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Abstract

Understanding the internal functioning of evolutionary algorithms is an essential require-
ment for improving their performance and reliability. Increased computational resources
available in current mainstream computers make it possible for new previously infeasible
research directions to be explored. Therefore, a comprehensive theoretical analysis of
their mechanisms and dynamics using modern tools becomes possible. Recent algorithmic
achievements like offspring selection in combination with linear scaling have enabled
genetic programming (GP) to achieve high quality results in system identification in less
than 50 generations using populations of only several hundred individuals. Therefore, the
active gene pool of evolutionary search remains manageable and may be subjected to new
theoretical investigations closely related to genetic programming schema theories, building
block hypotheses and bloat theories.

Genetic algorithms emulate emergent systems in which complex patterns are formed
from an initially simple and random pool of elementary structures. In GP, complexity
emerges under the influence of stabilizing selection which preserves the useful genetic
variation created by recombination and mutation. The mapping between the structures
used for solution representation and the ones used for the evaluation of fitness has a
major influence on algorithm behavior. Population-wide effects concerning building
blocks, genetic diversity and bloat can be conceptually seen as results of the complex
interaction between phenotypic operators (selection) and genotypic operators (mutation
and recombination). This coupling known as the “variation-selection loop” is the main
engine for GP emergent behavior and constitutes the main topic of this research.

This thesis aims to provide a unified theoretical framework which can explain GP
evolution. To this end, it explores the way in which the genotype-phenotype map, in
relation with the evolutionary operators (selection, recombination, mutation) determines
algorithmic behaviour. As the title suggests, the main contribution consists of a novel
“tracing” framework that makes it possible to determine the exact patterns of building block
and gene propagation through the generations and the way smaller elements are gradually
assembled into more complex structures by the evolutionary algorithm.
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Zusammenfassung

Um die Leistung und Zuverléssigkeit von evolutionédren Algorithmen zu verbessern, ist
es notwendig deren interne Funktionsweise zu verstehen. Die hohe Rechenleistung aktuel-
ler Mainstream-Computer erlaubt neue Forschungsrichtungen zu erkunden, welche friiher,
aufgrund fehlender Rechenleistung, nicht moglich waren. Fiir evolutionidre Algorithmen
wird es dadurch moglich, deren interne Mechaniken und Dynamiken umfangreich zu
analysieren. Aktuelle algorithmische Fortschritte, wie Nachkommensselektion (Offspring
Selection) in Kombination mit linearer Skalierung, ermoglicht Genetischer Programmie-
rung (GP) hochqualitative Ergebnisse in der Systemidentifikation zu erreichen, in weniger
als 50 Generationen bei einer Populationsgrofie von nur wenigen hunderten Individuen.
Der dadurch iiberschaubare aktive Genpool der evolutiondren Suche ermdoglicht neue
theoretische Untersuchungen zum GP Schema Theorem, zur Baustein Hypothese und zu
Bloat-Theorien.

Genetische Algorithmen emulieren emergente Systeme in denen komplexe Muster ge-
formt werden, basierend auf einer initialen, zufillig generiertem Menge an elementaren
Strukturen. In GP entsteht die Komplexitiat durch den Einfluss der stabilisierenden Selek-
tion, welche niitzliche genetische Variation erhilt die von Rekombination und Mutation
erzeugt werden. Die Zuordnung zwischen Strukturen zur Losungsreprisentation (Ge-
notyp) und Fitnessevaluierung (Phanotyp) beeinflusst das algorithmische Verhalten stark.
Populationsweite Auswirkungen betreffend Bausteine, genetischer Diversitit und Bloat
entstehen durch das komplexe Zusammenwirken phianotypischen Operatoren (Selektion)
und genotypischen Operatoren (Rekombination und Mutation). Dieser Mechanismus, be-
kannt als ,Variation-Selektion Schleife”, ist die treibende Kraft des emergente Verhalten
von GP und bildet das Hauptforschungsthema dieser Arbeit.

