulation is successful, the
crossover instead attempts to select only crossover points without
anti-patterns in them for another 5 attempts before failing entirely.

Mutator The crossover only considers anti-patterns. The mutator con-
siders both types of patterns. While anti-patterns are always active
and prevented as far as possible (for example existing anti-patterns
are not attempted to be mutated away), patterns instead have an
activation chance of 33%. Since KGGI works recursively, a pattern
has multiple chances to be activated during sub-AST generation. If
multiple patterns are competing, for example the four identified
read anti-patterns, only one can be activated instead of multiple
ones at the same time. However, the mutator still randomly selects
a mutation point, which means that in some selections patterns
may not be applicable at all, or that one or more anti-patters are
already in the AST or may be unavoidable. KGGI uses the pattern
identification algorithm in the mutator to provide this information
at the mutation point. The newly generated sub-AST is then gen-
erated with a minimum viable number of anti-patterns, in most
cases none.

Fitness Function The fitness function is the accuracy on the test cases as
defined in Algorithm 1, exactly as in the baseline. The reason why
performance is not part of the fitness function, even though this
work analyzes NFP, is to find multiple variants of the algorithms
being tested in the experiment suites that have a diverse run-time
behavior. The pattern mining approach requires a margin between
the groups to work, as evidenced by finding no valid pattern for
Timeout.

Timeout To improve the chance of finding patterns related to run-time
performance, the timeout was increased from the values used in the
baseline experiment. For the math and sort experiment suites, the
timeout was set to 10 seconds (previously 3). For the nn experiment
suite, the timeout was set to 30 seconds (previously 10).

Over the experiments utilizing KGGI with patterns, 37,194 different
solutions were created, which is an improvement of 21,288 over the
baseline. Of these solutions 10,845 succeed every test case, 13,725 produce
a run-time exception and 12,624 produce invalid results during at least
one test. This means that the diversity, as well as the amount of successful
solutions is more than doubled when applying patterns. In total, all ASTs
consist of 9,305,089 nodes. Even though the amount of distinct ASTs
more than doubles, this is 1,064,053 nodes less than the baseline. This is
another indicator (in addition to the results of the pattern verification in
the previous section) that the baseline ASTs have many branches that are
never executed.
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Table 6.11: Operation success rates in KGGI with patterns. The percentages show the current percent of operations on the left, compared to
the original percentage from Table 6.4 on the right. For the successful and failed test groups an T shows an improvement, and for run-time
exception group the | shows an improvement.

Successful Failed test Run-time exception | Total
Create 434 (17,2% 7 12,1%) | 792 (31,4%7 26,8%) 1,299 (51,4% | 38,9%) | 2,525
Mutate 2,168 (35,5% 1 22%) | 1,433 (23,5% 118,7%) | 2,508 (41% | 40,7%) 6,109
Crossover | 19,756 (48% | 16,8%) | 10,756 (26,2% T 11,6%) | 10,603 (25,8% T 5,2%) | 41,115

Table 6.11 shows the results of the individual operations in the experiment.
Both the create and mutate operation are vastly improved, producing
more successful variants, and fewer variants with run-time exceptions.
The crossover becomes worse, with 16,8% fewer operations producing suc-
cessful results. While this means that still nearly every second crossover
produces a successful variant, now one quarter fails at least one test case
and another quarter produces run-time exceptions. Since the crossover
is the most applied operation, this is a drastic decrease in quality. It is
likely that since the diversity of options in the suite is now much higher,
the crossover has a higher chance of crossing mutants that are more
different from the original and thus have more chances of failing than in
the baseline. Figure 6.19 shows the histogram of all unique solutions per
generation in the KGGI experiment utilizing patterns on shaker sort. If
compared with Figure 6.8 the amount of successful solutions is drastically
improved, and every generation now has a much higher diversity rate
instead of only the first generation. This behavior is similar in all 25
experiment runs, with some differences to the baseline:

» The math experiment suite tends to have the most successful solu-
tions overall, but the least in the first four generations. Similar to
the baseline, some individuals also return the wrong data type.

» In the sort experiment suite, the first generation tends to have
more successful solutions than the other two suites. Other than the

100 M all tests succeed
B tests fail
Bl runtime exception
80
60

Unigue ASTs in generation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Generations

Figure 6.19: Histogram of unique solutions per generation in the KGGI experiment run of shaker sort using patterns for comparison with
Figure 6.8. Uniqueness is considered in the generation, not overall. The groups are individuals succeeding all tests, failing at least one test, or
producing a run-time exception in at least one test.
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Table 6.12: Unique AST individuals in math experiment using patterns in KGGI. The second line shows the difference to the baseline. T is
an improvement in successful, failed test and total. | is an improvement in run-time exception.

Experiment Successful Failed test Run-time Exception | Total
S 551(58,7%) 113 (12,1%) 274 (29,2%) 938
quare root - Java 1273 (111,4%) | 190 (18,1%) 112 (119,5%) 1351
184 (12,6%) 503 (34,4%) 776 (53%) 1,463
Square root - lookup table |~y (114 99y | 1458 (1279%) 1373 (112,8%) 1851
5 - reoul 792 (47,5%) 389 (23,3%) 486 (29,2%) 1,667
quare root - reguiar 1418 (13,2%) | 1342 (117,8%) | 163 (|21%) 1823
Cube root 525(30,6%) 579 (33,7%) 613 (35,7%) 1,717
1178 (113,9%) | 1481 (121,2%) 1277 (17,3%) 1936
Super Root 565 (34,3%) 490 (29,7%) 594 (36%) 1,649
1564 (134,1%) | 1285 (16,2%) 1229 (127,9%) 11,078
Inverse Square Root 759 (45%) 443 (26,3%) 484 (28,7%) 1,686
1521 (114,1%) | 1338 (112,7%) | 156 (126,8%) 1915
Logarithm 10 659 (38,2%) 298 (17,3%) 768 (44,5%) 1,725
1421 (141%) | 1283 (115,1%) 1323 (119,2%) 11,027
Logarithm Naturalis 906 (52,4%) 229 (13,2%) 596(34,4%) 1,731
1756 (125,4%) | 1211 (110%) 1208 (135,4%) 11,175
Total 4,941 (39,3%) | 3,044 (24,2%) | 4,591 (36,5%) 12,576
13,151 (16,3%) | 72,488 (113,9%) | 11,517 (| 20,2%) 17,156

increased success rate, the behavior is similar to the baseline.

» While improved, compared to the baseline, the neural network
experiment suite still has the lowest diversity of all three suites.
Unlike the baseline, where the amount of successful individuals
tended to decrease over the generations, the amount of successful
solutions now seems to be more constant.

In the math experiment suite, as shown in Table 6.12, 12,576 out of
approximately 16,000 expected unique AST are generated, more than
double the baseline. While all individual experiments show more di-
versity, square root - java shows the least improvement, with only about
30% more individuals. This might be due to the search space being too
restricted, as the depth and width restrictions stem from the original AST
size. Overall, approximately two out of five individuals are successful,
an improvement over the baseline of 6,3%. Due to the higher diversity
than the baseline, this means that more than twice as many successful
individuals are generated. Although square root - lookup table and the cube
root are now less successful in percentage compared to the baseline, all
experiments yield more successful individuals than the baseline. Super
root shows the most improvement, jumping from just one successful
individual in the baseline to 565 individuals. However, this may be due
to an outlier in the baseline. The amount of run-time exceptions also
drops by around one fifth compared to the baseline. In this experiment
set, utilizing patterns in KGGI is an overall success.

The sort experiment suite (see Table 6.13), shows a similar overall structure
as the math experiments. With 16,221 out of an expected 20,000 AST
it has the highest diversity of all experiment suites. Heap sort is still
the worst performing experiment in percentage of successful solutions.
Bubble sort and merge sort inlined now perform much worse than the
baseline, producing less successful variants than the baseline overall.
All other sorting algorithms now show more successful variants, with
heap-, bubble-, merge- and selection sort showing a decrease in percentage.
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Table 6.13: Unique AST individuals in sort experiment using patterns in KGGI. The second line shows the difference to the baseline. T is an
improvement in successful, failed test and total. | is an improvement in run-time exception.

Experiment Successful Failed test Run-time Exception | Total
Bubble 203 (13,4%) 808 (53,5%) 499 (33%) 1,510
160 (123,4%) | 1734 (143,1%) 1123 (119,7%) 1797
Heap 216 (11,9%) 1,043 (57,4%) 558 (30,7%) 1,817
1124 (13,1%) 1897 (133,6%) | 1182 (130,5%) 1951
Insertion 397 (25,4%) 681 (43,5%) 487 (31,1%) 1,565
1272 (13,7%) | 1623 (133,5%) | 193 (137,2%) 1988
Merge 622 (35,3%) 650 (36,9%) 491 (27,8%) 1,763
1405 (12,2%) | 7570 (124,7%) | 1132 (126,9%) 11,107
Merge Tnlined 226 (15,4%) 786 (53,7%) 452 (30,9%) 1,464
1284 (139,9%) | 1697 (144%) 1129 (14,2%) 1542
. 755 (42,4%) 230 (12,9%) 797 (44,7%) 1,782
Quick 1582 (115,4%) | 1216 (110,7%) | 1343 (126,1%) 11,141
. . 350 (23,7%) 261 (17,7%) 866 (58,6%) 1,477
Quick Inlined | 295725 19y | 1242 (114%) 1476 (116,1%) 1955
Selection 491 (31,1%) 609 (38,6%) 477 (30,3%) 1,577
1183 (110,4%) | 7524 (127,2%) | 1128 (116,8%) 1835
Shaker 465 (32,4%) 546 (38,1%) 423 (29,5%) 1,434
1313 (18,9%) | 17463 (1252%) | T13 (134,1%) 1789
Shell 952 (52%) 372 (20,3%) 508 (27,7%) 1,832
1671 (114%) 1310 (111,9%) 1110 (1 26%) 11,091
Total 4,677 (28,8%) | 5,986 (36,9%) 5,558 (34,3%) 16,221
12,443 (14,2%) | 15,276 (126,4%) | 11,729 (]22,2%) 19,488

6. EXPERIMENTS

Overall, the amount of successful solutions is more than double the
baseline, and the amount of ASTs is reduced to about one third of all
AST in the populations. While the percentage of successful solutions is
slightly decreased, the doubled amount of successful ASTs now generated
sill shows a successful improvement over the baseline when applying
patterns in KGGI.

The neural network experiment suite is overall the least successful of the
three suites, while simultaneously having the greatest difference to the
baseline. As can be seen in Table 6.14, similar to the other experiments the
diversity of the populations is more than doubled, and also the amount
of successful solutions nearly triples. With only a 14,6% rate of successful
individuals in the population and a 42,6% exception rate overall the suite
is less successful than the other two suites. What is notable, is that the
experiment with the sigmoid activation function now has 45 successful
individuals, resulting in all experiments now being successful. Tanh has
the largest improvement overall with an increase of 14,1% in successful
solutions, and a 42,1% decrease in run-time exceptions.

Exceptions in KGGI With Mutational Bug Patterns

The experiment results show that applying patterns in KGGI can improve
both the amount of valid results, and the diversity of the population,
while simultaneously decreasing the occurrence of run-time exceptions.
The question remains if the individual patterns and anti-patterns that
were identified and applied, fulfilled their purpose. As KGGI in both
the crossover and mutator still might introduce anti-patterns, it is not
expected that all identified exception classes will not be present anymore.
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Table 6.14: Unique AST individuals in neural network experiment using patterns in KGGI. The second line shows the difference to the
baseline. T is an improvement in successful, failed test and total. | is an improvement in run-time exception.

Experiment Successful Failed test Run-time Exception | Total
Rectified 120 (9,6%) 597 (48%) 528 (42,4%) 1,245
Linear Activation | 755 (|2,6%) 1491 (127,9%) 1170 (125,3%) 1716
Leaky Rectified 194 (16%) 482 (39,8%) 536 (44,2%) 1,212
Linear Activation | 7100 (|1%) 1408 (126,4%) 1151 (125,4%) 1659
Sigmoid 45 (3,7%) 599 (49,2%) 573(47,1%) 1,217
145 (13,7%) 1463 (122,2%) 1205 (125,9%) 1713
Swish 219 (19,2%) 396 (34,6%) 529 (46,2%) 1,144
1123 (10,1%) | 1334 (122,3%) 1182 ({22,4%) 1639
Tanh 183 (15,5%) 676 (57,4%) 319 (27,1%) 1,178
1175 (114,1%) | 1514 (128%) 163 (142,1%) 1626
. 262 (21,7%) 424 (35,2%) 519 (43,1%) 1,205
Fully Inlined NN | 155"~ 300 | 1349 (121,6%) | 1150 (123,9%) 1654
All Activation 204 (17,1%) 420 (35,1%) 572 (47,8%) 1,196
Functions 197 (12,4%) 1345 (121,5%) 1203 (119,1%) 1645
Total 1,227 (14,6%) | 3,594 (42,8%) 3,576 (42,6%) 8,397
1757 (12%) 12,918 (724,6%) | 11,009 (]26,6%) 14,684
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Smaller anti-patterns also may not have been found in the bug mining
experiment, since the effects of larger issues may have overshadowed
them.

Table 6.15 and Figure 6.20 show the new distribution of exceptions in the
experiment suite when patterns are applied. In the table, the percentages
in the brackets relate to the amount of ASTs in the entire population,
not just the failing AST. The largest exception class timeout drastically
increased compared to the baseline. As no pattern was identified causing
this exception, it was also never prevented by KGGI. Three new exceptions
occur now, which are JVM errors. Assertion, Stack Overflow and Out of
Memory would have been identified as Exception not serializable in the
baseline. This also means that during analysis of that class, at least
the Stack Overflow and Out of Memory exceptions were not identified as
separate patterns from the Assertion. Since the transmission error has

Timeout

Assertion

lllegal State

Array Index Out Of Bounds
Unsupported Specialization
Class Cast

Arithmetic

Null Pointer

Stack Overflow

Out Of Memory

Exception not serializable

Process crash with log

0.0247%
0.0329%
0.0329%
Figure 6.20: Distribution of the exception
groups in percent according to the occur-
rences in Table 6.15
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Table 6.15: Overview of the number of bugs that occur over all experiments with KGGI when utilizing patterns compared to the baseline.
In the difference, | is better. Occurrences are counted per unique AST. Different test cases may return different exceptions, thus ASTs may
occur in multiple groups.

Exception ASTs Baseline Difference

Timeout | 4,805 (12.9%) 481 (3.0%) | 14,324 (19.9%)

Assertion E 3,460 (9.3%) - | 713,460 (79.3%)

Tllegal State | 1,279 (3.4%) | 3,380 (21.2%) | 12,101 (17.8%)

Array Index Out Of Bounds 845 (2.3%) 92 (0.6%) 1753 (T1.7%)
Unsupported Specialization 710 (1.9%) 513 (3.2%) T197 (11.3%)
Class Cast 435 (1.2%) 398 (2.5%) 137 (11.3%)

Arithmetic 289 (0.8%) 9 (0.1%) 7280 (10.7%)

Null Pointer 172 (0.5%) 225 (1L.4%) 153 ([1.0%)

Stack Overflow E 149 (0.4%) - 1149 (T0.4%)

Out of Memory E 4 (0.0%) - T4 (T0.0%)
Exception not serializable 4 (0.0%) 368 (2.3%) 1364 (]2.3%)
Process crash with log 3 (0.0%) 867 (5.5%) 1864 (|5.4%)
Illegal Argument - | 3,208 (20.2%) | 13,208 (120.2%)

Process Crash without log - 30 (0.2%) 130 (10.2%)
Runtime - 19 (0.1%) 119 (J0.1%)

Total | 12,155 (32.7%) | 9,590 (60.3%) | 2,565 (-27.6%)

been fixed, the three classes occur now, but similar to Timeout had no
patterns preventing them.

The third-largest group, Illegal State, originally the largest, occurs in
only 3.4% of the population instead of 21.2% in the baseline. While the
identified anti-patterns are mostly prevented, not all of them are. This is
still a significant improvement. The originally second-largest group of
exceptions, lllegal Argument was completely prevented via patterns and
does not occur anymore at all. It seems that all reasons for this bug were
identified correctly, and KGGI now prevents them. The same goes for
Runtime which was successfully prevented, although this was originally
the second-smallest exception class.

Process crash without log is now also prevented completely. However, this
has nothing to do with patterns, but rather with applying fixes to the
communication code between the experiment runners of the Amaru
framework. This is the same reason why Process crash without log now
occurs with 5.4% less frequency. Together with the Exception not serializable
class, which still rarely occurs, these three classes were fixed manually as
they had nothing to do with the actual ASTs being tested or with applied
patterns. The group Exception not serializable was only partially caused
by a transmission error, as there were real bugs also causing the same
exception type.

The results for the remaining exception classes are inconclusive concern-
ing the application of patterns. Index out of Bounds as well as Arithmetic
are the only two exception types where patterns were identified and
applied, yet the exception now occurs more frequently than before. In
the case of Index out of Bounds no anti-patterns were prevented, but rather
positive patterns were applied. In the bug mining experiment it was
already asserted that the positive patterns only tackle a symptom, e.g.,
how the read or write for the array is being generated, rather than the
actual problem, which was that the variable being read was previously
assigned a value outside the range of the array. In the case of Arithmetic

6. EXPERIMENTS
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Figure 6.21: Median run-time performance distributions of all ASTs in one experiment. Shown are representatives per group. Cube root for
math (left), Shaker Sort for sort (middle), and Fully Inlined for neural networks (right).

this is likely the same reason why this bug now occurs more often. While
the division and mod by zero exceptions are prevented via patterns,
ASTs were generated that either read 0 from a variable, or have more
convoluted sub-AST that produce a 0 as the divisor.

The final exception classes all now occur approximately half as often
concerning the percentage of the population, which means that the
applied patterns are still successful. Unsupported Specialization might still
occur, since the array data types can’t be successfully identified during
function calls. Class Cast may still occur for the same reason. The MiniC
node CopyArray is supposed to copy any array from the parameters of a
function call to the stack. However, since it is rather generic, it may also
just copy an array into a variable intended for a different data type or
array type. Finally, Null Pointer may still occur for the same reason Illegal
State still occurs. It is caused by reading an uninitialized array, which still
can happen even though the likelihood was decreased.

Run-Time Performance

All successful ASTs are profiled 200,000 times. This includes those
succeeding at every test case for math or sort, as well as those reaching
sufficient quality for neural network within a 1% margin. The following
information is presented, with the first 100,000 runs discarded and only
the second 100,000 used in the data. To restrict the benchmark time for
very unsuccessful ASTs the timeout was set to 5 minutes for the math
experiments and to 30 minutes for the sort and neural network experiments.
The best ASTs identified in the experiments are listed in Appendix A.

Over all runs a rather similar behavior for each KGGI experiment is
shown, at least for each individual experiment group. Figure 6.21 shows
one representative run-time distribution for each experiment group,
presented in bins. For all three, the majority of solutions has a run time
similar to the original.

In the math functions, there are additional outliers that have a far higher
run-time performance (around 20-30 ASTs). For square root java, this is only
one individual AST (448,000 nanoseconds vs 3,000 nanoseconds). Inverse
square root has an additional outlier group of 22 ASTs that significantly
outperform the baseline. Logarithm naturalis and Logarithm 10 have the
lowest range of run-time performances of only 60,000 nanoseconds and
71,000 nanoseconds respectively. Super root has 442 ASTs that had a
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timeout during profiling, meaning that the majority of generated ASTs
was significantly worse than the original (> 1.5 million nanoseconds).

The sort functions show a similar behavior, although the outlier group
with a worse performance is larger ( 100 ASTs). Quick sort hand 624
timeouts during profiling. Quick sort inlined had 280. In both cases almost
all of the AST did produce a timeout.

For all neural network experiments, the distribution deviates from math
and sort. One additional group is far more successful concerning run-
time, for every original individual in the experiment. However, both
outlier groups are relatively small, with around 2 to 3 ASTs each.

The identified distributions should be applicable for a differential mining
approach, as a sufficient amount of ASTs can be grouped between efficient
and inefficient concerning their run-time performance.

Most of the experiments achieve an improvement of the run-time per-
formance compared to the baseline. Table 6.16 gives an overview of the
peak performance (minimal measurement over 100,000 measurements)
as well as the median performance, which can be considered to be the
regular behavior of the AST. All the performances were compared with
the baseline via a Mann-Whitney-U test for parametric, independent
values, which all the run-time measurements are. Over the entire 100,000
executions, all the values have a p score of 0.0. To ensure that there is no
overfit, the tests were also conducted with 10,000, 1,000 and 100 randomly
selected samples of the entire 100,000 measurements. The only instance
where a p-value of more than 0.001 is achieved, is Square root - lookup
table with a value of 0.054 with 100, and a p-value of 0.185 with 1,000
samples. This means that except for this one instance, all performance
improvements are statistically significant.

In the math group, only Square-root java, and Square root lookup table are
not improved. With Square root lookup table there is an improvement in
the peak performance, but this can just be an outlier, as the p-value in
this group is the only invalid one. Inverse Square Root shows the largest
improvement of the group, with a 60% improvement. The function is
twice as performant, while having the same accuracy as the original
function. In all other functions, there is a minimal improvement of
around 5%. The performance, compared to the baseline, is shown in
Figure 6.22.

The sort algorithms already have a significant skew in how their per-
formance is, from the worst with emphBubble sort being more than
1,000x worse than Shell sort. All the algorithms that have a high run-time
are only slightly improved. The already highly performant algorithms
however improve their run-time by around 53% for shaker sort and by
around 82% for shell Sort, as shown in Figure 6.23. Quick sort inlined, as
well as selection sort do not manage to outperform the peak performance,
but have a significantly improved median performance. Merge sort is the
only sort algorithm that is not improved at all.

The neural network algorithms show the highest runtime improvement
overall in Figure 6.24. The worst improvement is Sigmoid with only 15%,
and most other variants show an improvement between 50% and 80%.
The greatest improvement overall is Swish with 99.83% improvement
over the original runtime. This means the algorithm would be 592x faster
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Table 6.16: Overview of the peak and median performances of the baseline AST and the best counterpart generated via KGGI. Percentages
are given compared to the baseline. (-) means an improvement, (+) means that the best found individual is worse than the baseline. All
values are given in nanoseconds.

6. EXPERIMENTS

Function Original | Best found | Peak Original Best found | Median

peak perf, | peak perf, % | median perf, | median perf, %

Square root - java 2,524 2,614 4% 2,553 2,647 4%

Square root - lookup table 25,348 24,957 2% 26,449 28,804 9%

Square root - regular 146,175 138,267 -5% 147,868 139,029 -6%

Cube root 228,447 216,090 -5% 231,039 217,273 -6%

Super Root 314,578 298,909 -5% 316,342 300,622 -5%

Inverse Square Root 191,028 75,480 | -60% 192,140 75,920 -60%

Logarithm 274,815 269,106 -2% 282,900 269,938 -5%

Logarithm Natural 513,065 510,345 -1% 549,841 510,745 -7%

Bubble | 2,895,883 2,693,669 7% 3,492,836 2,789,038 -20%

Heap 277,765 266,676 -4% 304,806 279,540 -8%

Insertion 2,779,711 2,664,799 -4% 3,382,195 2,760,911 -18%

Merge 298,180 409,756 37% 376,408 437,187 16%

Merge inlined 76,644 56,232 | -27% 83,477 60,620 -27%

Quick 1,179,138 1,125,290 -5% 1,297,887 1,174,222 -10%

Quick inlined | 1,090,232 1,114,813 2% 1,247,939 1,161,199 7%

Selection | 2,287,075 2,304,079 1% 2,772,077 2,355,165 -15%

Shaker 10,019 4,438 | -56% 11,762 5,580 -53%

Shell 34,104 5,881 | -83% 36,909 6,672 -82%

. Rectified | 154 476 747,061 | -48% 1,574,603 806,403 |  -49%
Linear Activation

Leaky Rectified | ) 317 | 367122 | -75% 1,564,061 394,223 | 75%
Linear Activation

Sigmoid | 1,472,688 1,249,746 | -15% 1,565,001 1,315,781 -16%

Swish 1,811,362 3,055 | -100% 1,924,867 3,166 -100%

Tanh | 1,586,832 864,352 | -46% 1,683,544 991,951 -41%

Fully Inlined NN | 1,920,321 381,592 | -80% 1,982,779 395,537 -80%

o NN w1th all 1,650,032 407,326 | -75% 1,718,321 429,988 -75%
Activation Functions

than the original, which is unrealistic. While the other algorithms may
be explainable due to overfit, Swish abuses an exploit. Since the training
data is passed to the function under optimization, this particular AST
simply returns the training-output instead of conducting the training.
This can be considered a severe overfit, which is a known problem in the
GI domain [110]. A detailed analysis follows in the next section.
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Figure 6.24: Performance of the synthesized neural network ASTs (orange) compared to the originals (blue).

129

6. EXPERIMENTS



6. EXPERIMENTS

130

6. Experiments

6.5 Mining of Performance Patterns

The final experiment in the series attempts to identify recurring patterns in
the domain of NFP - performance. The goal is to identify recurring patterns
that are either responsible for increasing the run time, e.g, inefficient anti-
patterns, or patterns that decrease the run time, e.g., efficient patterns.
Only such AST are mined, that are valid, meaning that they succeed
at every test case for math or sort, or are within a 1% margin for neural
network.

To ensure that the mining can be discriminative, every mining is con-
ducted with three different groups, depending on the identified execution
time over all ASTs over each group. This is done by grouping the executed
ASTs into quartiles. From the quartiles, the interquartile range (IQR) is
calculated (distance between 3rd and 1st quartile):

Efficient ASTs are those whose median execution time is less than the
median - 2 IQR. For all groups where this did not leave any efficient
algorithm, the lower limit was raised manually by reviewing the
ranges. This affected rectified linear activation, all sort and all math
algorithms except Inverse Square Root.

Inefficient ASTs are those whose median execution time is more than
the median + 2 IQR. For some algorithms, this had to be changed.
Heap sort, Logarithm Naturalis, and Super Root had the limit lowered
as there was no AST outside the range. For Square root - Java and
lookup table, Logarithm 10, and all remaining sort operations the limit
had to be raised, since the amount of ASTs was too high, obscuring
any pattern in the efficient groups.

Timeout ASTs that were so inefficient that their run-time profiling timed
out were added to their own group.

The experiment is conducted using the IGOR algorithm. Unlike the previ-
ous bug-mining experiment, the search space is much more manageable,
as only the succeeding ASTs which are discriminative in their run time
will be mined.

The experiment is conducted in three layers. For group and total the
ASTs are just combined from the individual analysis as described above.
Considering median and IQR would not make sense due to the large
differences in run time. Also, for those two categories the mining was
conducted twice, once with inefficient and timeout combined, and once
separated:

Algorithm Each algorithm is mined individually to identify patterns
which may be exclusive to the algorithm.

Group All algorithms in their respective groups math, sort and neural
network. The goal is to identify if patterns can be mined over
different algorithms, and if this would yield more generalizable
patterns.

Total All algorithms of all groups are mined together, to see if patterns
can be identified independent of a specific domain.

Similar to the bug mining experiment, all minings were conducted twice,
to analyze the effects of embedded vs. induced mining. Both minings use
the entire identified population in all experiments.

The experiment settings were:
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Pattern size is limited to 10 for induced and 6 for embedded. This had to
be done since several groups over the experiment consist of only
one AST, making all patterns of the AST significant.

Hierarchy is a data-type-independent MiniC hierarchy, only mining two
layers. Data-type-dependent, and abstracted (e.g. DoubleLiteral or
DTLiteral). To account for different loops, For and While loops were
combined to a general Loop.

Redundancy the strategy for redundancy reduction is closed, meaning
only the largest pattern containing sub-patterns survives.

Metric Two metrics were applied. Maximal contrast and maximal support.
Both were set to 0.8, or reduced to (n -1 / n) if less than 10 AST
existed in a group, to ensure that at least one outlier was always
allowed. For group and total, both metrics were set to 0.4.

Growth For the induced minings, the 9,000 most discriminative patterns
were grown every time the pattern size was increased. Due to
memory limitations, this had to be reduced to 3,000 for the erm-
bedded minings. The sizes are vastly larger than in the bug-mining
experiment, since the applied metric prunes more of the search
space.

Top N return Only the top 15 patterns according to the discriminability
metric were returned per group. This means 45 patterns for all
algorithms with a timeout and 30 patterns for all others.

Pattern Verification

After the pattern mining, the patterns were again manually analyzed
and transformed into machine-readable anti-patterns or patterns. Some
selected patterns were verified manually and dismissed if they did not
have an impact on run-time performance. This manual verification was
conducted via the verification mechanism outlined in Section 5.3. This
verification was attempted in two different ways.

Patterns that purely deal with one type of node, observed as pattern or
anti-pattern over different ASTs, were analyzed via a specialized mutator.
This mutator identifies all nodes of the given type, and replaces them,
leaving the rest of the AST intact. The goal of this type of verification
is to modify as few nodes as possible to only measure the impact that
one node type has on run-time performance. This direct replacement
happens over any AST that has been identified as successful in the KGGI
experiment suite, and has a run-time that did not lead to a Timeout.

In some cases a direct replacement is not possible. In this case the same
approach as during the bug-pattern verification is applied. One mutator
enforces a specific mutation point and injects the pattern at this point. All
attempts with this type of mutation are conducted only on the original
25 manually written ASTs.

The verification is done by performance profiling 100 ASTs. Only such
ASTs will be profiled that succeed at all test cases. The only exception
is if a AST produces a Timeout, which will automatically be counted as
verification for anti-patterns, or invalidation for patterns.

The confidence that an anti-pattern is responsible for the run-time
performance is measured by the amount of all timeouts plus all ASTs
that increased in run-time.
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Figure 6.25: Performance patterns regu-
larly occurring in loops. Performance is
impacted negatively (a - negative) if the
stop condition is set to a higher limit, or
improved if it is reduced (a - positive). If
the step size is reduced (b - negative) or
increased (b -positive) this has the same
effect. Often, invocations are used in the
stop condition (c - condition) or step (c -
step). All timeouts during benchmarking
can be explained by a specialization of d,
which is the call to random (c - special). In
some cases, mostly due to the crossover op-
eration in KGGI, loops are duplicated into
each other (d - negative), sometimes this
includes the a return, which has no nega-
tive impact on the run-time, but increases
the amount of dead code (d - positive).
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The confidence that a pattern is responsible for improved run-time
performance is the inverse, e.g., the amount of all ASTs that had a
decrease in run-time performance.

Identified Performance Patterns
Loop Related Patterns

Most of the performance patterns are tied to manipulation of the loop
conditions or step variables. All identified patterns are shown in Figure
6.25. The shown patterns are the manual reduction of a multitude of
ways these manipulations have been conducted. Different adaptions
have been found in almost all algorithms and groups, in both embedded
and induced mining. The loop patterns, working together with other
patterns explained below, are the core reason for almost all performance
improvements recorded.

First, the stop condition for a loop (a) is either raised, representing an
anti-pattern, or reduced, representing a positive pattern. Especially in the
case of sort algorithms, raised can also mean that a specific end condition
has been increased, since they often count down.

A rather similar pattern (b) does the same for the step size. Often, the step
size is dramatically reduced by conducting various arithmetic operations
with the step variable or other variables manipulated in the loop body.
The step size can also be increased, improving the run-time behavior.
This is also the reason for the drastic performance improvement of inverse
square root. Due to an oversight by the author, the inverse square root has



© o N o U A~ W

10

6.5 Mining of Performance Patterns | 133

* * *
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0 loop 0 loop loop
body condition condition body
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(a - math) (b - sort) (c - sort) (d - sort)

a too high loop limit, since the final operation returnl/x reduces the
reachable accuracy. The best solution for inverse square root simply halves
the amount of loop iterations (see Figure 6.22) as shown in Listing 6.3.

float invSqrt(float x) {

float result, h;

int i, tablePosition;

result = x;

for (i= 1; i+1+1<50;1i=1+1){
h = (result *x result - x) / (2 * result);
result = result - h;

}

return 1 / result;

}

This is often done in rather nonsensical ways, which is usual for results
from genetic algorithms [111]. These include unnecessary invocations (c)
in both the condition or steps, which can be considered a specialization
of the first two patterns (a,b). One further specialization is the call to
random() (c - special) in the condition. This pattern is responsible for
all timeout exceptions during benchmarking. The reason for this is that
random in C returns a value between 0 and 32,767, which rarely hits
the equality checks, or less than checks. This has a negative impact on
run-time performance, but since the likelihood is high that the loop is
conducted often enough to reach the desired outcome, most ASTs passed
the semantic validity checks.

The final group (d) occurs, likely because of crossover operations. A loop
is a child node of another loop, often conducting the same thing, such as
the entire training phase of neural networks conducted as a loop inside
the already existing training phase loop. This also sometimes occurs in
efficient solutions, but in this case the entire block is moved over, including
the return statement. This produces code bloat, with a large part of the
AST never executing, but does not impact the run-time negatively.

Patterns Exclusive to Algorithms or Groups

Some patterns are exclusive to one group. In the Logarithm Naturalis, the
performance improvement stems from an improved initial guess (Figure

Figure 6.26: Performance patterns in math
and sort. For logarithm naturalis the initial-
ization condition was improved to a better
guess in several ways (a - math). The sort
functions had their initialization condi-
tion (b - sort), or a specialized variable for
breaking (c, d - sort) modified.

Listing 6.3: Inverse Square root optimized
by reducing how often the loop is exe-
cuted.
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Listing 6.4: Shell sort is improved by
changing the initialization of h to 1.
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6.26 - a). While it was not explicitly found in Logarithm 10 it is assumed
that the performance improvement there is for the same reason. This
cannot be generalized into a pattern, but indicates good search positions
for math functions in GI. Finding the improvement of the start condition
as a pattern is interesting, since there is existing research in GI which
deals with the generation of good values for lookup tables [103, 104].

The remainder of specialized patterns are exclusive to the sort tests.
It always involves the manipulation of the core variable driving the
sort implementation. This was found in merge sorts lo variable, which
is also used in the variable initializer of the for loop (b). In shell sort
the h variable is initialized before the main loop (c), an example of this
is given in Listing 6.4. For heap sort, this concerns the index variable
(d) which is manipulated during the loop body and accessed in the
condition. In quick sort and quick sort inlined the top and p variables
are often manipulated. This is also the reason for the large amount of
timeouts in those two algorithms. The outcome for sort algorithms is the
same. Due to smart manipulation, the run-time performance is improved
significantly. However, if the sort was benchmarked with multiple inputs
this might not always improve run-time performance.

array shellSort(int x[], int len) {

int h, i, j, cont, tmp;
h =1;
while (h >= 1) {
// unchanged shell sort
b
return Xx;

General Cases

The following patterns, shown in Figure 6.27, mostly occurred in the
mining attempts that consisted of all algorithms in a group. They also
rarely occurred in specific algorithm settings.

Division (a) and multiplication (b) as operations occur in most ASTs.
However they occur far more often in the inefficient groups, especially
in math and nn. This is reversed for sort where both occur primarily in
the efficient group. Similarly invoke (c) frequently occur in the negative
groups, again the exception being sort where invocations regularly occur
in the positive space as well. The exception is chained invocations (d),
which are exclusive to the negative group. Most often two chained
invocations are identified, in specific algorithms they can also occur as
three chained invocations. The reason for all three is likely the same. They
are most likely symptoms of the already discussed patterns concerning
loops. All the patterns frequently occur as children of loop conditions or
variable increments. The likely reason why sort shows positive behavior
on the invocations is that some sort algorithms call helper functions that
were not inlined (quick sort and merge sort).

The final pattern that occurs frequently over all groups is double (e). This
is the only discriminative data type that was identified on a regular basis.
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(a) arguments
double
op
(b) (c) (d) (e)

Aside from string and char, which were excluded after the bug mining
experiment (and are still in rare cases identified as discriminative), double
is the only data type not used by the original algorithms that was not
excluded. Double is most likely another side effect, being discriminative
only because of where it occurs. Similar to all other patterns discussed in
this section, the double data type is overwhelmingly negative in neural
network and math, but mostly positive in the sort algorithms.

The pattern is fairly easy to attempt to verify, by replacing all double nodes
with their equivalent float version. Casts from other data types to double
are similarly replaced with casts to float, and cast from double to float is
simply removed. When attempting to prove that double was responsible
for the run-time performance changes, the results are inconclusive, with

a confidence of only 55% that the AST is more performant if using float.

Attempting to identify how much the run-time performance changes is
similarly inconclusive. The run-time performance increases on average

by +1%, with most outliers in the sort algorithms (+2% increase overall).

One outlier reduces its run-time by -37%, while others increase their
runtime by about +20%. The neural network suite ranges between + 6%
and -3% with a change of +0.14% overall. The math algorithms are the
only ones slightly improved, with -0.39% overall. This indicates that
double is in most cases irrelevant, as changes of only 1% or less is likely
just a statistically insignificant measurement noise. The larger outliers
may indicate that some double rounding errors are actually the cause for
the behavior in the loop stop conditions or increment statements.

Outlier Cases

The following patterns mostly concern outliers or patterns that were only
observed once over all experiments. These include some specific patterns
that were analyzed, such as the neural network neural network - swish or
math - inverse square root.

Variable Type Switch

One outlier in math - square root Java showed the pattern visible in Figure
6.28. This pattern was only discovered since this is the only outlier in the

Figure 6.27: Patterns occurring regularly
in most mining experiments as well as
the combined groups. The division (a) op-
eration and the math (b) operation are
identified as negative in math and neural
network. Invocations are similarly often dis-
covered as negative (c) and in some cases
chained invocations as well (d). The dou-
ble data type (e) is discovered generally
independent of the operation (addition,
division, ...) as negative, except for the sort
operations.
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Figure 6.28: Multiple writes of different
data types to the same variable have a
negative impact on run-time performance.

Listing 6.5: The only outlier in square root
Java changes the type of the variable x.

Figure 6.29: The swish outlier skips the
training phase and simply returns the
training output.

—
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algorithm group, meaning that the entire AST is discriminative. As the
only difference between the original AST and the outlier is that first a
char write happens to variable x, and then a float write happens also to
variable X, the anti-pattern was discovered. This is shown in Listing 6.5.
Due to the change of the primitive type that the frame slot x1 has, it is
likely that Graal cannot optimize the frame slot and thus has a much
worse run-time performance than the original solution.

float sqrt_java(float x) {
char x1 = (char) 0.2;
x1l = Xx;
return sqrt( x1 );

}

This might be the only generally applicable pattern identified which is
directly applicable to compilers. The pattern is irrelevant for strongly
typed languages such as MiniC. The issue only occurred since it can
be represented in the AST and was created via KGGI, but the parser
would not allow a manual creation of such code. In dynamically typed
"programming languages" such as Python or JavaScript this may be a
relevant pattern to look out for though.

Neural Network - Swish Outlier
The outlier in swish essentially uses an exploit to optimize 99.83% of

the run-time away. The simple outcome, as shown in Figure 6.29, is
that one single outlier AST returns the output. The actual AST is more

return
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complex, and the discriminative pattern that was found actually shows
an assignment of the training-output argument of the function call to the
output variable. The implementation simply replaced this assignment
with the training phase, meaning it actually conducts this assignment
1,000 times, before then applying the neural network’s uninitialized
neurons to the output data. As they are untrained, no weights were
assigned and no changes to the output are made, returning the unchanged
output data, as shown in Listing 6.6.

array nn_swish(int numTrainingSets, float outputl[],
float training_inputs[][], float training_outputs[]1[])
{

// prepare variables

const int numInputs = 2;

// train

for (n =0; n<1000; n=n+ 1) {
// output assigned from training output
// training phase is removed from loop
output = training_output;

// validate results
for (x = 0; X < numTrainingSets; x = x + 1) {

return output;

}

This essentially has the same outcome as the pattern shown in Figure
6.29. No matter how many test cases would have been used, the neural
network would always return the expected output. This shows a flaw in
the design of the experiment, and the test should have actually called the
already trained network with different tests than were used for training.
Another lesson that might be taken from the outlier, is that there are likely
easier ways to implement an XOR gate than training a neural network, as
the output has exactly that gate encoded.