Diese Arbeit zielt darauf ab, einen einheitlichen, theoretischen Rauem zu schaffen wel-
cher Evolution in GP erklaren kann. Dafiir wird der Einfluss von auf das algorithmische
Verhalten untersucht, basierend auf die Zuordnung von Genotyp und Phanotyp, unter
Beriicksichtigung der evolutionirer Operatoren (Selektion, Rekombination, Mutation). Wie
der Titel der Arbeit bereits andeutet, besteht der wichtigste Beitrag aus einem neuartigen
System zur Uberwachung und Riickverfolgung von Genen iiber mehrere Generationen
hinweg. Dies ermdoglicht es das Verhalten von Bausteinen zu erforschen, sowie zu erkunden
wie bei evolutiondren Algorithmen aus kleinen Elementen nach und nach komplexere
Strukturen gebildet werden.
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1 Introduction

1.1 Thesis Statement

Genetic programming (GP) ( , ) has been around for more than two decades.
Since its inception, it attracted many researchers, theoreticians and practitioners who were
able to successfully apply it to many problem domains. The working idea of GP is very
simple: evolve a population of computer programs using the principle of natural selection
until they become reasonably suitable, or sufficiently well-adapted (according to a specified
criteria or fitness measure) to solve a given problem.

From a computational standpoint, GP programs are usually represented by tree data
structures which facilitate evaluation (trees can be easily evaluated in a recursive manner)
and GP-specific operations such as crossover (subtree swap between trees) or mutation
(random modification of a node or subtree). From a biological perspective, the evolved
organisms’ tree-like genotypes are mapped to phenotypes represented by their numerical
evaluation. The most well-adapted phenotypes survive according to the laws of natural
selection and their corresponding genes are passed on to the next generation.

Despite its straightforward nature, aspects of the evolutionary process and its dynamics
remain still shrouded in mystery. In particular, the way genotype variation maps into
phenotype variation, known as the representation problem poses considerable difficulty
as it cannot be directly measured or quantified, although indirect frameworks based for
example on the concept of fitness landscape (a mapping from a configuration space into the
real numbers) can be used to examine its properties ( ) ;

, ).

The genotype-phenotype map (GP-map) plays an essential role in the population’s evolv-
ability, defined by ( : ) as “the ability of random variations
to sometimes produce improvement’, or the “propensity to vary” in the sense that the
genotype-phenotype map determines variability. Evolvability is directly connected to other
important properties such as robustness against genotypic perturbations, redundancy or
convergence rate. Intuitively, it describes a population’s potential to evolve within a certain
landscape, but not as a static property: on the contrary, the “evolution of evolvability”
represents an observable, albeit hard to quantify, emergent property of GP systems. (

, ) explains it as the emergent effect of indirect selection of genotypes based
on their phenotypic properties (when the potential to adapt becomes a target of evolu-
tion). Similarly, ( , ,b) shows that adaptation is an emergent property as
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evolvability changes during the algorithm run through the proliferation of sub-expressions
that have a higher chance of increasing fitness when added to programs. ( ) ;

, ) argue that evolvability is selectable and environmental selection
can improve the evolution of evolvability, accelerating evolution. They emphasize in this
context the importance of incorporating new knowledge from areas such as molecular
genetics, cell biology, or developmental biology towards the effort of understanding GP
and other evolutionary algorithms. Further, they explain GP emergent behavior through
the presence of top-down and bottom-up causal links between the selection mechanism
and the variation producing operators.

1.1.1 Research Objectives

In this context, the main objective of this thesis is to describe GP evolutionary dynam-
ics from a high-level perspective across the genotype-phenotype map—fitness landscape—
evolvability axis. In more concrete terms, the goal of this research is to gain a better
understanding of the evolutionary process, in particular to

¢ Provide a consistent and detailed treatment of GP as an emergent system centered
around evolvability

¢ Analyze the exact effects of genetic operators and their consequences on the genotype-
phenotype map, in terms of how they transform the randomly distributed initial
genetic information into more and more powerful solution candidates

¢ Analyze the search trajectories of evolutionary algorithms in different hypothesis
spaces for academic as well as real-world data mining applications.

o Investigate the evolvement of complete genealogical trees of solution candidates.

The insight obtained from the investigation of all the points above will, on the one hand,
reveal aspects of schema-theories for tree-based GP, and, on the other hand, help design
more powerful evolutionary algorithms and enable new application-oriented research
projects.

Another important objective, implicitly assumed in the pursuement of the above-mentioned
goals, is the development of a software framework that provides the necessary tools for
our analysis. The developed procedures and algorithms described in this work are made
public under an opensource license, as part of the HeuristicLab framework.