Summary

The results of the experiment for mining performance-patterns has similar
indications for this research as the bug-mining experiments did. Most
patterns in the experiment were identified with induced and embedded
mining. Both minings have their merit. Embedded patterns are usually
more compact, and can identify locations that are far apart from each
other in the AST. Induced patterns typically show not only the pattern
itself, but also the location where the pattern most often occurs, but have
more nodes than embedded patterns.

All identified patterns can be applied to KGGI either with specific goals
of where to optimize, such as the loop condition, or initial guesses
for math functions. The generally occurring patterns, such as division,

Listing 6.6: Swish returns the training out-
put instead of training a neural network.
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multiplication and invoke do not produce verifiable results. This either
means that they are simply co-located patterns with the real reason the
AST was efficient or inefficient, or that there are larger patterns in relation
that need to be applied for a general optimization pattern.

The only pattern that may be generalizable to a compiler is the check
if a variable’s type changes on the stack or heap (see Figure 6.28). This
only concerns languages with dynamic typing, which MiniC is not. It
also stands to reason that languages with dynamic typing will already
have such a performance improvement in place. Nonetheless, attempting
a reproduction of the pattern in a dynamically typed language may be
interesting future work.

6.6 Threats to Validitiy

There are several threats to the validity of this work, concerning the
identified patterns, performance measurements and verification of bug-
and performance patterns.

The first threat to validity is the approach of testing. It is the selected
form of semantic verification of all ASTs as well as measuring their
run-time performance. This work uses the same approach as many other
works in the domain of GI and GP. For the math and sort benchmark
suites, a sufficient amount of tests has been selected. From the outlier
discovered in neural network - swish, it becomes clear that the neural
network suites may be insufficiently tested with just one test case. In
this instance, multiple test cases would not have changed anything, but
rather a split between training and test data should have been applied
as is usual when training a neural network. This had to be done as a
tradeoff between the available hardware and finishing the experiments
in a sensible timeframe, but puts in question the results of the third
experiment suite. The same can be said for the performance analysis. All
performances were benchmarked once, instead of with multiple different
inputs. This is again not unusual for performance evaluations [70, 107-109,
112]. Work in compilers compare themselves on benchmark suites instead
of single cases [58, 59, 62]. This work shows a significant performance
improvement over most attempted algorithms, similar to how compiler
related work shows their comparisons over benchmarks. However, for
each individual algorithm, there is no guarantee that it will not perform
worse than the original AST on a different input.

With the performance measurements, there is a threat to validity on the
hardware and the compiler. As all tests were conducted on the same
hardware; the performance distributions and measurements may look
differently on other hardware. The following settings applied:

Compiler Graal version 21.1.0 with Java 11 (11.0.11 64bit) were used.

Operating System Ubuntu 20.04.3

CPU A x64 12 core, 24 thread 4,600 MHz CPU was used. AMD Ryzen 9
3900X

RAM 128 GB DDR4 3,600 MHz. During pattern mining, at most 120 GB
were used. For KGGI each single AST evaluator was limited to 128
MB.



The final threat to validity stems from the verification of the identified

patterns. In this verification process, side effects are often unavoidable.

If, for example, it has been identified that the division operation has a
negative impact on an AST, ASTs must be modified to either remove
such an anti-pattern (expect better run-time performance) or inject the
anti-pattern (expect worse run-time performance). To maintain semantic
validity, this may require modifications of other nodes as well. This makes
it hard to determine if the division was the true reason for the run-time
performance decrease, or if the nodes often occurring together with this
operation are really at fault. In this work, this threat was attempted to
be mitigated by proving patterns only via mutation instead of addition
wherever this was possible. This was done to ensure that negative impact
is not only measured by new code that has to be executed.
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Related Work

This work combines and expands upon algorithms, techniques and
approaches from several distinct research fields. The following sections
summarize the state-of-the-art in these fields, and show how this thesis
distinguishes itself from existing work. To achieve this, related work is
analyzed in the following contexts:

Pattern mining in source code summarizes work that attempts to find
recurring patterns in source code. The work also categorizes recur-
ring themes, such as the approach taken (dynamic, static, hybrid),
representation mined (graph, tree, sequence), and domain being
mined (bugs, patterns, clones, ...). As a comparison to Independent
Growth of Ordered Relationships (IGOR) relevant algorithms in
this area are also discussed.

Genetic Improvement and Genetic Programming discusses work that
also attempted to utilize or identify patterns for or via Genetic
Improvement (GI) and Genetic Programming (GP). As a compre-
hensive survey on GI already exists, this analysis does not attempt
to categorize the related work as done in pattern mining, but sum-
marizes the survey by Petke et al. [29]. Some more recent work as
well as work that was not in the scope of the study is discussed in
addition.

Code Optimization for Compilers and Interpreters takesalookatcom-
parable techniques to GI that attempt to modify source code to pro-
vide additional benefit to existing compiler optimizations. Pattern-
related approaches for compiler optimizations are discussed as
well.

7.1 Pattern Mining in Source
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7. Related Work

7.1 Pattern Mining in Source Code

There is a wide variety of work on mining software on different topics,
such as mining the process of developing software [113], coding conven-
tions by developers [114, 115] or class relationships [116]. The following,
summarizes only such work that attempts to detect recurring patterns in
software, either with the target to localize defects, or to localize recurring
changes.

Work attempting to find known patterns in existing programs is also not
discussed, as it is not the focus of this work. Deniz and Sen [117] provide
an overview of the application of machine learning techniques to identify
patterns in the domain of multithreaded applications.

Defect prediction is a similar field, primarily utilizing neural networks,
semantic features and representations in the form of Abstract Syntax
Trees [118]. The field deals with answering if code is buggy, not where
the bug may be located. Patterns are also not identified. Thus, this work
is of scope for the work presented here.

Figure 7.1 shows the general categories the related work is analyzed in.
This encompasses the representation of source code used in the mining
process, the domain the mining is done in, and the approach to mining
being applied. The approach is split between dynamic approaches that use
information gathered at run time of the program, and static approaches
which only consider the source code itself. Hybrid approaches use a mix
of both.

Nguyen et al. [44] present a graph mining approach to detect semantic
code change patterns. They mine 5832 GitHub repositories and conduct
an in-depth analysis of 88 of these repositories, with several million
lines of code. The mining utilizes a Program-Dependence Graph, e.g.
a graph that contains both the control flow and the data flow at the
same time, covering the semantics of the code in addition to the syntax.
From mined code changes, they create a pattern consisting of a before-
change graph mapping to an after-change graph. These patterns are then
mined iteratively by growing the patterns and matching them to each
other via isomorphism. They achieve a high performance by utilizing
a greedy function, where only the most frequent extension of a pattern
is considered during the growth phase. Previously, the same authors
have mined patterns only via the control flow [47]. This work has later
been extended into a statistical language that enables suggestions for
code completion with 75% accuracy. In their work they also show the
importance of normalization of ASTs, i.e. labeling variables and literals
as well as special values such as null and empty strings or the number
zero [48].

Balanyi and Ferenc [50] start off a research series where they define
the Design Pattern Markup Language (DPML) which is an extensible
markup language (XML) based description for design patterns. The core
focus of their work is mining patterns that overarch multiple classes.
The patterns are grouped into creational patterns (i.e. patterns creating
objects), structural patterns (i.e. patterns in the composition of a class
or object), and behavioral patterns (i.e. covering the interaction between
classes). In later work [119] they introduce a graph-based refactoring
for C++ source code. They also show, via the mining of anti-patterns,
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that there is a strong correlation between anti-patterns, bugs and the
maintainability of software [51, 120, 121]. This is done via the Columbus
pattern mining tool which utilizes a Language Independent Model (LIM),
a graph format representing classes, methods, attributes and other source
code representations. This model is enhanced with an additional graph
containing various source code metrics correlated via decision trees with

anti-patterns.

Ofner and Bshm [38] discuss mining defects in multithreaded programs.
They introduce concepts to extend Dynamic Call Graphs with temporal
edges that allow the representation of calls over multiple threads. They

Control
and Data

Flow Graph Frequent Simplified
[40, 44, 47] Closed Parse
Method Partial Tree [41]
Blocks Order [31]
[37, 48]
Abstract
Syntax
Call Graph Tree [49]
[37, 38, 45]
Class Rela- Graph
tionships
[50, 51] Reduced
Call
Call Tree Tree [2]
Tree [30]
Control Multithreaded
Flow [38]
Graph [39]
Representation
Crosscutting Defect
Concerns Localization
Sequence [42] [2, 39, 45]
[34, 42,
43, 46] Code
Recommen-
dations
[41, 48]
Pattern Mining Domain
Function
Calls [2,
37, 38, 45]
Code
Clones [40]
Method
Blocks [37 .
ol Dynamic
Code
Ch 3
Improve- Patterns pam;:ng]
ments [43]
Approach
API Patterns Design
[31, 34] Patterns [50]
Bug Patterns
[37, 46, on
: 19, 51] ject
Hybrld Execution Usage
Traces [47] Patterns
[47)
Static
Function Function
Calls [31, 34] Calls [46]
Source
Code [39- Code
42, 48-51] Patches

[43, 44]

143

Figure 7.1: Related work in pattern mining. All related publications are categorized in the used source code representation, domain the
approach is applied in, and approach used to gather the information being mined.
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categorize call graphs in two separate sets, failing and succeeding. Via
distinct pattern mining, they use the Information Gain metric with
closed frequent subgraph mining to identify suspicious subgraphs and
manage to identify multiple concurrency bugs. Like other dynamic
approaches, their work has to deal with so called Heisenbugs [122], bugs
that disappear due to their approach of instrumenting.

Acharya et al. [31] mine API pattern usages from source code. This is
a widely researched domain that is only slightly related to the mining
of source code presented here. [31] is interesting as related work as the
authors conduct a static analysis of function calls, i.e. they analyze the
source code and create call sequences from it. These sequential traces are
then analyzed with frequent subsequence mining and are combined into
a Frequent Closed Partial Order Graph, expressing frequent call orders
of functions in a program. The work shows the issues of static analysis
of code which produces many infeasible traces that won't occur during
execution, but also advantages of scalability and removal of set-up costs
as no code needs to be executed or made executable.

Qu, Jia, and Jiang [40] introduce a staged mining approach to find cloned
code in software systems. They apply a spatial pattern search on a
program dependence graph (PDG) via rearranging and encoding. Only
on matched patterns that have been detected via the spatial search, a
second graph-based approach is used. This second step uses isomorph
graph mining, and thus greatly reduces the amount of false positives that
would occur from only using spatial search. [40] compare themselves to
five other approaches, showing that they need less manual preprocessing
in the source code to attempt mining, and also find significantly less
false positives (1 vs. 7 of the next best) and false negatives (2 vs. 10
of the next best), while also having a lower average run time. Their
combined approach reduces the inherent issues of the NP-complete
subgraph isomorphism, which requires exponential runtime to solve,
while also reducing the large amount of false positives that spatial search
produces.

Luan et al. [41] also follow a staged mining approach. The authors imple-
ment code recommendation using structural code search in four different
programming languages. They use a simplified parse tree, similar to an
AST, that is based on keyword tokens, and simplification of variables
and interactions between them. From this they conduct a featurization
on which an initial highly performant search for structurally similar
candidates is conducted. In a second step, candidates are pruned via a
greedy algorithm and are re-ranked for similarity with the original code.
The ranked candidates are then clustered into groups and intersected
with each other to provide meaningful snippets around the originally
searched code. Even though [41] utilizes a tree representation, the al-
gorithm does not use pattern mining. For both the pruning and the
intersection of snippets, a greedy algorithm is utilized that can lead to a
loss of candidates but is more efficient than frequent subgraph mining.
[41] also determined a good similarity score threshold for meaningful
patterns. This was done by manually labelling code snippet tuples to be
similar or non-similar. From this, they applied their scoring algorithm to
the manually labelled items, showing that there is a significant statistical
difference in both groups.
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Ishio et al. [42] apply mining of sequential patterns to identify cross-
cutting concerns in software. For this, they modify source code into a
sequence of tokens. For example, an if-then-else block with opening
and closing brackets is resolved into IF, ELSE, END IF. This sequence
is then mined for patterns occurring in sequence, focusing on method
calls that occur together. The limitations of a sequential approach are
the size of the found patterns, and, due to the mining approach, that
patterns occurring often in fewer methods may get filtered out. In later
work [43] the sequential mining is expanded by more normalization,
enabling the mining of code improvement patterns and their trends over
time by comparing code patches.

Wang et al. [34] introduce two quality metrics for mining API usage
patterns. These are succinctness, i.e., explaining usage with as few
patterns as possible, and coverage, i.e., explaining as much of the API
as possible. They improve both of these metrics by a staged mining
approach similar to [41]. In a first Mining step, the BIDE algorithm is
used to mine frequent closed sequences. These are then clustered with
n-grams to measure similarity of sequence tuples and to cluster them
around centroids with a minimum similarity threshold. These clusters are
then consolidated into patterns. While the mining approach appears on
sequences, the resulting patterns are shown to developers as probabilistic
graphs of which path in a source file is likely to be taken.

Hanam, Brito, and Mesbah [49] utilize an unsupervised machine learning
technique to discover bug patterns in JavaScript. This is done by mining
change commits from GitHub and comparing the original and the
changed ASTs of the source. These are then converted into a feature
vector based on the code size (lines of code) and basic change types
defining changes and context. Based on these features, a clustering and
ranking is conducted. The patterns are not grouped into an AST etc. but
rather analyzed manually.

Livshits and Zimmermann [46] introduce DynaMine, a tool to detect
patterns and pattern violations in source code. This is done via a combina-
tion of static and dynamic code analysis. Source code revisions are mined
into sequences of function calls, of which patterns are mined. Interesting
patterns selected by a user are then instrumented and executed, recording
violations in the process.

Di Fatta, Leue, and Stegantova [2] introduce discriminative pattern
mining, i.e., the concept of splitting the data set being mined into multiple
sets of failing executions, passing executions and specific neighborhoods.
Their approach utilizes Reduced Function Call Trees, which contain the
function call traces, and reduce multiple calls of the same function to 0, 1
or 2, whereas 2 stands for any amount of calls. Based on this approach,
they identify suspicious function call patterns and apply a ranking on
each function implying the likelihood that the function is containing a
bug.

Cheng et al. [37] also utilize discriminative pattern mining. They do so
on two different representation levels, the call graph between functions,
and the basic blocks of a method. Even though their approach does not
mix these representations but rather mines each separately, they call this
representation a Software Behavior Graph. In their work, they show the
high performance of Discriminative Graph Mining via LEAP search [36]

145

7. RELATED WORK



7. RELaTED WORK

146

7. Related Work

as the approach ranks patterns via the Information Gain metric and only
continues growing the search space for the top n-ranked patterns. Their
work shows that the representation granularity is important as they find
different bug patterns via call graph or basic block.

Liu et al. [45] present a classifier to detect non-crashing bugs, i.e., bugs
that are identified through a failed test instead of a run-time exception.
This is achieved by conducting discriminative subgraph mining on a
given set of correct and incorrect runs, represented as a graph of function
calls. They utilize mined frequent subgraphs in a Support Vector Machine
(SVM) to classify subgraphs that are likely to be the location of a non-
crashing bug. The subgraph mining itself is done via the CloseMine
algorithm, an extension of the CloseGraph algorithm, by adopting a
naive search order that enables skipping parts of the search space to
speed up the mining process.

The presented related works show that software has been mined for pat-
terns in most conceivable representation forms with different approaches.
The discriminative pattern mining approaches are the closest to our work,
which is also based on discriminative pattern mining, extending it to
multiple categories. The primary advantage of our approach over the
related work is the application of a mining with a representation that is
native to compilers and interpreters, namely Abstract Syntax Trees (ASTs),
in addition to using information directly available from the compiler and
interpreter. This work also shows how these patterns can be verified with
a confidence metric, in both the functional and Non-Functional Property
(NFP) domain of run-time performance, which is the first of its kind.

Algorithms

Frequent Subgraph Mining Algorithms are generally categorized into
two core concepts. The Apriori algorithms generate all subgraphs of size
n, select relevant subgraphs according to a minimum support threshold,
and then generate all subgraphs of size n+1 containing these selected
subgraphs. Pattern Growth algorithms work on a similar basis, but
instead extend only frequent subgraphs until the subgraph becomes
infrequent. In general, pattern growth algorithms perform better than
apriori algorithms, as they only extend the search space in relevant areas
[87]. The following shortly summarizes the algorithms shown in Figure
7.2 used in the studies above. Such a summary is also available by Jiang,
Coenen, and Zito [123], albeit with a broader view on the topic. Our
summary has a focus on algorithms used in the domain of source code
mining.

Agrawal and Srikant [32] introduce the original Apriori algorithm in the
context of mining association rules in large databases. Many adaptions
of this algorithm exist, such as the Apriori-based Graph Mining (AGM)
algorithm [129].

Ester et al. [53] define a clustering-based approach to mining recurring
samples in a database. This is done by calculating a density according to
which graph data is clustered. This does not discover frequent subgraphs,
but is an alternative way to discover patterns, as was done by Hanam,
Brito, and Mesbah [49].
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Asai et al. [33] introduce the FREQT algorithm, an extension to the
Apriori algorithm to mine frequent-order tree patterns. The algorithm
improves its efficiency by always conducting a rightmost expansion. Pham
et al. [130] expands this work with FREQTALS introducing additional
constraints. They require a minimal pattern size to ensure that a pattern
is sufficiently large to be usable and to provide it in a context the pattern
can be applied in. Additionally, they consider the type of nodes, i.e., the
labels such as TypeDeclaration or Block, to exclude patterns that naturally
occur due to a languages” grammar but do not provide developers with
new information. These labels are also used to enforce valid root nodes
for a pattern, or for pruning irrelevant paths.

Yan et al. [36] define the LEAP algorithm, which works by taking ad-
vantage of the fact that significance metrics such as information gain
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correlate with the structural similarity of patterns. They provide two
concepts to use LEAP. SLEAP (structural leap search), and fLEAP (fre-
quency descending mining). In their work, the authors show that LEAP
outperforms branch and bound algorithms.

Henderson and Podgurski [39] introduce, Score Weighted Random Walks,
for localizing faults in code. This is done by providing two groups, passing
and failing tests, and constructing control flow graphs in an algorithm for
the test sets. Both of them are mined by random walk with several metrics
enabling the guidance of the algorithm to find sub-graphs that show a
difference between the two test groups. The algorithm outperforms other
subgraph-mining algorithms such as CORK [35] and LEAP [36] and find
more relevant patterns for behavioral fault localization.

Nguyen et al. [47] introduce PattExplorer, which follows a simple pattern
growth process by mining patterns of size 1 and then iteratively increasing
the size by 1 only in patterns that occur frequently. They tackle graph
isomorphism via vectorizing the nodes and edges in a graph.

Yan and Han [126] define the graph-based Substructure pattern mining
(gSpan) algorithm, which is neither an apriori nor a pattern growth
algorithm. gSpan instead works efficiently by mapping all graphs into an
encoding built up by depth first search. It then uses these encodings to
identify frequent subgraphs via a depth-first search, instead of iteratively
growing the entire search space.

Thoma et al. [35] define a correspondence-based quality criterion (CORK)
that integrates with gSpan, presenting a speed-up of gSpan and improv-
ing the accuracy measure of presented discriminative subgraphs this is
done by selecting and utilizing features to be used for expanding the
patterns. It has some disadvantages as well, such as requiring smaller
pattern sizes to be pre-mined to produce the speedup and requiring
minSupport to be sufficiently high to provide a payoff between the feature
calculation and the reduction produced by those features.

Wang and Han [128] introduce the BI-Directional Extension (BIDE)
algorithm. It mines frequent closed sequences as opposed to mining
frequent patterns. A closed sequence is a sequence that is maximal in the
sense that no larger enclosing sequence exists with the same support. The
advantage of closed sequence mining is that the redundancy of patterns
is deceased compared to mining all frequent patterns. BIDE achieves this
efficiently by pruning the search space via backwards extension after the
growth phase.