1.1.2 Main Results and Contribution

From the technical point of view, at the core of this approach lies a set of methods for
saving the full genealogy and hereditary information of a GP run in the form of genealogy
graphs. The core functionality is completed and enhanced by set of algorithms on genealogy
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graphs allowing the user to investigate in detail the afore-mentioned aspects of evolutionary
dynamics.
Therefore, the main contribution of this work is two-fold:

1) Firstly, it provides a comprehensive computational framework conveniently imple-
mented as a HeuristicLab plugin, for the analysis of GP evolutionary dynamics.

2) Secondly, it brings new insight into the field, obtained through the application of new
concepts and analysis methods on a selection of GP algorithms and test problems.

Technical Achievements

<

Automatic, online construction of population genealogy graphs.

<

Interactive visualization of lineages and genealogies.

<

State-of-the-art tree matching algorithms (isomorphism and pattern matching).

<

New structural and semantic diversity measures.

<

Tracing of the genetic origins of individuals.

<

Schema generation and matching.

<

Prototype implementation of new algorithmic improvements.

Conceptual Achievements

<

Integration with concepts from biology and population genetics.

<

Unified treatment of evolutionary dynamics as an emergent phenomenon.

<

Developmental approach using concepts from optimization theory (no free lunches)
and complexity theory (properties of the genotype-phenotype maps).

<

Analysis of genetic operator and search effectiveness.

<

New schema-based self-tuning algorithm preserving the balance between exploration
and exploitation.

1.1.3 Thesis Structure and Organization

Chapter 2 provides a theoretical introduction to optimization problems. Section 2.1
describes the basic optimization problem formulations in the continuous and discrete
domains and the fundamental notions in the optimization vocabulary. Section 2.2 provides
a theoretical introduction to algorithmic complexity and goes into more detail about the
semantics of “algorithms” and “heuristics”, with examples chosen to illustrate the main differ-
ences between exact and approximate solving methods. Section 2.3 defines metaheuristics
from an algorithmic perspective and discusses their role in the field of optimization. It also
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provides a taxonomy of existing metaheuristics based on their underlying metaphor or op-
timization paradigm. Section 2.4 discusses the theoretical properties of search algorithms
in the context of optimization, and the implications of these properties on metaheuristics
in general and on evolutionary algorithms in particular.

Chapter 3 is dedicated to modern evolutionary theory and to the topic of evolutionary
computation. Section 3.1 introduces natural selection and the development of the mod-
ern evolutionary synthesis centered around population genetics. Then it discusses the
developmental aspect of genetics and the importance of genes and genotype to phenotype
mappings. Section 3.2 describes the idea of artificial evolution and the main evolutionary
computation metaheuristics, with a focus on genetic algorithms and genetic algorithm
schema theorems.

With the groundwork laid down by the previous chapters, Chapter 4 goes into depth
on the topic of Genetic Programming (GP), describing in detail its particularities and
algorithmic components like the encoding and operators. Section 4.1 goes through the
most used encodings and discusses the design principles of suited representations as
seen in the literature. Section 4.2 describes the main operators required by a GP system,
covering existing state-of-the-art variants of each operator along with their advantages and
disadvantages. Typical problems ensuing in GP systems like loss of diversity, premature
convergence and the exploration-exploitation trade-off are also comprehensively treated.
Section 4.3 discusses GP schema theorems and the theoretical insights they provide, while
Section 4.4 discusses in a more general settings the importance of genotype-phenotype
maps and the fundamental properties of evolving systems such as emergence, evolvability
and robustness.

Chapter 5 introduces the analysis methods, methodology and algorithms representing
the main contribution of this thesis. Section 5.1 describes the main features of symbolic
regression in HeuristicLab. Section 5.2 presents the methodology for building geneal-
ogy graphs of GP populations and using them to investigate the various aspects of GP
evolutionary dynamics, such as population diversity, effectiveness of genetic operators,
inheritance patterns and schemas. Finally, a new algorithmic variant named “OSGP-S”
(offspring selection genetic programming with schemas), inspired from the insight gained
from our GP analysis is described in detail.

Chapter 6 presents a collection of empirical results obtained from testing different
algorithmic configurations and test problems using the newly-introduced methodology and
analysis methods. Sections 6.1 to 6.3 are dedicated each to one algorithmic configuration:
standard GP (SGP), offspring selection GP (OSGP) and OSGP-S. The results are used to
validate the proposed methodology and the new schema-based GP variant.

Finally, Chapter 7 provides an overview of this work and its significance for the field
of Genetic Programming in Section 7.1, discusses our achievements and contribution in
Section 7.2 and suggests future research ideas in Section 7.3.



2 Heuristics and Metaheuristics

2.1 Optimization Problems

We encounter optimization problems everywhere we turn. Whenever we try to minimize
our expenses at the supermarket, find the fastest route from A to B, win at scrabble or chess,
or in general make something better or more efficient (an action or decision, a design, a
system), we are actually trying to solve an optimization problem.

Optimization problems which occur in most real-life scenarios involve finding solutions
that have to satisfy one or more feasibility criteria. Mathematically speaking, the goal of
such an optimization problem is to minimize or maximize an objective function', subject
to domain constraints. In other words, the goal is to find the best solution out of the set of
all feasible solutions. The set of all feasible solutions represents the feasible region of the
problem, also known as a search space or solution space.

2.1.1 Formal Statement

In the most basic formulation, an optimization problem in the continuous domain can
be defined as:

minimize f(x) (2.1)
subject to gi(x) <0, i=1..m (2.2)
hj(x) =0, j=1..,p (2.3)

where f(x) : A — R is the objective function, g;(x) < 0 are inequality constraints and
hi(x) = 0 are equality constraints®. Usually, A is a subset of the Euclidean space R".

Most real-life optimization problems involve constraints. Constrained optimization
methods differ from their unconstrained counterparts by the fact that they need only
consider points in the feasible region. However, it may be useful in some cases to treat the
problem as unconstrained and replace the constraints with penalty terms in the objective
function (soft constraints).

1n different fields, the function f can have different names, such as objective function, loss function, cost
function, or fitness function.

2 A minimization problem can easily be turned into a maximization problem by simply negating the objective
function.
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When the objective function and the constraints are linear, we are dealing with a linear
programming problem and otherwise when either the objective function or some of the
constraints are non-linear we have a nonlinear programming problem.

We define a local minimum as a point X* € A in the feasible region for which there
exists a number § € R, ¢ > 0 such that forall x € A:

Ix-x"|<d = f(x') < f(x)

A global minimum will be a point X* in the feasible space such that for all other x, f(x*) <
f(x). Obviously, it is much more difficult to find the global optimum than it is to find local
optima.

Thus, we have given so far a mathematical formulation for constrained optimization
problems in the continuous domain. But how can these problems be solved with the help
of computers?

Computers are inherently discrete systems; therefore, computational methods for contin-
uous optimization problems require the discretization of the input variables. Discretization
is necessary because continuous models and equations need to be made suitable for numeri-
cal evaluation. This is achieved using the so-called iterates: discrete values or steps generated
by the algorithm using knowledge gained in previous iterations or information about the
model at the current iterate. Among well-known continuous optimization paradigms we
find linear programming, gradient descent, convex programming or conic optimization ( ,

).

2.1.2 Discrete and Combinatorial Optimization

A discrete optimization problem can be defined as a tuple (E, ¢) where E is a finite or
countably infinite set called the ground set and ¢ : E — R is the objective function that
needs to be minimized or maximized. For combinatorial problems, we define the set of
feasible solutions ¥ as a subset of 2 (the set of all subsets of E) and we set the objective to
find a set F* € ¥ such that

o(F*) = Z c(e)
eeF*

is minimized or maximized (Lee, ). We notice from the problem definition that,
although the space of feasible solutions for these problems is finite in nature, explicit
enumeration quickly becomes infeasible as n distinct objects can be arranged in n! ways.
Therefore, even for small problem dimensions, the number of steps needed by a search pro-
cedure to exhaustively examine the solution space grows exponentially. This phenomenon
known as combinatorial explosion makes it very difficult to approach these problems using
conventional methods or algorithms. In fact, the vast majority of practical combinatorial
optimization problems can be described as “finding a needle in a haystack” and need to be
approached cleverly using carefully designed approximation methods or heuristics.

10
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In many relatively simple to formulate problems such as the minimum spanning tree
problem, the traveling salesman problem (discussed in Section 2.2.4), the knapsack problem,
the vehicle routing problem and others especially from the field of operational research, no
efficient exact algorithms for finding the optimal solution are known. It becomes reasonable
in such cases to employ approximate solving methods based on various “shortcuts” or
heuristics.

2.2 Heuristics

The word heuristic originates from the Ancient Greek edpioxw (heurisko) meaning “I
find, discover”, and is used to describe things or methods related to the process of learning,
discovery or problem-solving. This definition already gives information about the scope
and implications of heuristics: they involve exploration, (educated) guessing, learning from
experience or through trial and error. We could imagine heuristics as “shortcuts’, practical
steps towards some practical objective. They are not guaranteed to be optimal or perfect,
but sufficient according to some set of requirements.