Pei et al. [127] define the PrefixSpan algorithm, which is an extension
of FreeSpan [52], an algorithm devised by the same authors. FreeSpan
mines patterns in sequences by using a projected sequence database
that guides the search and reduces effort during sequence generation.
PrefixSpan expands upon this idea by using a prefix list, where each
prefix in the list has its own projected postfix database.

Zaki [30] defines the SLEUTH algorithm, an improvement of TREEM-
INER by the same author [124, 125]. Among all discussed algorithms,
SLEUTH is most comparable to IGOR. SLEUTH is a pattern growth
algorithm specialized for the mining of trees in an embedded unordered
way. While it conducts mining in an unordered way, which in general
is more run-time intensive than ordered mining, SLEUTH is still highly
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performant even though it generates all possible subtree mutations. This
is achieved by an efficient string encoding of the patterns, which allows
for fast injection during the growth phase, combined with a scope list of
possible extensions stored in a database.

The primary differences between SLEUTH and IGOR are that IGOR
supports both induced and embedded mining. SLEUTH on the other hand
supports unordered mining, while IGOR only supports ordered mining.
As shown in Chapter 6 ordered mining is important for identifying
patterns on the granularity of AST representations, since the relationship
types (e.g. loop condition vs. body) are relevant.

7.2 Genetic Improvement and Genetic
Programming

Gl in the context of this work was selected as a basis to identify patterns in
source code RQ!. This was done explicitly, as GI often attempts to improve
the NFPs of software. As these NFP are typically part of the fitness
function, this also allows our work to be based on accurate measurements,
working on executable code, instead of inferring these values second hand,
as would be possible by mining software repositories and attempting to
find patterns in this area. Alternatives in this goal would be synthesis
approaches [131, 132] or program translation approaches [133]. Synthesis
approaches usually attempt to generate new code instead of improving
upon existing one. Program translation attempts to map a program from
an input to a similar output. These methods do not provide the desired
results, which are multiple versions of the same program with different
ASTs that allow the mining of recurring patterns influencing the NFP.

Related work in Gl is summarized by Petke et al. [29] in "Genetic Improve-
ment of Software: a Comprehensive Survey". The survey identifies 3132
publications between 1995 and 2015, analyzing 66 core GI publications
in detail. Before discussing some additional publications, a summary
of this survey is provided. The survey outlines the origins of Genetic
Improvement, beginning with Program Synthesis and GP moving via
Search-Based Software Engineering (SBSE) towards GI. This shift pri-
marily relates to not generating new functionality (GP), but instead
improving or repairing already existing functionality (GI). What remains
similar over the domains, and the 20 years analyzed in the work, is
that testing and validation remains the primary method of validating
semantic correctness. An interesting find of the work is that modifica-
tions by GI consist of fewer than six lines of code, often being minor
modifications. This also resembles the results of our work, with many
anti-patterns preventing mutational-bugs in the compiler consisting of
just a few nodes.

Petke et al. [29] in their survey defined their search by four primary
requirements. 1) that metaheuristic search is used (not necessarily a
genetic algorithm), 2) that variants that do not preserve semantics can be
produced during the search, 3) that existing software is used as input and
4) that modified software seeks an improvement over existing software.
This also summarizes the goals of GI quite well. The trend of GI not
necessarily utilizing genetic or evolutionary algorithms continues past

RQI: How can recurring patterns be iden-
tified that impact or improve a functional
or Non-Functional Property?

7. RELATED WORK



7. RELATED WORK

150 7. Related Work

GIN: GI in No Time https://github.
com/gintool/gin

1: Python General Frame-
work  for  Genetic Improvement
https://github.com/coinse/pyggi

the survey’s scope. For example, the GinTool“N utilizes a local search
algorithm [70, 109], and so does the PyGGI1 framework [107, 108].

The fitness function utilized in GI is in all cases of the 66 core papers
utilizing test cases, though the granularity is utilized differently. In the
simplest case it is just counting the passing or failing test cases, while
more fine-granular functions instead use a distance metric from the
desired results [29]. This is also the approach taken in our work. Petke
et al. [29] identify an open issue in the characterization of test suites, in
how to best utilize them to guide towards improvement of NFP. However,
a correlation exists between coverage and the successful identification
of software repairs. In our work, utilizing the fitness functions was
attempted to continuously increase pressure on the fitness function, and
thus on the search space, though the results were not promising (see
Section 3.3).

The primary types of applications identified by [29] focus on software
repair, e.g., fixing bugs. Program correctness is in this work often consid-
ered a NFP. Run-time performance is the second largest area, together
with software repair, making up almost two thirds of all papers in
the study. The remainder of work deals with parallelization, energy
consumption, generating new functionality from existing ones, such as
evolving inverse square root out of square root [102], slimming down code
size, reducing memory consumption and specializing code for specific
hardware. Research in all areas rarely uses multi-objective optimization,
which is an open issue in the domain, instead combining all fitness values
that are attempted to be optimized into one fitness function. Harder
to measure NFPs have an issue in the fitness function, where research
typically attempts approximation instead of actual measuring. Our work
also utilizes a fitness function that does not combine multiple objectives.
However, approximating run-time performance based on the given AST
is problematic as the AST is modified by the compiler optimizations
in a derived representation, and running every individual in the GI
population for 200,000 repetitions, without influence from other threads,
to achieve accurate measurements is too costly during the GI run. Thus,
we chose to only measure the accuracy instead of measuring the run-
time performance during the GI experiment. The run-time performance
of all successful variants is measured after the execution of the entire
experiment.

Only three different representation forms utilized in GI are identified by
Petke et al. [29]. ASTs, or similar variants, are the most common form of
parsed variants in GI. The other two variants are byte code and source
code utilized as text. Considering the previous section on pattern mining,
both of these representations would be treated as sequences. Graphs
are not considered in any of the publications analyzed, also identifying
possible future work.

Only one related work is known to the author, that deals with working on
genetic improvement at the compiler level, which was published the same
year as the first publication of this thesis. Yoo [134] published a position
paper suggesting to apply GI directly at the level of the programming
language, citing advantages such as ability to measure objectives, such
as memory consumption, more easily and allowing more pervasive
control of the program state. Further publications by Yoo introduce the
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PyGGI framework [107, 108, 135], which allows line-level or AST-level
mutations independent of a programming language. However, their
work concentrates more on the language and not the compiler or the
run-time environment. In comparison, our work uses access to the run-
time-representations such as the stack and the heap, or to lower-level
representations directly used by the compiler, such as the Truffle AST.

Mutation and Crossover Operations

There is a difference in how current research in GI applies its metaheuris-
tics, compared to our work with Knowledge-guided Genetic Improvement
(KGGI) (see Section 3.4). Our syntax graph that enables creation of an
AST more closely resembles the traditional approach of creation using
the mutation operation as seen in genetic programming [14, 68, 136], and
earlier GI work [18, 137]. The plastic surgery hypothesis by Barr et al. [24]
instead suggests grafting donor code from other parts of the software into
the currently optimized piece of software. In a similar manner Schulte
et al. [12] identified just three mutation operations applied to an AST,
copy, delete and swap. They noted that using this mutation operation 37%
of mutants had no effect on the functionality of the mutated AST given
a test suite that verifies the functionality, thus asserting the mutational
robustness of software. These findings still seem to be the state-of-the-art, as
more recent research still utilizes similar operator sets. GIN for example
uses three edit types on lines, statements and constrained statements,
all edits being of the groups delete, replace, copy, swap or move [70, 109].
These operators find their success because they produce fewer exceptions
compared to previous research using GP methods. The GP methods
found up to 80% of their individuals failing during compilation or at
runtime [8, 9, 26], because mutations introducing new code often created
exceptions such as attempting to read variables not yet initialized.

This poses the question of why we did not utilize the more recent
mutation operations suggested by literature. The older type of mutations,
replacing statements with newly generated sub-ASTs is a valid option.
Schulte et al. [12] and Kinnear [106] both showcase their work on sorting
algorithms ([12] expands with other algorithms). However, [106] manages
this with mutating between 6 and 8 operators and operands in 4 different
experiment setups. Likewise, Orlov and Sipper [26] successfully show
their work on 6 experiments with 6-20 operators and operands available
during the executions. This goes on to show that our form of mutation,
while not being the state-of-the-art, is still a valid one. The underlying
issue is the high failure rate of ASTs, and likely, why new types of
mutation with a lower failure rate became popular. This is solved in
our work via KGGI. As shown in Chapter 6, the introduction of anti-
patterns and patterns can successfully lower the number of individuals
failing, increasing the diversity in the population and reducing error
rates. Modern Gl relies less on the crossover operation, which naturally
conducts the replace, swap and copy operations. In some cases, the
crossover can delete as well, albeit only by replacement with a (smaller)
AST. The advantages of these options are still existing in our research, as
a crossover is still utilized. The major reason mutation and crossover is
solved as described in the thesis, is that mutation purely attempting to
move, duplicate or delete existing source code would be less useful to
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identify patterns. As most of the source code will relocate statements,
fewer sub-ASTs will become discriminative, not allowing to identify novel
patterns. In addition, the new type of GI closely resembles code motion,
an already existing technique in compiler optimization, discussed in
Section 7.3.

Previous Applications of Pattern Mining in GI and GP

Le Goues et al. [138][139] describe GenProg, a tool for automated software
repair. GenProg itself works similar to other GP and GI frameworks such
as GIN and PyGGlL. It was designed to automatically fix bugs in software
using genetic programming, utilizing ASTs and a fitness function based
on passed and failed test cases. GenProg utilizes a genetic algorithm as
search, with the mutator working on the statement level, either inserting,
deleting or swapping statements from other parts of the source code.
As crossover, a one-point crossover is used. The crossover happens at a
weighted path, where the weight is defined as how often the statements
are reached during execution. GenProg itself does not work with patterns.
Kim et al. [111] compare their approach to GenProg. The authors note
that GenProg can produce rather nonsensical patches that would not be
accepted by developers. The authors instead manually analyze 60,000
human-written patches, identifying six core patterns that are responsible
for 30% of bugs. They use these patterns in a Pattern based Automatic
program Repair (PAR) approach, and go on to evaluate it on 119 bugs from
open source projects. PAR successfully solved 27 of these, while GenProg
only solved 16. Their work shows that pattern-based approaches can
be more successful than Gl itself, and also that their identified patterns
are more accepted as they are hand-curated and thus understandable
for developers. In our thesis, we hope to bridge this gap by identifying
recurring patterns automatically from GI, filtering out nonsensical fixes
in that way.

Jonyer and Himes [140] apply pattern mining during GP runs to find
commonly recurring substructures in the individuals of the population
that have a high fitness in regular intervals. The substructures identified
as common are compressed into one node in the subgraph, to ensure
easier re-use during subsequent crossover or reproduction. They do not
apply mutation in their experiments. Patterns are used in their work to
reduce the AST size to manageable levels, while also encouraging high
performing substructures in the population. Their results show that this
method reduces the needed amount of generations until a valid solution
is found significantly.

This type of mining patterns to identify recurring substructures was also
conducted by other authors. Langdon and Banzhaf [141][142] identify
recurring patterns in an individual AST, instead of mining patterns from
the entire population. They find that often the same sub-AST occurs
multiple times in the same tree, and suggest that GP is successful in
creating ASTs that are quite large but are made up of just a few repeated
genes responsible for the fitness in the way they are put together.

Recurring substructures were also used as semantic building blocks by
McPhee, Ohs, and Hutchison [143]. The authors do not trace the syntax
of the given AST, but instead the semantics of what the AST does, in a
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boolean operator search space. With this they manage to find out that
crossover operations have a high chance (approx. 75%) of not changing
the semantics of the code at all, and thus not contributing to the search in
the semantic space. This concept of building blocks being tracked by their
semantics was also utilized to trace the genetic diversity and genealogy
throughout entire GP runs [144-146]. The purpose of this ancestry graph
was to analyze the impact genetic operators have on the search space and
thus on the quality of the resulting AST. The work was also extended to
trace and visualize the genealogy of building blocks through GP runs
via a graph database [147-149], similar to how our work uses a graph
database to store GI runs to later mine recurring patterns.

Tracing the genetic genealogy was also conducted by Burlacu et al. [150],
to help get an understanding of how genetic fragments, e.g. sub-ASTs,
are introduced into a search space and then propagated throughout the
generations of evolution. The goal of their work is to use this genealogy
information to guide the search of which building blocks should be
preserved during the run. In this area of research, Burlacu et al. [151]
also introduce a hashing algorithm that allows identifying ASTs or parts
thereof. They currently drive the diversity of the population via these
hashes by introducing a distance metric on the hash representations
of the trees. In a similar vein, our work applies a bit representation of
ASTs to identify a generalization or specialization between patterns (see
Section 4.5).

In a similar vein to patterns, Petke [152] proposes the use of source
code templates in genetic operators. These templates are proposed to be
mined from software repositories, and could entail software fragments,
program conditionals or variable ranges. Upcoming work by Callan et al.
[153] expands upon this proposal by mining NFP related commits and
categorizing them by the property being improved according to the
commit message, such as run-time performance, network use or memory
consumption.

Comparable to the suggestion of templates is the suggestion by Cody-
Kenny, Fenton, and O’Neill [154] to re-use information identified during
the GI search process and to use it as bounding information. The authors
suggest doing this via data mining, treating the information recorded
during runs as big data. Unfortunately, no further research by the authors
in that vein beyond the position paper is known. KGGI (Section 3.4)
works similarly, restricting the search space by upper bounds, and storing
the entire search space for later mining of patterns. The upper bounds
on requirements currently are only restricted via approximation that
has been taken from performance measures (see Chapter 10), and does
not utilize big data analysis as Cody-Kenny, Fenton, and O’'Neill [154]
suggest.

Krawiec and Swan [155] suggest a different use of patterns. Instead of
attempting to identify recurring substructures in the source code, the
authors attempt to identify recurring patterns in the data input and
output. From this data, they replace the traditional fitness function with
a decision tree that guides the fitness function. While our work does not
deal with patterns in the same way as Krawiec and Swan [155], it may be
interesting future work to identify the relation of AST patterns to input
and output patterns.
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7.3 Code Optimization for Compilers and
Interpreters

There is a wide variety of optimizations available in compilers and
interpreters [4], and a number of publications on the optimizations
happening in the Truffle language and Graal compiler [61, 62]. This
section concentrates primarily on optimizations that are similar in nature
to this work. This concerns using patterns to modify source code for
NEFP, or automated bug fixing, only at the compiler level, as patterns
themselves were discussed in Section 7.1. Techniques which may seem
similar to GI, such as superoptimization [156] or code motion [13, 157] are
also discussed. Explicitly not discussed are methods that use machine
learning to improve existing compiler optimizations, such as using GP to
create heuristics for optimizations [158-160] or unroll factor prediction
[161].

Application of Patterns in Compiler Optimization

A notable compiler that utilizes patterns is LIFT FT. LIFT defines a
functional programming language which uses rewrite patterns to deploy
source code to multicore CPUs and GPUs, and utilizes hardware-specific
optimizations. Since LIFT aims primarily to optimize parallelizable code,
the applied rewrite rules concentrate on transforming the high-level
source code into the low-level code executed on specific hardware.
These rewrite rules are kept generic, so they can be applied in different
sequences to achieve speedup by rule reordering. Some rewrite rules
are specific to a target platform, such as rules specialized for OpenCL or
field-programmable gate array (FPGA), achieving even more throughput
than the more generalized rules [162]. LIFT itself is based on an AST
which consists of expressions and lambdas. The rewrite rules transform
these nodes to different nodes, manipulating the AST structure.

Recently, the authors of LIFT began to apply Deep Neural Networks
(DNNps) to generate rule pipelines. These pipelines are a sequence of rules
which are used to optimize source code for a specific hardware [163]. LIFT
is not the only compiler which applies patterns on AST representations.
Other examples are DELITE, which utilizes patterns to transform an
intermediate representation (IR) of the source code to a specific CPU or
GPU with a focus on parallelization [164]. Another example is Halide,
which focuses on image processing pipelines. These pipelines are defined
as algorithmic patterns, which are then chained together into a pipeline
[165]. PADS is another compiler specialized for stencil operations often
used in image computation. PADS optimizes source code with a pattern
matcher in the parser and applies tuning to matched patterns [166].

All of the above examples are from the domain of functional programming.
Pattern matching and rewriting is used outside the scope of functional
programming, but this work mainly discusses design patterns [167]. One
application of pattern matching, also with the goal of applying rewrite
rules to source code in object-oriented programming languages, is TOM
[168]. TOM is a domain-specific language (DSL) written in Java, and is
used to match source code patterns which are rewritten via rules defined
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in TOM. The work does not utilize the compiler, however, and can be
more considered a preprocessor for source code.

One other noteworthy compiler, which does not utilize patterns, is
MilepostGCC [169, 170], which is a compiler designed for research
purposes. The primary goal is to create a modular compiler, which is
self-optimizing when ported to a new hardware platform. The compiler
adjusts its optimizations for a specified set of targets such as execution
time, compilation time or code size. While Milepost GCC does not
consider patterns, it features a compilation interface integrating with the
compilation steps, which enables making compiler internal information
available to plugins. This is similar to how our work uses the information
provided by Truffle such as the stack and heap information. Milepost
GCC also utilizes a similar approach to a Knowledge Base as used by
Amaru [171], by collecting compilation data, and storing it together with
optimization heuristics in a database to continuously learn and improve
on the compilation process. Recently, Fursin et al. [172] have extended
their concept of a compilation database into the Collective Knowledge
Framework (CK). CK provides a format and a database for machine
learning workflows, again with a focus on automatically tuning multiple
objectives in the non-functional domain.

Kartsaklis et al. [173] define HERCULES, a pattern-driven code transfor-
mation system. While HERCULES is not a compiler per se, it integrates
with different compilers via compiler plugins. Hercules identifies human-
written patterns in source code, and applies a human written rewrite
to the identified pattern. HERCULES patterns deal with loop patterns,
achieving a speedup of up to 67% [174]. The primary difference between
HERCULES and the work presented here is that Hercules considers
textual patterns instead of ASTs. Additionally, HERCULES does not
attempt to automatically identify patterns, instead it only deals with
manually identified and designed rewrite patterns.

Superoptimization

Superoptimization is an optimization technique comparable to the more
recent work in the GI domain [112]. Superoptimization is also comparable
to code motion [13]. All three of these methods basically attempt to
re-order source code to still be valid, but improve run-time performance.
Code motion does so systematically, often with manually written rules,
whereas superoptimization and work in the GI domain attempt it via
search-based methods. GI does so in the context of SBSE. The original
concept of superoptimization does so by brute force search of a finite
(sub)-set of a processor’s instruction set to find the shortest program
solving a loop-free set of instructions [156].

As the original exhaustive search approach was a severe bottleneck for
superoptimization, more recent work does not perform a complete search
anymore. Instead, conditions [175] or pruning [176] are applied to filter
out invalid candidates before evaluation. Another approach to manage
the search space is the application of constraint solvers, or satisfiability
modulo theory (SMT) solvers [177].

Mukherjee et al. [178] present an approach to reduce the search space
by pruning invalid solution candidates using data flow pruning. This
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is similar to one anti-pattern discovered during the experiment set (see
Section 6.3). Both essentially prune the search space, excluding solutions
which will result in an incorrect data flow. The primary difference is that
[178] manually defines rules for checking, while our work applies a rule
set discovered during a mining process. However, the pruning process of
[178] conducts more extensive pruning, as it was designed by experts.

Superoptimization and GI gained more overlap in recent years. Re-
search began to apply stochastic search on loop-free superoptimization.
Schkufza, Sharma, and Aiken [179] define superoptimization as a multi-
objective optimization problem and apply Markov Chains with a fitness
function applied to the search space instead of completely evaluating it,
showing a significant speedup in the optimization process itself while
achieving comparable run-time performance with the resulting programs.
Stochastic Superoptimization has also been successfully applied with
loops [180], achieving a 25% speedup, by optimizing loop kernels.

Bunel et al. [181] consider superoptimization in the context of machine
learning. They apply it differently to [179], instead opting for a sampling
approach, to find out, which superoptimization steps are most likely
to have the greatest impact on the run-time performance. On a learned
Neural Network, they then predict the most likely candidate and apply
the rewrite most likely to produce the best result.

Shypula et al. [182] show an alternative, machine learning approach,
outperforming both SMT and neural networks. Their approach, called
Self Imitation learning for Optimization (SILO), applies the Self Imitation
learning (SIL) algorithm [183] on superoptimization. This is a reinforce-
ment learning approach, where a ranking is applied to previous decisions
made by the algorithm. The algorithm reinforces good decisions by ap-
plying a positive value corresponding to the observed outcome, but
no negative values on failures. The approach is more generalizable to
real-world problems than SMT constraint solvers and does not require a
learning phase as neural networks do.

Especially when considering linear GP [184, 185], which is also applied to
assembly code, and modifies the source code similarly as superoptimiza-
tion does, there seems to be little difference between the two approaches.
The two primary differences seem to be that GI considers bug fixing in
addition to NFP and that there is a difference which algorithms are used.
While both domains are firmly in SBSE, GI tends to apply evolutionary
algorithms or local search methods, while superoptimization prefers
neural network or reinforcement learning approaches. Additionally, GI
considers multiple different representation forms outside linear GP, such
as an AST or the source code.

Many of the challenges addressed in this our are similar to superoptimiza-
tion. Both must deal with a large search space, and ultimately attempt
code rewriting to improve NFP. Our work applies ASTs as a representa-
tion form, and also manipulates an AST in a pattern-based way before it
is passed to the compiler. Superoptimization is generally applied after
the compiler has already generated assembly code. Superoptimization
can be considered an addition to usual compiler optimizations, just like
our work.
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Code Motion

Code motion is a method that looks similar to superoptimization on the
surface. Code motion is the transformation of source code by only moving
the placement of statements. This may include moving statements outside
aloop, or simply reordering statements within a control flow block. Code
motion is usually based on a set of rules, restricting the search space of
acceptable motions to only allow movements that will not modify the
semantics of the code. This results in a tradeoff between the cost for the
analysis, and optimization and the effects that the motion will have on
the program’s run time [13, 157].

As register use is an important consideration where code motion can be
applied, much research is put into this work. Banerjee et al. [186] discuss
the application of finite state machines to apply code motion to statement
blocks, successfully considering code motion across loops.

The primary differences between code motion and GI, are that code
motion does not manipulate the code beyond moving statements, ex-
pressions or access-patterns, and that GI does not apply much validity
checking. In the context of our work, code motion might be applicable in
conjunction with the presented methods in GI, as the same verification
mechanisms could be applied in the mutation statement.

Application of Machine Learning in Compilers

There are two recent surveys on the application of machine learning in
compilers [187, 188].

Wang and O’Boyle [187] analyze machine learning applications in com-
pilers in general, primarily identifying work that is applied to compiler
autotuning. Autotuning is the concept of a compiler selecting their own
optimizations, and deciding on the execution order of the selected opti-
mizations. This is a challenging problem in compilation, as the multitude
of available optimizations and different hardware platforms to optimize
for, presents a challenging search space. Wang and O’Boyle [187] identify
two core issues for machine learning in the context of compilers. One is
the large run-time overhead, which makes it challenging to apply during
the compilation phase itself. Another issue is the difficulty of gathering
sufficient data, and the quality of said data. When the data has been
made available, the application of machine learning can outperform
regular optimizations [189, 190]. This work addresses the issue of data
gathering by building a knowledge base, on which patterns are identified
and verified. The problem of a large run-time overhead remains yet to be
solved. While the patterns are applicable in KGGI, further work must be
done to make them useable during compilation.

Ashouri et al. [188] present a similar view on the topic, with a survey
specifically on the topic of compiler autotuning. They analyze more
than 200 publications in the domain over the past 25 years, and show
that primarily supervised, unsupervised and reinforcement learning
approaches are applied in this domain. The publication also summarizes
the efforts in the domain of genetic algorithms applied to autotuning.
Concerning pattern mining or its application, they do not identify any
work in addition to what has already been discussed.
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Machine learning is also applied to the Graal compiler, which is used
by our work. Mosaner [191] describes the use of machine learning for
deciding which optimizations should be applied in what order. Heuristics
in this domain are primarily hand-crafted, and adoption of machine
learning in this domain is low, as the approaches applied are primarily
black-box machine learning. Mosaner proposes using data gathered
on optimizations in a feedback-oriented machine learning approach
that is then incrementally included as new heuristics in the compiler.
As a first proof, this methodology is applied in code duplication by
citeauthmosanerUsingMachinelearning2021. In their work, the authors
apply machine learning to provide a trade-off function between code size
increase and performance increase. They predict the code size increase
for each optimization phase in the compiler by using an artificial neural
network, gaining a code size reduction of 10% over several benchmarks.



Conclusion

The goal of this thesis is the identification and verification of patterns
in software that influence Non-Functional Property (NFP). This is not
the first work of its kind. Previous work has dealt with good design
patterns to improve maintainability, quality or security [42, 43, 50], or to
mine defects to either identify their location or fix them [37, 46, 49]. The
work presented here conducts mining at the low level of an interpreter
and compiler. This can produce very fine-granular patterns that can
be applied to improve source code. This is possible in part because
full access to the execution environment allows gathering more data
(Chapter 4). Both mutational bug-patterns, and performance patterns
and anti-patterns have been successfully identified using Independent
Growth of Ordered Relationships (IGOR), a novel algorithm defined in
this thesis.

These patterns can be applied semi-automatically to source code and pos-
itively influence Search-Based Software Engineering (SBSE), specifically
Genetic Improvement (GI). This requires manual work to turn mined
patterns into generally applicable patterns, or to identify interesting
source code locations where patterns can be applied. The presented
mining approach helps identifying patterns and introduces the novel
concepts of generalization via taxonomies and wildcards, to not only
make the patterns more expressive but to enable applying them to ex-
isting Abstract Syntax Trees (ASTs) (Chapter 5). In the future, this can
enable not only the introduction of general optimizations, but automated
refactorings and code maintenance, e.g., via automatically injecting de-
fensive programming statements, logging, and rewriting code among
others.

Knowledge-guided Genetic Improvement (KGGI) is a novel approach
to GI. It uses a syntax graph which enhances a known grammar of a
programming language with NFP knowledge to restrict the search space,
and with requirements that must be met during the creation of an AST

Research Question Summary160

Future Work

Y

Software to
Optimize

Genetic Improvement in Mining Significant Patterns
Compilers and Interpreters > from Source Code
to create variants (RQ1) to identify patterns (RQ1)

Y

for NFP
improvements or T ¢

bugfixes

to verify (RQ2) and apply (RQ3) patterns

Pattern Mining combined with Genetic Improvement

Y

Improved
Software
&
Patterns for
Application

Foundation

Graal Compiler, Truffle Interpreter, Heuristic Lab

162

8. CoNcLUSION



8. CoNCLUSION

160

8. Conclusion

to expand it from syntactically valid, to semantically feasible. This, in
addition to novel applications of test suites in the fitness function, has
helped to produce mutants for the pattern mining approach in this
work (Chapter 3). The patterns have also been shown to improve the
GI approach via being injected into the syntax graph of KGGI helping
to drive the search space into a positive direction and to prevent anti-
patterns that lead to bugs. This doubles the individuals in the population
and increases the amount of executable ASTs to 60.8% over only 20% in
related work (Chapter 5).

In the following, answers to the initially stated research questions are
given and possible future research directions are identified. This con-
cludes the first part of this thesis, summarizing the novel contributions,
concepts and algorithms. Part 2 of the thesis summarizes the frame-
works implementing this work, and provides case studies to empirically
evaluate it.

Research Question Summary

RQ1 How can recurring patterns be identified that impact or improve
a functional or Non-Functional Property?

Patterns can be identified via the application of Cluster Pattern Mining,
an extension of discriminative pattern mining, that mines a search space
of AST that is grouped into multiple clusters that are discriminative in
one NFP or functional property. Cluster pattern mining furthermore
employs a taxonomy that represents the programming language the ASTs
are written in. For each programming language, multiple taxonomies
can exist with a specific focus, such as a focus on data types, or a focus
on data flow. Mining includes wildcards which are added to patterns via
co-located pattern mining. This is a process that first identifies patterns,
then co-located patterns in the same cluster, and finallly outliers in other
clusters.

Wildcards support the definition of node orders or indirect parent-child
relationships via the (%) any wildcard. The (.) any node wildcard enables
structural patterns without a specified context. The (—) negation wildcard
allows enforcement of faults of omission, or alternatively preventing
nodes that should not occur in positive patterns. This approach is
supported by the novel IGOR algorithm. It implements the cluster
pattern mining approach and the mining of independent as well as
embedded patterns (Chapter 4).

Our approach led to the successful identification of several mutational
bug anti-patterns (Section 6.3), as well as patterns and anti-patterns
influencing the run-time performance of software (Section 6.5).

The mining itself is done via the application of KGGI to produce different
variants of code. Test suites are applied to verify the semantics of code,
while aiming to produce multiple ASTs with different NFPs. Applying
this in the context of a compiler or interpreter has the advantage that,
via instrumentation and access to the execution environment (stack,
heap, functions, ...), the NFP can be evaluated with a high precision and
confidence. Additionally, as the mining is done on the internal program



representation (AST) used by the compiler or interpreter, these patterns
show a fine granularity (Chapter 3).

RQ2 How can the confidence in patterns be improved?

Improving the confidence in a given pattern is part of the process of
co-located pattern mining. Its final step is the verification of patterns.

The verification of patterns is done by exclusively mutating ASTs to either
include an anti-pattern (Section 6.3), or by identifying ASTs that contain
an anti-pattern, and then applying a rewrite to conform to a pattern fixing
the issues of the anti-pattern (Section 6.5). A confidence score is built
from multiple mutations, where the confidence is measured in percent of
the experiments that had the expected result. In this work, anti-patterns
in the domain of mutational bugs in GI were successfully validated with
an average confidence of 90.1%, meaning that when an anti-pattern was
injected, the expected bug occurred 90.1% of the time. Corresponding
fixes were validated with a confidence of 94%.

As the approach of using AST mutants applies patterns randomly in the
AST this can also help to identify how a pattern can be improved or if
there are limitations to the pattern. For example, in the conducted pattern
verification (see Section 6.3), the verification phase showed additional
conditions when a pattern identified from mining becomes applicable,
enabling the refinement of the pattern.

A limitation of this type of verification, is that the confidence is negatively
influenced by dead code. If the pattern is injected in a part of the AST
that is never executed, this negatively affects the confidence score.

RQ3 How can these patterns be utilized to lead to general
optimizations?

General optimization patterns which could be applied on their own,
directly in a compiler or interpreter were not identified as of yet. The
patterns that were identified, are mostly useful to direct search in GI.

To utilize patterns in GI the novel algorithm KGGI provides a syntax
graph that manages the large search spaces that are the result of an
application in the compiler or interpreter, as programming languages
consist of hundreds or even thousands of concepts that can occur in a
taxonomy. The syntax graph handles upper limits on NFP being produced
and restricts anti-patterns that prevent the creation of unviable solution
candidates. Alternatively, patterns can guide the search space into better
directions. This produces more viable individuals that can be utilized in
pattern mining.

In this work, 22 out of 25 AST were successfully improved by KGGI. On
average, the run-time performance was improved by 39.2% for a selection
of math, sort and neural network algorithms. Several optimization patterns
have been identified, which provide a useful basis for further improving
software via GI.
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Future Work

The three main research questions of this work have been successfully
answered. This lays a solid foundation for identifying and verifying NFP
patterns. Future work can do still more, in many of the areas of this field.
Throughout the work, it has been discussed why our approach has been
chosen, and why other options have not been explored. Some of these are
interesting for future work, starting out with the very foundation of the
approach, the compiler and interpreter selected, as well as the language.
This work is based on MiniC (Chapter 9) as a language for empiric
validation. MiniC is written in Truffle and compiled via Graal. . Future
work can look at many more compilers, interpreters, and programming
languages.

A closer goal would be the analysis of Graal’s intermediate representation
(IR), either instead or in addition to the Truffle AST as a representation
for pattern mining. This has not been approached in this work, as both
the KGGI and IGOR algorithms depend on the representation form to
be acyclic. This is not only interesting for the IR, but generally for other
representations of software that may require a different mining approach,
but can still benefit from the concepts of taxonomies and wildcards.
Though it should be noted, that IGOR, can mine any tree representation
not just Truffle ASTs.

The confidence in patterns (RQ2) could be improved even further. This
work assumes that the given test suite of an AST is acceptable for the intent
of the experiment. Future work could benefit greatly from utilizing an
approach that synthesizes tests either to test ASTs that have no test suite,
or even to automatically adapt the test suites to improve the coverage
of modified ASTs. Similarly the pattern verification has been shown to
become less conclusive if the patterns are introduced into dead branches.
Extending the approach to only consider branches that are executed
could improve confidence in patterns. This also holds for the mining
approach itself. Dynamic information could be rather beneficial. Dead
branches could be removed from mining, reducing false positives and
making the code actually responsible for NFP more discriminative. The
metrics could also benefit from additional information, such as how often
a loop is executed or how likely a branch will be taken.

In the approach of cluster pattern mining the creation of clusters could pos-
sibly be automated, via clustering methods from literature, for example
via the function signatures (input and output) of AST in the functional
domain or via the NFPs.

The concept of wildcards in patterns could be improved even further in
the future. Throughout the work, it has been shown that in some cases the
patterns could benefit from having more expressiveness. One example
being a wildcard that could allow a pattern or a part of it to become
independent of the node order. This would not just benefit changes in
the AST but also the identification of anti-patterns, which can occur in
multiple orderings. For example, in which order the child nodes of an
and comparison are grouped may not always be relevant. Especially for
fine-granular patterns, commutative and associative properties may be
explored in patterns.



In the area of KGGI and the dynamic fitness functions, some future work
is the introduction of additional operators that specifically tackle how
tests are applied. Similarly diversity metrics could drive the search both
in KGGI and in mining locations where patterns could be applied or
found. The syntax graph of KGGI, as a graph and selection mechanism in
which AST nodes will be created, has similarities to a ConvolutionalNeu-
ralNetwork. Following this concept in the future may be an interesting
research direction as well.

The framework Amaru (see Chapter 10) and all other frameworks worked
on in this thesis are open source. Now that the foundation has been set, it
would be great to see it be used by the community. Additional ideas and
expertise from other researchers can greatly benefit this work. Much of
the future work will include case studies and showcases of how pattern
mining and GI can greatly benefit from the application directly in an
interpreter or compiler.

8. CoNCLUSION






FRAMEWORKS AND CASE STUDIES






MiniC

MiniC is a language developed via the Truffle framework [60] for testing
our approaches in the Genetic Improvement (GI) and pattern mining
domains. It is a subset of the C11 version of C [84], and consists of
some core mechanisms such as function declarations, loops, constants
and variables (both global and local). The Extended Backus-Naur Form
(EBNF) grammar is provided in Listing 9.1. MiniC does not support all
data types of C, and also does not support pointers or structs. There are
two deviations from CI1:

» Arrays are valid function parameters. Since MiniC does not yet
support pointers, this had to be added to the language, to enable
more interesting test cases.

» Different exceptions. Due to the advantages of Truffle, some unde-
fined behavior of C will lead to different outcomes than in regular
C compilers. For example, access outside array bounds will lead to
an Array Out Of Bounds exception, which in C would either not
lead to an exception or to a Buffer Overflow error.

Truffle itself is a framework that deals only with the definition and
interpretation of a given language, and does not provide a parser. The
parser has been implemented via the Coco/R framework [192, 193].

At the time of writing, MiniC consists of 362 real or abstract node types,
of which 167 are instantiable and can be used as operators and operands
in GI. Of these, 59 classes are terminal classes. The primary difference
to non-terminal classes being that they do not contain relationships
to other MiniC classes and thus can only be leaf nodes in an Abstract
Syntax Tree (AST). The reason why there are many abstract classes is that
Truffle nodes are implemented as Java classes. Some of these represent
abstract functionality, such as a core MiniC node, from which all other
nodes in the language inherit directly or indirectly. Many abstract nodes
are automatically generated by Truffle from the given implementations,
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Listing 9.1: EBNF of the MiniC Language
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which is explained further in Section 2.4. While the size of MiniC already
is a challenge for the search spaces in GI, it is still more manageable
compared to fully implemented languages. For example, the JavaScript!
implementation of Truffle, consists of 854 instantiable node types.

The implementation with Truffle provides several advantages concerning
the concepts of Knowledge-guided Genetic Improvement (KGGI) (see
Section 3.4) and the utilization of hierarchies during the pattern mining
process (see Section 4.2). Due to how Truffle languages are implemented,
anatural hierarchy already exists in the implemented class hierarchy. This
is influenced by the language’s core concepts, shared implementations,
and data types. In MiniC, the focus lies on the different data types, as the
nodes are grouped by their return type.

Minic = Program.
Program = {(VarDecl | ProcDecl | ConstDecl StructDecl<out
MinicNode struct>)}.

Type = ident.

ConstDecl = "const" Type ident "=" (intCon | floatCon |
charCon | stringCon)";".

7| VarDecl = Type VarOrArrayDecl {’,’ VarOrArrayDecl} ';’.

VarOrArrayDecl = ident {’'[’ Condition ']’}.

ProcDecl = (Type | "void") ident "("[FormPars]")"
(BlockStatement | ’;').

FormPars = Type VarOrArrayDecl {"," Type VarOrArrayDecl}.

Statement = (ConstDecl | StructDecl | ReturnStatement |
BlockStatement | IfStatement | WhileStatement |
EmptyStatement | Designator ("=" Condition | ActPars)

";") | VarDecl).
WhileStatement = "while" "(" Condition ")" Statement.
ReturnStatement = "return" Condition ";"
IfStatement = "if" "(" Condition ")" [ "else" Statement ].
Condition = ("!"Condition | CondTerm { "||" CondTerm }).
CondTerm = CondFact {"&&" CondFact}.

CondFact = Expr [ Relop Exprl].
Designator = ident {("." ident ) | ("[" Condition "]1")}.
ActPars = "(" [Condition {"," Condition}] ")".

Expr = Term {Addop Term}.

Term = Factor {Mulop Factor}.

Factor = (Designator [ActPars] | intCon | floatCon |
charCon | stringCon | Addop Factor | "(" (Type ")"
Factor | Condition ")")).

EmptyStatement e

BlockStatement "{" {Statement} "}".


https://github.com/oracle/graaljs
https://github.com/oracle/graaljs

Amaru

Amaru is the core framework that was developed in this thesis. It contains
reference implementations of the presented concepts and algorithms in
our approach. This includes the enhancements of Genetic Improvement
(GI) such as Knowledge-guided Genetic Improvement (KGGI) (Sec-
tion 3.4), as well as our pattern mining approach with the Independent
Growth of Ordered Relationships (IGOR) algorithm (see Algorithm 6).
The concepts concerning co-located pattern mining (Section 4.7) and
pattern verification (Section 5.3) are also implemented in Amaru. It is
implemented in Java 11 on the Graal VM (version 21.1.0), utilizing Truffle.
Amaru itself is primarily a framework and does not come with a user
interface. In the domain of pattern mining, visualization is necessary.
For this Amaru provides a reporting service to view results in different
formats such as Markdown, Hyper Text Markup Language (HTML), or
EETEXdocuments.

Open Source - Reproducible Experiments

Amaru is available open source under the Mozilla Public License
2.0, a permissive license that was chosen to enable others to use the
technical contributions made here for their own scientific work. [171]
is a registered DOI to the exact version of Amaru that the experiments
were conducted with. Guidance on reproducing these experiments is
given in the repository.

10.1 Architecture . . ... ..... 170
10.2 Language Analysis ... .. 171

10.3 Accurate Measurement of
Non-Functional Properties 174

10.4 Pattern Mining Reports .. 175

[171]: Krauss (2021), Amaru - The Amaru
Framework for Genetic Improvement and Pat-
tern Mining in Graal and Truffle https:/ /doi.org/10.5281/ zenc
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10.1 Architecture

The architecture of Amaru, (see Figure 10.1) was previously presented in
[65]. It builds on top of the Truffle API, and is designed to be executed
directly in the Graal VM. The functionality of the framework is split
into two parts. The optimization part of the framework deals with the
application of GI, directly in Truffle languages. The pattern mining part
of the framework also utilizes information from the Truffle languages
and can inject source code transformations in a guest application. Both
parts of the framework access a knowledge base storing information on
the Truffle guest language, and experiments conducted in the language.

The optimization side of the framework allows the creation of experiments.
An experiment consists of the program that should be run in a Truffle
guest language, such as MiniC, the function that should be optimized, a
test suite to verify that function, and a configuration. The configuration
contains, for example, the fitness function that has been selected, and the
settings of the optimizer that will be used during the experiment.

The optimizer has multiple implementations. Aside from a reference
implementation of KGGI, other genetic algorithms and operators are
implemented. The optimizer enables a connection to other optimization
frameworks, to enable Amaru being used as access to Truffle guest
languages while still utilizing the algorithms and user interfaces provided
by other optimization tools such as Heuristic Lab (see Chapter 11).

Amaru can be a valuable addition for other frameworks and can serve
as an intermediary, as it also helps preparing Truffle languages for the
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Figure 10.1: Architecture of the Amaru framework. It builds upon the Truffle and Graal execution environment, and consists of functionality
for optimization using GI, and the IGOR algorithm to conduct pattern mining. The experiment data is stored in a knowledge base.



purpose of machine learning. This is because it automatically extracts
necessary information for machine learning, and abstracts Truffle lan-
guages for that purpose. It also provides an evaluation methodology
specific to the combination of genetic algorithms and Graal, preventing
threats to the validity in the measurement of Non-Functional Properties
(NEPs).

The knowledge base, a Neo4] graph database, serves to store information
about a given Truffle Language, and about conducted experiments.
For the experiments, this primarily concerns the Abstract Syntax Trees
(ASTs) executed during an experiment and the respective results of that
execution, e.g., if an error occurred, how close the test results are to the
expected outcomes of the test suite, and the measured NFPs.

The pattern mining side of the framework can later load data from one
or multiple experiments, and can also load information about the utilized
Truffle language. It contains a reference implementation of the IGOR
mining algorithm, including a reporting tool to view the results of mining
experiments, as well as functionality to rewrite Truffle ASTs according to
a given pattern or to inject such a pattern in later GI experiments.

10.2 Language Analysis

In the context of GI or Genetic Programming (GP), Truffle languages
are a good basis, as their nodes are automatically executable. However,
additional information about a language is needed. This includes how
nodes have to be instantiated, which nodes influence the control or data
flow, and call other functions. Making this information available would
be an unreasonable overhead for developers of a specific Truffle language
and would produce a large overhead for integration in other frameworks,
especially frameworks that are not written in Java.

Amaru deals with this by providing an automated analysis for any Truffle
language. Amaru provides information and construction methods that
are independent of specific Truffle languages. External frameworks can
load information about languages available in Truffle and either utilize
just the provided construction methods themselves or utilize parts of
the implemented algorithms in Amaru, such as crossover or mutate
operators that are already implemented, mixing them with their own
algorithms and operators. Alternatively, the frameworks can use Amaru
exclusively to evaluate ASTs according to a given set of tests and NFPs.

The information extracted from Truffle languages primarily concerns the
available Truffle nodes and is gathered automatically via Java Reflection.
The only information that has to be provided are the names of the pack-
ages in which the nodes are implemented in the given Truffle Language.
The language information is provided in the TruffleLanguagelnformation
as seen in Figure 10.1. It contains all classes that are derived from the
Truffle Node class that all nodes must implement in order to be executable
in Truffle. These classes are represented as a hierarchy, where each class
or interface points to each possible instantiable implementation. Each
instantiable class is analyzed and the following information is collected:

Class name the fully qualifying class name of the implementation.

10.2 Language Analysis
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Metadata such as the short names and descriptions that developers of a
language can optionally assign to their implementations.

Properties of a class, such as if the node influences the control or data
flow.

Initializers of the given classes are recorded, including their parameters.

NFP approximations are derived by a learning process. This concerns
the NFP costs of nodes, such as their run-time costs.

The recorded hierarchy, in conjunction with the initializers for each class,
enable the generic approach of Amaru when dealing with Truffle lan-
guages. From this, the Syntax Graph from KGGI (see Section 3.4) can be
generated to mutate and cross valid ASTs. When a node is a non-terminal
and requires child nodes, they will either be pointing to an abstract class
of which all known implementations are recorded in the TruffleLanguage-
Information, or it will be pointing to a specific implementation already.
Some parameters of a Truffle node are non-language nodes. Among these
are literal values, variable names or function names. For each of these
there must still be a manual implementation that provides values, though
most cases are automatically handled by Amaru, providing default values
for simple data types, and automatically recording the arguments of a
function. Access to these functions has to be handled per language, as
there is no dedicated function registry in Truffle.

The observed properties, also derived via reflection, record if a given
node class has access to a FrameSlot, which in Truffle represents the stack
or the heap. From a call analysis it can be derived if the access is writing
or reading, and if it is to the stack or to the heap, respectively. Access
to function arguments, i.e., mostly nodes transferring call arguments to
the stack, is also recorded. Additionally, node classes that influence the
control flow, such as branches and loops, are identified. Node classes
conducting function calls are recorded as well.

In addition to the static approach via Java Reflection, a dynamic learning
process is applied. This partially concerns valid pairings of allocations,
reads and writes, such as which implementation of a writing variable
access correctly initializes a stack or heap variable, so it can be read
later by another node implementation. It also concerns which nodes
are responsible for which data type when reading function arguments.
And finally, the dynamic approach is responsible for assigning the
NFP approximation values. Currently, this concerns only the run-time
performance of every node.

For each node, it is measured individually, how much run-time it’s
execution costs before Graal has finished its warm-up phase, and after
it has finished it. The exact details of the measurement are discussed
in the next section. The dynamic learning process requires a manually
written empty function written by a developer. This function is first
executed 1,000,000 times to measure its empty run-time cost. After this,
every instrumentable node in the language is injected into that function
stub. It's executions are measured via in-process iterations to minimize
side effects of measurements [81]. Every node is injected 10,000 times
in the stub. This poses two challenges that need to be addressed. First,
not every node can is terminal. This makes it challenging to record its
run-time performance, as it will always be dependent on the nodes in its



relationships. Second, Graal will optimize the node away if it is not used
in a meaningful context, e.g., when its return value is not accessed.

For nodes that cannot be utilized on their own, an incremental growth
approach is used. For example, a node requiring child nodes is only
analyzed after it’s required children have already been weighted. A trace
analysis of a single execution of the AST is used to derive which nodes
were actually executed how many times in case of branches and loops.
The weight of all executed child nodes is subtracted from the final weight
of the parent node. Similarly, nodes requiring other nodes to be executed
before them, such as a reading variable access, have one single initializing
node injected before them, with only the node currently being measured
injected multiple times. For example a write node to variable x is injected
once, and the read node to variable x is injected 10,000 times.

To prevent Graal from optimizing the nodes away, for example, if they
have no impact on any return value, they would have to be measured in
a meaningful context. For example, variable reads would be optimized
away unless they were used in an assignment or a return statement. It
is infeasible to construct meaningful variants for the several hundred
node implementations of any given language and would skew the results,
as individual nodes could never be measured without bleedover from
other nodes. Thus, an interceptor is injected into every node class. The
interceptor is annotated with a Truffle Boundary, which is a special
compiler directive preventing optimizations from happening in them.
This is also how the trace information is collected during the dynamic
execution, on which nodes in a given AST are actually executed or contain
the hot path via their execution count. While this prevents optimizations
from happening, and thus threatens the validity of the measurements,
it ensures that all nodes in the in-process iterations remain there for
measurement. The cost of the intercept itself is not relevant to the node
weight, as all nodes have that cost added to them equally.

The above way of measuring and assigning node weights comes with
some caveats, especially since it is known that it influences the compiler
to not conduct some optimizations. However, an exact weight could never
be produced, as AST nodes influence each other, and larger sub-ASTs will
be optimized by the compiler in different ways. This means that an exact
prediction can never happen, unless every possible combination of nodes
in ASTs would be measured with every possible compiler optimization
setting, which represents an impossible search space size.

The approximated values are meant for the KGGI approach, to prevent
the generation of infeasible mutants in the population. This is done by
using the measured run-time performances of the nodes in a function that
approximates the run-time performance of the AST instead of running
the AST. The approximation is used as an upper limit, that must not be
exceeded for the AST to be viable.

The function works by adding the measured weight of each node in the
AST to a total sum via a breadth-first iteration of the AST. For branching
statements, the weights of the sub-AST in the respective branch is reduced
by an assertion which branch is more likely to be taken. For example in
an if statement the then path is weighted with 0.7 and the else path is
weighted with 0.3. The weight of a sub-AST in a loop is multiplied by an
assertion of how often the loop will execute.

10.2 Language Analysis
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10.3 Accurate Measurement of Non-Functional
Properties

The accurate measurement of a NFP, especially run-time performance,
can be challenging in a modern compiler [81]. Challenges include the
side effects from the garbage collector or other processes on modern
operating systems. Differences in hardware, operating systems and
compiler versions can make the measurements incomparable with other
systems. Also, the compiler flags with whihc the code is compiled and
executed change the run-time behavior.

One of the already discussed challenges is that in-process iterations of
code, e.g., duplicating the code, so that it is executed multiple times in
the same function, is not always feasible, due to the compiler possibly
optimizing superfluous code away. The meaning of the code may also be
changed due to being executed multiple times.

Another unique challenge when using Graal, but possibly also affecting
other compilers, is code caching [57, 59]. This is less of an issue during
benchmarking for compiler optimizations. The measurement can be
made more accurate by considering the warm-up time of a compiler and
omitting initial repetitions of a program execution from the measurement.
However, in GI, due to the high cost of compiling and executing an entire
code base instead of single functions, it is not unusual to only conduct
10 repetitions [112] of every individual in a GI population. This would
already be an untrustworthy measurement, considering that the warm-
up of Graal is considered to be 100,000 iterations. Additionally, in GI
individuals in a population are often very similar due to grafting. The
crossover and mutation operations only affect small parts of the source
code as well, leaving much of the AST unchanged.

The combination of code caching, a small amount of repetitions per
individual, and a large amount of similar individuals in a population
over many generations make the perfect recipe for disaster when it
comes to run-time performance measurements. The unusually similar
code can allow the compiler to apply cached snippets over multiple
individuals in the population. Thus, it may appear that the GI algorithm
is producing increasingly faster performing individuals. What might
really be happening, is, that the compiler continues to optimize the
performance of a snippet that is executed increasingly often and still not
fully profiled since the warm-up has not completed.

This also was an unknown issue in Amaru for some time, until, due
to the pattern mining approach, virtually equivalent individuals were
shown as outperforming each other. In some cases, for two recurring
individuals, it was even observed over several experiments that one
performed sometimes better than the other and sometimes worse. A
closer look showed that the only real difference was which individual
was executed in a later generation of the experiment.

Due to the presented challenges, when conducting GI experiments,
Amaru utilizes several executors. An executor is responsible for running
one single test case with one single AST. In the simplest case, e.g., a
fitness function only having functional concerns, an internal executor can
utilize Truffle for execution. Due to the instrumentation when learning



a language, or tracing which nodes in an AST are executed, alternative
executors exist that transfer an AST for testing into a different execution
environment where the byte code of the Truffle guest language has been
modified with instrumentation code. This is also done whenever the
run-time performance of an AST has to be measured. A specialized
executor starts an entirely separate Graal VM and transmits the AST to
be executed together with the test case input and the program in which
the AST is embedded. The AST is then executed in a completely separate
environment. The executor waits and receives the output and 200,000
runtime-measurements for the execution, the first 100,000 representing
the warm-up and the next 100,000 the observed performance measure-
ments, the smallest of which is the peak performance. This external
executor can also be stopped after a defined time to guarantee termina-
tion when it is not know if the AST will finish in finite time. This approach
also encapsulates exceptions from which the Java Virtual Machine (JVM)
cannot recover, such as when the garbage collector overhead limit is
exceeded, or stack overflow exceptions. Otherwise, these issues could
stop the entire experiment. This is an alternative way to solve this issue
compared to Orlov and Sipper [26], who instead opted to instrument the
source code with abort conditions when infinite loops or too many calls
occurred.

10.4 Pattern Mining Reports

Pattern mining has been discussed in Chapter 4. It has been mentioned
in Section 4.7 that dealing with redundancy and the accuracy of results
actually depends on providing filtering and viewing methods to make
the results easier to understand. This is done via filtering, merging and
relationships.

The filtering can be done via AST constraints by excluding or including
specific nodes or types of nodes. This can also be done via patterns, i.e.,
mining only in trees that contain a specific pattern or anti-pattern, which
is relevant for the co-located pattern mining approach. Filtering also
concerns automated ways in which the different clusters can be selected.
This includes:

NFP selecting clusters by a range in one or more properties such as run
time.

Functional properties such as a specific test input or output. For non-
feasible individuals, this also allows selecting by the exception
thrown.

Experiments ASTs from one or more experiments can be selected to an-
alyze differences or similarities in different algorithms or domains.

Merging is primarily done via a containment approach. Patterns can
be filtered by a closed approach, in which they are filtered if they are
a complete subset, i.e., occurring in the same locations, as a larger
pattern. This returns the largest unique patterns, but often produces
many patterns around a similar core that is different only on the edges
of the pattern. Alternatively, a compact approach does the exact inverse,
filtering out all larger patterns that can be reduced to a smaller core. This
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Figure 10.2: Visualization of two patterns that were mined with three clusters, int, double and comparable. Nodes with a red background
are manually selected to identify nodes with a blue background in other patterns that are overlapping.

produces much fewer patterns than the maximizing approach and easily
identifies pattern cores, though more detailed information can be lost.

Finally, the relationships can help to reduce patterns as well by showing
only the most generalized or most specialized patterns.

A reporting Ul was created that shows the results of a pattern mining
experiment after the filtering and merging process has been conducted.
The report contains visualizations of the search space, a visualization
of all patterns found per cluster, or the differences per cluster. How
the differences are visualized is shown in Figure 10.2. Each pattern is
assigned a radar chart that shows how often it occurs in a given cluster.
The Report is interactive and allows selecting nodes or patterns (red
background), which shows the same node locations in all other patterns
(blue background). This allows comparing overlap between patterns
during analysis.




HeuristicLab Connector

The HeuristicLab Connector is a connector between Amaru and Heuristi- 11.1 HeuristicLab .. ....... 178
cLab, which is an optimization framework for meta heuristic and evolu- ~ 11.2 HeuristicLabConnector Ar-
tionary algorithms. It provides a multitude of algorithms and reference chitecture . . . ... ..... 178

problems from literature. HeuristicLab supports setting up experiments,
and features a graphical user interface (GUI) that can be used to config-
ure experiments and to visualize results. HeuristicLab already supports
Genetic Programming (GP) via a domain-specific language (DSL) written
and interpreted directly in HeuristicLab [194-197].

Open Source

HeuristicLabConnector is available open source under the Mozilla
Public License 2.0. [198] is a registered DOI to the exact version of [198]: Krauss et al. (), HeuristicLab Connec-

HeuristicLab Connector that this chapter describes. tor - Connecting HeuristicLab to the Amaru
Framework for Genetic Improvement and Pat-

tern Mining https://doi.org/10.5281/zenodo.6025063

The HeuristicLab Connector [199], is an intermediary to integrate a
low-level execution environment, i.e., Amaru, with a high-level optimiza-
tion framework, i.e., HeuristicLab. While the connector currently only
integrates these two tools, it’s core architecture, shown in Figure 11.1is
designed around a broker that accepts messages from HeuristicLab and
forwards them to one or more instances of Amaru. The broker works
with a message queue infrastructure, allowing either side to be replaced
with a different framework.

The consideration of an integration of Amaru, and therefore the reference
implementation this work is providing for its scientific contributions, lies
primarily in the goal to enable others to utilize the work in their own
research. An integration with HeuristicLab is beneficial, as this provides
a GUI that allows easy definition of experiments, configuration of the
algorithms provided by Amaru and visualization of the experiment
execution and results. The integrated framework HeuristicLab benefits

Genetic Improvement in Mining Significant Patterns
» Compilers and Interpreters > from Source Code >
Software to to create variants (RQ1) to identify patterns (RQ1) el
Optimize Software
for NFP &
improvements or T ¢ Patterns for
bugfixes Application
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Foundation
Graal Compiler, Truffle Interpreter, Heuristic Lab
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Figure 11.1: Overview of the technolo-
gies used in the HeuristicLabConnector
(adapted from [199]).
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from the direct integration with a compiler, i.e., Graal, and thus the ability
to step beyond DSLs, enabling research into real-world programming
languages and compilers.

The following sections explain HeuristicLab and considerations towards
the infrastructure and messaging system of the Connector to Amaru. The
core considerations of this approach are to provide an infrastructure that
is independent of a specific operating system or framework to make them
interchangeable, and enable distributed processing. As such, a broker
can process multiple experiments at the same time, and can have workers
on multiple machines process requests.

11.1 HeuristicLab

HeuristicLab is an extensible, modular framework for optimization prob-
lems featuring a wide variety of heuristic and evolutionary algorithms,
as well as a GUIL HeuristicLab is written in C#. It already provides
functionality to conduct evaluations with external software, for example
the HL3 External Evaluation Java library' to integrate with Java appli-
cations. HeuristicLab also allows the extension of itself via it’s plugin
infrastructure. A plugin can add a new problem definition, algorithm,
or operator for an algorithm to HeuristicLab. This is also utilized in the
HeuristicLabConnector [194-196].

What is not used in the HeuristicLabConnector is HeuristicLab Hive.
Hive is a specialized software that HeuristicLab can communicate with,
to conduct distributed experiments on client PCs that have Hive installed.
The reason why it is not utilized is that Hive does not integrate well with
external evaluations and that the HiveServer does not have a deeper
understanding of the jobs, assuming that every client has the same
functionality. This is not feasible for Graal, which may have different
languages and versions of those languages installed on different PCs
[200].

11.2 HeuristicLabConnector Architecture

The architecture of the HeuristicLabConnector is made up of a plugin
for HeuristicLab, a worker extension for Amaru, and a broker connecting
multiple HeuristicLab instances with worker instances via a Message
Queue. All parts of this infrastructure are shown in Figure 11.2. The
architecture asserts that the external framework HeuristicLab drives
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Figure 11.2: Architecture of the HeuristicLabConnector, showing the plugin that was added to HeuristicLab, the Worker that was added to
Amaru, and the Broker connecting the two frameworks (from [199]).

the process. Thus, it is designed with a fine-granular operator concept,
following the evolutionary operators, create, mutate, crossover, select,
and evaluate. A request can be made to the broker with any of these
operators, and a given Abstract Syntax Tree (AST) or multiple ASTs in the
case of select or crossover. Thus, HeuristicLab has the option to drive the
entire process and only use Amaru for evaluation, or it can opt to utilize
the functionality of Knowledge-guided Genetic Improvement (KGGI),
and its syntax graph to create, mutate or cross trees with a higher chance
of them being feasible. As all workers still access the knowledge base
and store generated or evaluated ASTs, there is no disadvantage to using
the HeuristicLabConnector when it comes to a later pattern mining of
the Experiment results.

The HeuristicLab plugin is based on the tree-based genetic programming
functionality already existing in HeuristicLab [197]. The plugin contains
an algorithm wrapping around any HeuristicLab algorithm. The wrapper
handles the connection to the broker and injects the operators into the
contained algorithm. The plugin also contains these operators, which
can be selected from HeuristicLab operators, or connect to the broker to
call the implementations Amaru provides. Finally, HeuristicLab contains
the problem definition, which consists of test cases, and the source code
to be executed on an Amaru worker as well as the necessary encoding of
ASTs for transmission via the broker.

The broker is a lightweight message queue, that accepts connections from
workers and stores their capabilities. When a request from HeuristicLab
arrives, the broker knows via these capabilities which workers it can
forward the requests to. The broker also handles load balancing by
forwarding requests to unoccupied workers and manages failures via a
heartbeat signal that lets it know if a worker has crashed and the request
sent to it must be handled by another worker.

Amaru workers are an implementation in the Amaru framework, accessing
and publishing the functionality of the Amaru optimizer (see Chapter 10).
The workers also use the TruffleLanguagelnformation to load installed
languages and publish that information to HeuristicLab upon request.

The process of handling a Genetic Improvement (GI) experiment in
this system begins with HeuristicLab loading the available operators it



Figure 11.3: Sequence flow between
HeuristicLab, the Broker and a Worker dur-
ing the algorithm execution (from [199]).
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can use in its algorithm and the available Truffle languages and their
respective syntax. A configuration worker connected to the broker sends
a capability statement, with the supported Truffle languages and their
respective version. In addition, it sends the supported operators, such as
implemented mutators, or crossover operators and which non-functional
properties it can process, such as a run-time performance analysis. This
information is displayed by HeuristicLab in the Plugin to allow users to
configure their experiments and initialize them.

When an experiment is started, the process as seen in Figure 11.3 begins.
First, HeuristicLab publishes the experiment that is started. The Broker
selects several workers and forwards the experiment data, so the workers
can parse the source code, initialize the Truffle guest language and
the required operators. After this, during the evolutionary process
HeuristicLab sends regular requests to the broker, such as a create
request, asking it to create a new AST, for example via grafting. The
message, forwarded to a worker that is in the experiment, is sent to a
worker which generates a new AST, and returns it for display purposes.
Sending a complete AST only happens during its creation. Otherwise,
both sides only send identifiers, as stored in the Knowledge Base, to
minimize communication overhead. This works similarly for the crossover
operation, shown in the loop in Figure 11.3, and the mutation and
evaluation requests. When an experiment is finished, HeuristicLab sends
a final stop message, which lets the workers discard the state of the
experiment.



APPENDIX






© 0 N o U A~ W N K

=
[ Y

© W N O U A~ W N

S e e e =
N o U A W N L o

Performance Optimized
Functions

This appendix contains the best found Abstract Syntax Tree (AST) repre-
sented as source code for each of the 25 functions found via Knowledge-
guided Genetic Improvement (KGGI) (see Section 6.4).. Note that not all
intricacies of an AST can be expressed as source code. The samples have
been simplified to make them understandable to the reader wherever
possible.

A.1 Math Algorithms

float sqrt_java(float x) {
float x1;
x1 = (x * 0.8999999761581421);
x1 = sqrt(0.8999999761581421);
return sqrt(x);

}

float sqrt_lookup(float x) {

float result, h;

int i, tablePosition;

tablePosition = calcLookupTablePosition(x);

result = table[tablePosition];

for (i =1; i<6; i=1+1) {
h = (sg_fn(result) - x) / sg_der(result);
result = result - h;

}

return result;

}

float sqrt_nolookup(float x) {
float result, h;
int i, tablePosition;

result = x;
for ({
result = x;

for (1 =0; 1<40; 1 =1+ 1) {
h = (sg_fn(result) - x) / sqg_der(result);
result = (result - h);
+
return result;
}i<i;i=0) |
h = (sg_fn(result) - x) / sg_der(sq_fn(result));
X5
}

return x;

A.1 Math Algorithms ...... 183
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Listing A.1: Best found version of square
root Java.

Listing A.2: Best found version of square
root lookup table.

Listing A.3: Best found version of square
root regular.
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Listing A.4: Best found version of cube
root.

Listing A.5: Best found version of super
root.

Listing A.6: Best found version of inverse
square root.

Listing A.7: Best found version of loga-
rithm 10.
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float cbrt(float x) {
float result, h;
int i, tablePosition;
result = x;
for (1 =0; 1i<50; 1i=1+1) {
h = (result *x result);

{

h = (result * result * result - x) / (3 * result x*

result);
result = result - h;

}

return result;

}

float surt(float x) {
float result, h;
int i, tablePosition;
result = x;
for (1 =4; 1i<60; 1i=1+1) {

h = (result * result *x result *x result - x) / (4 x

result * result *x result);
result = result - h;

}

return result;

}

float invSqrt(float x) {

float result, h;

int i, tablePosition;

result = x;

for (i =1; i+1i+1<50;i=1+1) {
h = (result * result - x) / (2 * result);
result = result - h;

}

return 1 / result;

}

float log(float x) {
float result, h;
int i, tablePosition;
result = x / 100;

h = (powf(10.0, result) - x) / (powf(10.0, result) x*

2.3025851249694824) ;

h = (powf(10.0, result) - x) / (powf(10.0, result) * h);

while (abs(h) > 9.999999974752427E-7) {
h = (powf(10.0, result) - x) / (powf(l10.0,
2.3025851249694824) ;
result = result - h;

}

return result;

result) x
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float ln(float x) {

float result, h;

int i, tablePosition;

result = x / 100;

h = powf(2.7182817459106445, result);

result = result - h;

while (abs(h) > 9.999999974752427E-7) {
h = (powf(2.7182817459106445, result) - x) /

(powf(2.7182817459106445, result));

result = result - h;

}

return result;

}

A.2 Sorting Algorithms

array bubbleSort(int x[], int len) {

int i, j, tmp;
for (1 =0; i<1len; i=1+1) {
for (j =0; j<len -1 -1; =3+ 1) {
if(x[j1 > x[j+1]1) {
tmp = x[j];
x[31 = x[j+1];
x[j+1] = tmp;
1
}
b
return Xx;
}

array heapSort(int x[], int len) {
int i, j, tmp;

i=1;
tmp = x[0];
while (i < len) {
if (2) {
j=1i;
while (x[j] > x[(j - 1) / 2]) {
tmp = x[j];
x[j1 = x[(j - 1) / 2];
x[(j - 1) / 2] = tmp;
i=0G-17/72
}
}
i=1+1;
}

i=Tlen - 1;
while (i > 0) {

int tmp;
tmp = x[0];
x[0] = x[i];

x[i] = tmp;
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Listing A.8: Best found version of loga-
rithm naturalis.

Listing A.9: Best found version of bubble
sort.

Listing A.10: Best found version of heap
sort.

A. PERFORMANCE

Ortimizep FuNcTIiONS



A. PERFORMANCE

Ortimizep FuNcTiONS

186 | A. Performance Optimized Functions

Listing A.11: Best found version of inser-
tion sort.

Listing A.12: Best found version of merge
sort.
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j=0;
int index;
index = 1;

while (index < i) {
index = (2 * j + 1);
if (index < i) {
if (x[index] < x[index + 1] && (2 * j + 1) < (i -
1)) {
index = index + 1;
}
if (x[j] < x[index] && 1) {
tmp = x[j];
x[j] = x[index];
x[index] = tmp;

}
j = index;
}
}
i=1i-1;
}
return x;

}

array insertionSort(int x[], int len) {
int i, j;
for (1 =1; i < len; i
for (j =1i; j > 0; j
if(x[j1 < x[j-11){
int tmp;
tmp = x[j1;
x[31 = x[j-11;
x[j-1] = tmp;

i+1) ¢
j-1DA

}

}

return Xx;

}

array mergeSort(int x[], int len) {
int sz, lo;
for (sz = 1; sz < len; sz = sz + sz) {
for (lo = 0; 1o < (len - 1); 1o = 1o + sz + sz) {
int mid, hi;
hi = lo + sz + sz - 1;
if (len - 1 < hi) {
hi = len - 1;

}
mid = 1o + sz - 1;
merge(x, lo, mid, hi, len);

}

return Xx;
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array mergeSortInlined(int x[], int len) {

int aux[len];
int sz, lo;

for (sz =1; sz < len; sz = sz + sz) {
for (lo = 0; 1o < len - sz; lo = 1lo + sz + sz) {

int i, j, mid, hi, k;

hi = lo + sz + sz - 1;

if (len - 1 < hi) {
hi = len - 1;

}

mid = 1o + sz - 1;

i = lo;

j =mid + 1;

for (k = lo; k <= hi; k =
aux[k] = x[k];

}

for (k = lo; k <= hi; k =

if (i > mid) {
// this branch is removed;
} else {
if (j > hi) {
x[k] = aux[i];
i=1i+1;
} else {
if (aux[j] < aux[i]) {
x[k] = aux[jl;

=i+
} else {
x[k] = aux[i];
i=1i+1;
}
}
}
}
}
}
return x;

array quickSort(int x[], int len) {
int 1, h;
1 =0;
h =1len - 1;
int stack[h - 1 + 1];
int top;
top = 0;
stack[top] = 1;
top = top + 1;
stack[top] = h;
while (top >= 0) {
h = stack[top];
top = top -1;

k +1) {

k + 1) {
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Listing A.13: Best found version of merge
sort inlined.

Listing A.14: Best found version of quick
sort.
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Listing A.15: Best found version of quick
sort inlined.
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1 = stack[top];

top = top -1;

int p;

p = partition(x, 1, h);

if (p-1>1) {
top = top + 1;
stack[top] = 1;
top = top + 1;
stack[top] = p - 1;

}

if (p+1<h) {
top = top + 1;
stack[top] = p + 1;
top = top + 1;
stack[top] = h;

}

return x;

array quickSortInlined(int x[], int 1len)
int 1, h;
1=0;
h len - 1;
int stack[h - 1 + 1];
int top;
top = -1;
top = top + 1;
cont = 0;
top = top + 1;
stack[top] = h;
while (top >= 0) {
h = stack[top];
top = top -1;
1 = stack[top];
top = top -1;
int p;
int i, j, v;
i=1;
j=h+1;
v = x[1];
int cont, contl, cont2;
cont = 1;
while (cont) {
contl = 1;
i=1+1;
while(x[1i] < v && contl) {
if (1 == h) {
contl = 0;
} else {
i=1i+1;
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cont2 = 1;
while(v < x[j] && cont2) {
if (j == 1) {
cont2 = x[jl;
} else {
i=3-5
}
}
if (i >=3) {
cont = 0;
} else {
int tmp;
tmp = x[1i];
x[i] = x[jl;
x[j1 = tmp;

A. PERFORMANCE

}

int tmp;

tmp = x[1];

x[1] = x[j];

x[j1 = tmp;

p=17;

if (p-1>1) {
top = top + 1;
stack[top] = 1;
top = top + 1;
stack[top] =p - 1;

}

if (p+1<h) {
top = top + 1;
stack[top] = p + 1;
top = top + 1;
stack[top] = h;

}

}
return x;

}

array selectionSort(int x[], int len) { Listing A.16: Best found version of selec-
int i: tion sort.
for (1 =0; i<1len; 1i=1+1) {
int min, j;
min = i;
for (j =i+ 1; j<len; j =3 +1){
if (x[j] < x[min]) {
min = j;
}
}
int tmp;
tmp = x[il;
X[1] = x[min];
x[min] = tmp;
}

return x;
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Listing A.17: Best found version of shaker
sort.

Listing A.18: Best found version of shell
sort.

17|}
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array shakerSort(int x[], int len) {
int i, swapped, cont,j, tmp;
cont = 1;
for (1 =0; i < (len / 2) && cont; {
swapped = 0;

for (j =1i; j<len -1i-1;3j=3+1){

if (x[j] > x[j + 11) {
tmp = x[j1;
x[j] = x[j + 11;
x[j + 11 = tmp;
swapped = 1;
}
}
for (j=len -2 -3 +1; j>1i; j =1
if (x[j] < x[j - 11) {
tmp = x[j];
x[j1 = x[j - 11;
x[j - 11 = tmp;
swapped = 1;
}
}
if (!(swapped)) {
cont = 0;
}
A
swapped = 0;
for (len / 2; j > x[jl; j =3 - 1) {
if (x[j] < x[j - 11) {
tmp = x[j];
x[j1 = x[j - 1I;
x[j - 11 = tmp;
}

}

return x;

}

array shellSort(int x[], int len) {
int h, i, j, cont, tmp;

h =1;
while (h >= 1) {
i = h;
while (i < len) {
j =i

cont = len - i
while (j >= h && cont) {
if (x[j1 < x[j - h]) {
tmp = x[jl;
x[j1 = x[j - hl;
x[j - h] = tmp;
i=3-h;
} else {

- 1)
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}

return x;

}

A.3 Neural Networks

array nn_relu(int numTrainingSets, float output[], float
training_inputs[][], float training_outputs[]1[]) {
const int numInputs = 2;
const int numHiddenNodes = 5;
const int numOutputs = 1;
const float 1r = 0.10000000149011612;
int i, j, k, n, x;
float activation;
// declare the matrices
float hiddenLayer[numHiddenNodes];
float hiddenLayerBias[numHiddenNodes];
float outputLayerBias[numQutputs];
float hiddenWeights[numInputs][numHiddenNodes];
float outputWeights[numHiddenNodes] [numQutputs];
float outputLayer[numOutputs];
// declare training data
int trainingSetOrder[numTrainingSets];
for (i=0; i<numTrainingSets; i =i + 1) {
trainingSetOrder[i] = 1i;
}
// randomly init the NN
for (i=0; i<numInputs; i =1 + 1) {
for (j=0; j<numHiddenNodes; j = j + 1) {
hiddenWeights[i][j] = init_weight();
}
}
for (i=0; i<numHiddenNodes; i =i + 1) {
hiddenLayerBias[i] = init_weight();
for (j=0; j<numOutputs; j =j + 1) {
outputWeights[i][j] = init_weight();
}
}
for (i=0; i<numOutputs; i =1 + 1) {
outputLayerBias[i] = init_weight();
}
// train
for (n =0; n<1000; n=n + 1) {
shuffle(trainingSetOrder, numTrainingSets);
// train for each training value
for (x = 1; x < numTrainingSets; x = x + 1) {
i = trainingSetOrder[x];
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Listing A.19: Best found version of recti-
fied linear activation.
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41 // forward pass

42 for (j = 0; j < numHiddenNodes; j = j + 1) {

43 activation = hiddenLayerBias[j];

44 for (k = 0; k < numInputs; k = k + 1) {

45 activation = activation + training_inputs[i][k]
*x hiddenWeights[k][j];

46 }

47 if (activation > 0) {

48 hiddenLayer[j] = activation;

49 } else {

50 hiddenLayer[j] = 0.0;

51 }

52 }

53 for (j = 0; j < numOutputs; j =j + 1) {

54 activation = outputlLayerBias[j];

55 for (k = 0; k < numHiddenNodes; k = k + 1) {

56 activation = activation + hiddenLayer[k] x*
outputWeights[k][]j];

57 }

58 if (activation > 0) {

59 outputlLayer[j] = activation;

60 } else {

61 outputLayer[j] = 0.0;

62 }

63 }

64 // backwards propagation

65 float deltaOutput[numOutputs];

66 for (j = 0; j < numOutputs; j = 3j + 1) {

67 float errorOutput;

68 errorOutput = training_outputs[i][j] -
outputLayer[j];

69 if (outputLayer[j]l > 0) {

70 deltaOutput[j] = errorOutput * 0.5;

71 } else {

72 deltaOutput[j] = 0.0;

73 }

74 }

75 float deltaHidden[numHiddenNodes];

76 for (j = 0; j < numHiddenNodes; j = j + 1) {

77 float errorHidden;

78 errorHidden = 0.0;

79 for (k = 0; k < numOutputs; k = k + 1) {

80 errorHidden = errorHidden + deltaOutput[k] *
outputWeights[j1[k];

81 }

82 if (hiddenLayer[j] > 0) {

83 deltaHidden[]j] = errorHidden * 0.5;

84 } else {

85 deltaHidden[j] = 0.0;

86 }

87 }

88 for (j = 0; j < numOutputs; j = j + 1) {

89 outputLayerBias[j] = outputLayerBias[j] +
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deltaOutput[j] * 1lr;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[k][j] = outputWeights[k][j] +
hiddenLayer[k]*deltaOutput[j]x*lr;
}
}
for (j = 0; j < numHiddenNodes; j = 3j + 1) {
hiddenLayerBias[j] = hiddenLayerBias[j] +
deltaHidden[j]*1r;
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k]l[j] +
training_inputs[i][k]*deltaHidden[]j]*1r;
}

}
// validate results
for (x = 0; x < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenlLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {
activation = activation + training_inputs[x][k] =*
hiddenWeights[k][j];
}
if (activation > 0) {
hiddenLayer[j] = activation;
} else {
hiddenLayer[j] = 0.0;
}
}
for (j = 0; j < numOutputs; j =j + 1) {
activation = outputlLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] =*
outputWeights[k][j];
}
if (activation > 0) {
outputLayer[j] = activation;

} else {
outputLayer[j] = 0.0;
}
output[x] = outputLayer[j];
}
}
sqrt(1.0);

}

array nn_lrelu(int numTrainingSets, float output[], float
training_inputs[][], float training_outputs[][]) {
const int numInputs = 2;
const int numHiddenNodes = 5;
const int numOutputs = 1;
const float 1r = 0.10000000149011612;
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Listing A.20: Best found version of linear
rectified activation.
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int i, j, k, n, x;

float activation;

// declare the matrices

float hiddenLayer[numHiddenNodes];

10| float hiddenLayerBias[numHiddenNodes];

11 float outputLayerBias[numOutputs];

12 float hiddenWeights[numInputs][numHiddenNodes];
13| float outputWeights[numHiddenNodes] [numOutputs];
14 float outputLayer[numOutputs];

15| // declare training data

16 int trainingSetOrder[numTrainingSets];

17 for (i=0; i<numTrainingSets; i =1 + 1) {

18 trainingSetOrder[i] = i;

19 }

20 // randomly init the NN

21 for (i=0; i<numInputs; i =1 + 1) {

© 0w N o

22 for (j=0; j<numHiddenNodes; j = j + 1) {
23 hiddenWeights[il[j] = init_weight();
24 }

25 }

26 for (i=0; i<numHiddenNodes; i =i + 1) {
27 hiddenLayerBias[i] = init_weight();

28 for (j=0; j<numOutputs; j =3 + 1) {
29 outputWeights[i][j] = init_weight();
30 }

31 }

32 for (i=0; i<numOutputs; i = 1)) {

33 outputLayerBias[i] = init_weight();

34 }

35 // train
36 for (n =0; n<1000; n=n+ 1) {

37 shuffle(trainingSetOrder, numTrainingSets);
38 // train for each training value
39 for (x = 0; x < ((((.01) % (0.9 % 1r)) / (0.5 - ((0.1

+ 0.6) * 0.2))) <= (((0.20000000298023224 + 1r) /
0.699999988079071) + ((0.699999988079071 !=
.20000000298023224) + (j / 2))))); x =x + 1) {

40 i = trainingSetOrder[x];

41 // forward pass

42 for (j = 0; j < numHiddenNodes; j = j + 1) {

43 activation = hiddenlLayerBias[j];

44 for (k = 0; k < numInputs; k = k + 1) {

45 activation = activation + training_inputs[i][K]
* hiddenWeights[k][j];

46 }

47 if (activation *x 0.1 < activation) {

48 hiddenLayer[j] = activation;

49 } else {

50 hiddenLayer[j] = 0.1 x activation;

51 }

52 }

53 for (j = 0; j < numOutputs; j = j + 1) {

54 activation = outputlLayerBias[j];
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for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] *
outputWeights[k][j];
}
if (activation * 0.1 < activation) {
outputLayer[j] = activation;
} else {
outputLayer[j] = 0.1 * activation;
}
}
// backwards propagation
float deltaOutput[numOutputs];
for (j = 0; j < numOutputs; j =j + 1) {
float errorOutput;
errorOutput = training_outputs[il[j] -
outputLayer[j];
if (outputLayer[j] > 0) {
deltaOutput[j] = errorQutput;
} else {
deltaOutput[j]
}
}
float deltaHidden[numHiddenNodes];
for (j = 0; j < numHiddenNodes; j = 3j + 1) {
float errorHidden;
errorHidden = 0.0;
for (k = 0; k < numOutputs; k = k + 1) {
errorHidden = errorHidden + deltaOutput[k] *
outputWeights[j]1[Kk];
}
if (hiddenLayer[j] > 0) {
deltaHidden[j] = errorHidden;
} else {
deltaHidden[j] = errorHiddenx 0.01;
}
b
for (j = 0; j < numOutputs; j =j + 1) {
outputLayerBias[j] = outputLayerBias[j] +
deltaOutput[j] * 1r;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[k][j] = outputWeights[k][j] +
hiddenLayer[k]xdeltaOutput[jlx*lr;
}
}
for (j = 0; j < numHiddenNodes; j =j + 1) {
hiddenLayerBias[j] = hiddenLayerBias[j] +
deltaHidden[j]*1lr;
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k][j] +
training_inputs[i] [k]*deltaHidden[j]*1r;
}
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errorQutput * 0.01;
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101 }
102 // validate results
103 for (x = 0; X < numTrainingSets; x = x + 1) {

104 // forward pass

105 for (j = 0; j < numHiddenNodes; j = j + 1) {

106 activation = hiddenLayerBias[j];

107 for (k = 0; k < numInputs; k = k + 1) {

108 activation = activation + training_inputs[x][k] =*
hiddenWeights[k]l[j];

109 }

110 if (activation * 0.1 < activation) {

111 hiddenLayer[j] = activation;

112 } else {

113 hiddenLayer[j] = 0.1 * activation;

114 }

115 }

116 for (j = 0; j < numOutputs; j =j + 1) {

117 activation = outputlLayerBias[j];

118 for (k = 0; k < numHiddenNodes; k = k + 1) {

119 activation = activation + hiddenLayer[k] x*
outputWeights[k][]j];

120 }

121 if (activation * 0.1 < activation) {

122 outputLayer[j] = activation;

123 } else {

124 outputLayer[j] = 0.1 * activation;

125 }

126 output[x] = outputLayer[jl;

127 }

128 }

129 return output;

130 }

LﬁﬁnglAlliBeﬁfoundvemkﬂlofﬁg' 1|array nn_sigmoid(int numTrainingSets, float output[],

moid. float training_inputs[][], float training_outputs[]1[])
{

const int numInputs = 2;

const int numHiddenNodes = 5;

const int numOutputs = 1;

const float 1r = 0.5;

int i, j, k, n, x;

float activation;

// declare the matrices

float hiddenLayer[numHiddenNodes];

float hiddenLayerBias[numHiddenNodes];

float outputLayerBias[numOutputs];

float hiddenWeights[numInputs][numHiddenNodes];

float outputWeights[numHiddenNodes][numOutputs];

float outputLayer[numQutputs];

// declare training data

int trainingSetOrder[numTrainingSets];

for (i=0; i<numTrainingSets; i =1 + 1) {
trainingSetOrder[i] = 1i;

}
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// randomly init the NN
for (i=0; i<numInputs; i =1 + 1) {
for (j=0; j<numHiddenNodes; j = j + 1) {
hiddenWeights[i][j] = init_weight();
}
1
for (i=0; i<numHiddenNodes; i =i + 1) {
hiddenLayerBias[i] = init_weight();
for (j=0; j<numOutputs; j =3 + 1) {
outputWeights[i][]j] = init_weight();
}
1
for (i=0; i<numOutputs; i =1 + 1) {
outputLayerBias[i] = init_weight();
}
// train
for (n =0; n<1000; n=n+ 1) {
shuffle(trainingSetOrder, numTrainingSets);
// train for each training value
for (x = 0; X < numTrainingSets; x = x + 1) {
i = trainingSetOrder[x];
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {

activation = activation + training_inputs[i][K]

*x hiddenWeights[k][j1;
}

hiddenLayer[j] = 1 / (1 + exp(-activation));

b
for (j = 0; j < numOutputs; j = j + 1) {
activation = outputLayerBias[j];

for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenlLayer[k] x*

outputWeights[k][j];
}

outputLayer[j] =1 / (1 + exp(-activation));

}
// backwards propagation
float deltaOutput[numQutputs];
for (j = 0; j < numQutputs; j =] + k + 1) {
float errorQOutput;
errorOutput = training_outputs[i][j] -
outputLayer[j];
deltaOutput[j] = errorQutput * 1 * (1 -
outputLayer[jl);
}
float deltaHidden[numHiddenNodes];
for (j = 0; j < numHiddenNodes; j = j + 1) {
float errorHidden;
errorHidden = 0.0;
for (k = 0; k < numOutputs; k = k + 1) {

errorHidden = errorHidden + deltaOutput[k]
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Listing A.22: Best found version of swish.
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outputWeights[j1[k];
}
deltaHidden[j] = errorHidden * hiddenLayer[j] * (1
- hiddenLayer[jl);
}
for (j = 0; j < numOutputs; j =j + 1) {
outputLayerBias[j] = outputLayerBias[j] +
deltaOutput[j] * 1r;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[k][j] = outputWeights[k][j] +
hiddenLayer[k]*deltaOutput[j]*lr;
}
}
for (j = 0; j < numHiddenNodes; j = j + 1) {
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k][j] +
training_inputs[i][k]*deltaHidden[j]x1lr;
}

}
// validate results
for (x = 0; X < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {
activation = activation + training_inputs[x][k] =*
hiddenWeights[k]l[j];
}
hiddenLayer[j] = numHiddenNodes / (1 +
exp(-activation));
}
for (j = 0; j < numOutputs; j =3 + 1) {
activation = outputlLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] x*
outputWeights[kl[j1;
}
outputLayer[j] =1 / (1 + exp(-activation));
output[x] = outputLayer[j];
1
}
return output;

}

array nn_swish(int numTrainingSets, float output[], float
training_inputs[][], float training_outputs[][]) {
const int numInputs = 2;
const int numHiddenNodes = 5;
const int numOutputs = 1;
const float lr = 0.30000001192092896;
int i, j, k, n, x;
float activation;
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// declare the matrices
float hiddenLayer[numHiddenNodes];
float hiddenLayerBias[numHiddenNodes];
float outputLayerBias[numQutputs];
float hiddenWeights[numInputs][numHiddenNodes];
float outputWeights[numHiddenNodes][numOutputs];
float outputLayer[numOutputs];
// declare training data
int trainingSetOrder[numTrainingSets];
for (i=0; i<numTrainingSets; i =i + 1) {
trainingSetOrder[i] = 1i;
}
// randomly init the NN
for (i=0; i<numInputs; i =1 + 1) {
for (j=0; j<numHiddenNodes; j = j + 1) {
hiddenWeights[i][j] = init_weight();
}
}
for (i=0; i<numHiddenNodes; i =i + 1) {
hiddenLayerBias[i] = init_weight();
for (j=0; j<numOutputs; j =j + 1) {
outputWeights[i][j] = init_weight();
}
}
for (i=0; i<numOQutputs; i =1 + 1) {
outputLayerBias[i] = init_weight();
}
// train
for (n =0; n<1000; n=n + 1) {
output = training_output;
}
// validate results
for (x = 0; X < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {

activation = activation + training_inputs[x][k] =*

hiddenWeights[k][j];
b

hiddenLayer[j] = activation / (1 + exp(-activation));

}
for (j = 0; j < numOutputs; j =j + 1) {
activation = outputLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] =*
outputWeights[k]l[j];
}

outputLayer[j] = activation / (1 + exp(-activation));

output[x] = outputLayer[j];
}
}

return output;

A.3 Neural Networks

199

A. PERFORMANCE

Ortimizep FuNcTIiONS



A. PERFORMANCE
Or1imizED FUNCTIONS

200 | A. Performance Optimized Functions

59|}

Listing A.23: Best found version of tanh. 1| grray nn_tanh(int numTrainingSets, float output[], float
training_inputs[][], float training_outputs[][]) {

const int numInputs = 2;

const int numHiddenNodes = 5;

const int numOutputs = 1;

const float 1r = 0.30000001192092896;

int i, j, k, n, x;

float activation;

// declare the matrices

float hiddenLayer[numHiddenNodes];

10 float hiddenLayerBias[numHiddenNodes];

11 float outputLayerBias[numOutputs];

12 float hiddenWeights[numInputs][numHiddenNodes];

13 float outputWeights[numHiddenNodes][numOutputs];

14 float outputLayer[numOutputs];

15 // declare training data

16 int trainingSetOrder[numTrainingSets];

17 for (i=0; i<numTrainingSets; i = i + 1) {

18 trainingSetOrder[i] = i;

19 }

201 // randomly init the NN

21 for (i=0; i<numInputs; i =1 + 1) {

A wN

© o N o wu

22 for (j=0; j<numHiddenNodes; j = j + 1) {
23 hiddenWeights[i]l[j] = init_weight();
24 }

25 }

26 for (i=0; i<numHiddenNodes; i =i + 1) {
27 hiddenLayerBias[i] = init_weight();

28 for (j=0; j<numOutputs; j =3 + 1) {
29 outputWeights[i][j] = init_weight();
30 }

31 }

32 for (i=0; i<numOutputs; i =1 + 1) {

33 outputlLayerBias[i] = init_weight();
4}

35 // train
36 for (n =0; n<1000; n=n+ 1) {

37 shuffle(trainingSetOrder, numTrainingSets);

38 // train for each training value

39 for (x = 0; X < numTrainingSets; x = x + 1) {

40 i = trainingSetOrder[x];

41 // forward pass

42 for (j = 0; j < numHiddenNodes; j = j + 1) {

43 activation = hiddenLayerBias[j];

44 for (k = 0; k < numInputs; k = k + 1) {

45 activation = activation + training_inputs[i][K]
* hiddenWeights[kI[j];

46 }

47 hiddenLayer[j] = (exp(activation) -

exp(-activation)) / (exp(activation) +
exp(-activation));
48 }
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for (j = 0; j < numQutputs; j = + 1) {
activation = outputLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] x*
outputWeights[kIl[j1;
}
outputLayer[j] = (exp(activation) -
exp(-activation)) / (exp(activation) +
exp(-activation));
}
// backwards propagation
float deltaOutput[numOutputs];
for (j = 0; j < numOutputs; j =j + 1) {
float errorOutput;
errorOutput = training_outputs[il[j] -
outputLayer[j];
deltaOutput[j] = errorOutput * (1 - (0.6 + ((0.9 %
0.1) *x (0.1 / 0.4))));
}
float deltaHidden[numHiddenNodes];
for (j = 0; j < numHiddenNodes; j = j + 1) {
float errorHidden;
errorHidden = 0.0;
for (k = 0; k < numOutputs; k = k + 1) {
errorHidden = errorHidden + deltaOutput[k] *
outputWeights[j][k];
}
deltaHidden[j] = errorHidden * (1 -
(hiddenLayer[j] * hiddenLayer[j]1));
}
for (j = 0; j < numQutputs; j = + 1) {
outputLayerBias[j] = outputlLayerBias[j] +
deltaOutput[j] * 1lr;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[kl[j] = outputWeights[k]l[j] +
hiddenLayer[k]*deltaOutput[j]*Llr;
}
}
for (j = 0; j < numHiddenNodes; j = j + 1) {
hiddenLayerBias[j] = hiddenLayerBias[j] +
deltaHidden[j]*1r;
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k][j] +
training_inputs[i] [k]*deltaHidden[]j]*1r;
}

A. PERFORMANCE

}
}

// validate results
for (x = 0; X < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
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91 for (k = 0; k < numInputs; k = k + 1) {

92 activation = activation + training_inputs[x][k] *
hiddenWeights[k]l[j];

93 }

94 hiddenLayer[j] = (exp(activation) -

exp(-activation)) / (exp(activation) +
exp(-activation));

95 }

9% for (j = 0; j < numHiddenNodes; j = j + 1) {

97 activation = outputLayerBias[j];

98 for (k = 0; k < numHiddenNodes; k = k + 1) {

99 activation = activation + hiddenLayer[k] =*
outputWeights[k][j];

100 }

101 outputLayer[j] = (exp(activation) -

exp(-activation)) / (exp(activation) +
exp(-activation));

102 output[x] = outputLayer[jl;
103 }

104 }

105 return output;

106 | }

Listing A.24: Best found version of the
fully inlined neural network using swish.

=

array nn_fullinline(int numTrainingSets, float output[],

float training_inputs[][], float training_outputs[]1[])
{

const int numInputs = 2;

const int numHiddenNodes = 5;

const int numOutputs = 1;

const float 1r = 0.30000001192092896;

int i, j, k, n, x;

float activation;

// declare the matrices

float hiddenLayer[numHiddenNodes];

float hiddenLayerBias[numHiddenNodes];

float outputLayerBias[numOutputs];

float hiddenWeights[numInputs][numHiddenNodes];

float outputWeights[numHiddenNodes][numOutputs];

float outputLayer[numQutputs];

// declare training data

int trainingSetOrder[numTrainingSets];

for (i=0; i<numTrainingSets; i =1 + 1) {
trainingSetOrder[i] = 1i;

}

// randomly init the NN

for (i=0; i<numInputs; i =1 + 1) {
for (j=0; j<numHiddenNodes; j = j + 1) {

hiddenWeights[i][j] = rand() / 32767.0;

}

}

for (i=0; i<numHiddenNodes; i =i + 1) {
hiddenlLayerBias[i] = rand() / 32767.0;
for (j=0; j<numOutputs; j =3 + 1) {

outputWeights[i][j] = rand() / 32767.0;
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}
for (i=0; i<numOutputs; i =1 + 1) {
outputLayerBias[i] = rand() / 32767.0;
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)
// train
for (n =0; n < 1000; n = n + numHiddenNodes) {
int i;
for (1 = 0; i < numTrainingSets - 1; i =1 + 1) {
int j, t;
j =1+ (int)(rand() / (32767.0 / (numTrainingSets -
i) +1));

t = trainingSetOrder[j];
trainingSetOrder[j] = trainingSetOrder[i];
trainingSetOrder[i] = t;
}
// train for each training value
for (x = 0; x < numTrainingSets; x = x + 1) {
i = trainingSetOrder[x];
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {
activation = activation + training_inputs[i][k]
* hiddenWeights[k]l[j];
}
hiddenLayer[j] = activation / (1 +
exp(-activation));
}
for (j = 0; j < numOutputs; j =3j + 1) {
activation = outputlLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[Kk] *
outputWeights[k]l[j];
}
outputLayer[j] = activation / (1 +
exp(-activation));
}
// backwards propagation
float deltaOutput[numQutputs];
for (j = 0; j < numQutputs; j = + 1) {
float errorQOutput;
errorOutput = training_outputs[i][j] -
outputLayer[j];
deltaOutput[j] = errorQutput * ((1 -
outputLayer[j]l) / (1 + exp(-outputLayer[j])) +
outputLayer[j]);
}
float deltaHidden[numHiddenNodes];
for (j = 0; j < numHiddenNodes; j = 3j + 1) {
float errorHidden;
errorHidden = 0.0;
for (k = 0; k < numOutputs; k = k + 1) {
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Listing A.25: Best found version of the
neural network having all activation func-
tions available.
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errorHidden = errorHidden + deltaOutput[k] *
outputWeights[j][k];
}
deltaHidden[j] = errorHidden x ((1 -
hiddenLayer[j]) / (1 + exp(-hiddenLayer[jl1)) +
hiddenLayer([j]);
}
for (j = 0; j < numOutputs; j =3j + 1) {
outputLayerBias[j] = outputLayerBias[j] +
deltaOutput[j] * lr;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[k][j] = outputWeights[k][j] +
hiddenLayer[k]*deltaOutput[jlx*lr;
}
}
for (j = 0; j < numHiddenNodes; j = j + 1) {
hiddenLayerBias[j] = hiddenLayerBias[j] +
deltaHidden[j]*1r;
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k][j] +
training_inputs[i] [k]*deltaHidden[]j]*1r;
b

}
// validate results
for (x = 0; x < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {
activation = activation + training_inputs[x][k] =*
hiddenWeights[k][j];
}
hiddenLayer[j] = activation / (1 + exp(-activation));
1
for (j = 0; j < numOutputs; j = 1) {
activation = outputlLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[k] x*
outputWeights[k][]j];
}
outputLayer[j] = activation / (1 + exp(-activation));
output[x] = outputLayer[j];
}
b
return output;

}

array nn_options(int numTrainingSets, float output[],
float training_inputs[][], float training_outputs[]1[])
{
const int numInputs = 2;
const int numHiddenNodes = 5;
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const int numOutputs = 1;
const float 1r = 0.30000001192092896;
int i, j, k, n, x;
float activation;
// declare the matrices
float hiddenLayer[numHiddenNodes];
float hiddenLayerBias[numHiddenNodes];
float outputLayerBias[numOutputs];
float hiddenWeights[numInputs][numHiddenNodes];
float outputWeights[numHiddenNodes] [numOutputs];
float outputLayer[numOutputs];
// declare training data
int trainingSetOrder[numTrainingSets];
for (i=0; i<numTrainingSets; i =i + 1) {
trainingSetOrder[i] = 1i;
}
// randomly init the NN
for (i=0; i<numInputs; i =1 + 1) {
for (j=0; j<numHiddenNodes; j = j + 1) {
hiddenWeights[i][j] = init_weight();
}
}
for (i=0; i<numHiddenNodes; i =1 + 1) {
hiddenLayerBias[i] = init_weight();
for (j=0; j<numOutputs; j =j + 1) {
outputWeights[i][j] = init_weight();
}
}
for (i=0; i<numOutputs; i =1 + 1) {
outputLayerBias[i] = init_weight();
}
// train
for (n =0; n<1000; n=n+ 1) {
shuffle(trainingSetOrder, numTrainingSets);
// train for each training value
for (x =0; x<1; x=x+1) {
i = trainingSetOrder[x];
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {

activation = activation + training_inputs[i][K]

x hiddenWeights[k][j]1;
}
hiddenLayer[j] = actFn(activation);
b
for (j = 0; j < numOutputs; j =j + 1) {
activation = outputlLayerBias[j];

for (k = 0; k < numHiddenNodes; k = k + 1) {
activation = activation + hiddenLayer[Kk] x*

outputWeights[k][j];
}

outputLayer[j] = actFn(activation);
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}
// backwards propagation
float deltaOutput[numOutputs];
for (j = 0; j < numOutputs; j =j + 1) {
float errorOutput;
errorQutput = training_outputs[i][j] -
outputLayer[j];
deltaOutput[j] = errorQutput *
dActFn(outputLayer[jl);
}
float deltaHidden[numHiddenNodes];
for (j = 0; j < numHiddenNodes; j = j + 1) {
float errorHidden;
errorHidden = 0.0;
for (k = 0; k < numQutputs; k = k + 1) {
errorHidden = errorHidden + deltaOutput[Kk] *
outputWeights[j1[k];
}
deltaHidden[j] = errorHidden x*
dActFn(hiddenLayer[j]);
}
for (j = 0; j < numOutputs; j =j + 1) {
outputLayerBias[j] = outputLayerBias[j] +
deltaOutput[j] * 1lr;
for (k = 0; k < numHiddenNodes; k = k + 1) {
outputWeights[k][j] = outputWeights[k][j] +
hiddenLayer[k]xdeltaOutput[j]x*lr;
}
}
for (j = 0; j < numHiddenNodes; j = j + 1) {
hiddenLayerBias[j] = hiddenLayerBias[j] +
deltaHidden[j]*1r;
for(k = 0; k<numInputs; k = k + 1) {
hiddenWeights[k][j] = hiddenWeights[k][]j] +
training_inputs[i] [k]*deltaHidden[j]*1lr;
}

}
// validate results
for (x = 0; x < numTrainingSets; x = x + 1) {
// forward pass
for (j = 0; j < numHiddenNodes; j = j + 1) {
activation = hiddenLayerBias[j];
for (k = 0; k < numInputs; k = k + 1) {
activation = activation + training_inputs[x][k] =*
hiddenWeights[k]l[j];
}
hiddenLayer[j] = actFn(activation);
}
for (j = 0; j < numOutputs; j =1+ 1) {
activation = outputLayerBias[j];
for (k = 0; k < numHiddenNodes; k = k + 1) {
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activation = activation + hiddenLayer[k] =*

outputWeights[k][j];
}

outputLayer[j] = actFn(activation);
output[x] = outputlLayer[j];

}

return output;
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