Computational solving methods can be roughly divided into three categories:

1) Exact methods (algorithms) consist of an exact order of steps that will invariably
lead to the correct or optimal solution in a finite amount of time. Algorithms are
mathematically proven to be correct and to perform within certain complexity
bounds.

2) Approximate methods or algorithms are mathematically proven to produce a solution
within a certain distance from the optimal solution. Usually the range is given relative
to the optimum by a so-called approximation factor no larger than 1 + ¢, where ¢
usually depends on parameters. Their performance and complexity is again well
understood and theoretically proven.

3) Heuristic methods: these methods essentially consist of hunches, guesses, rules of
thumb of varying complexity and other techniques derived from experience or from
empirical evidence. There are usually no guarantees about their optimality or com-
putational complexity and they are hard to study from a theoretical standpoint. The
reason why heuristics are so interesting is because they have distinguished them-
selves as very useful practical solving tools, producing good results (not necessarily
optimal) in a short amount of time.

In computer science, heuristics are applied to hard problems which cannot be solved
exactly in a reasonable amount of time. They are designed to be faster by searching
not for the perfect solution but for a “good enough” approximation, where good enough
describes a satisfactory compromise between speed or computational cost and optimality
or completeness. In practice, this trade-off is often very advantageous, as the obtained

11
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solution approximations may come very close to the optimal solution while keeping the
computational costs manageable.

Historically speaking, the computer science community has been slow and reluctant
to accept heuristics as an important field of research. Fred Glover, the inventor of scatter
search and tabu search expressed this fact quite poetically in 1977:

“Algorithms are conceived in analytic purity in the high citadels of academic
research, heuristics are midwifed by expediency in the dark corners of the
practitioner’s lair.” ( , )

Glover also suggests that optimality (“ultimate convergence”, as he calls it) is an idealistic
goal:

“Algorithms, after all, are merely fastidious heuristics in which epsilons and
deltas abide by the dictates of mathematical etiquette. It may even be said that
algorithms exhibit a somewhat compulsive aspect, being denied the freedom
that would allow an occasional inconsistency or an exception to ultimate
convergence. (Unfortunately, ultimate convergence sometimes acquires a
religious significance; it seems not to happen in this world.)” ( , )

Algorithms for which bounds and correctness were mathematically proven were con-
sidered to be a superior field compared to heuristics, even though heuristic methods had
proven themselves more successful in practice, in those cases where the dimensions of the
problem rendered exact methods impractical and infeasible. It will become clear that heuris-
tics, as exponents of the human way of thinking, represent very powerful problem-solving
tools. Intuitively, there are two fundamental aspects to solving a problem:

1) Knowing what qualifies as an acceptable solution (validation or verification step)

2) Knowing how (through which sequence of steps) a solution might be reached (solving

step)

People, as opposed to computers, are experts in applying so-called “rules of thumb” of
varying complexity, obtaining if not a satisfactory solution, then at least a very good starting
point that can be subsequently improved upon. An essential instrument for this process is
the analogy, described beautifully by mathematician G. Polya:

“Analogy pervades all our thinking, our everyday speech and our trivial con-
clusions as well as artistic ways of expression and the highest scientific achieve-
ments. Analogy is used on very different levels. People often use vague, am-
biguous, incomplete or incompletely clarified analogies, but analogy may reach
the level of mathematical precision. All sorts of analogy may play a role in the
discovery of the solution and so we should not neglect any sort.” ( , )
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This definition is very important, since analogy and metaphor play an important role in
the development of heuristic and metaheuristic methods.

Human intuition often works by forming an image of what the solution looks like before
coming up with a way to reach it. The ability to rapidly verify whether a solution will work
plays an important role in this process. In many cases the human approach is neither too
exact or complete, nor does it exhaustively produce solutions; but it is very robust, and it
works just well enough to solve the problem with minimal fuss.

Heuristics allow computers to employ the same paradigm in those cases where no exact,
mathematically proven and computationally feasible algorithm is known.

2.2.1 Which Problems are Considered “Hard”?

The formalization of problem solving in computer science begins with the Turing
machine, a hypothetical machine invented by mathematician Alan M. Turing (1912-1954)
as a theoretical model of computation in the discrete domain. Turing machines can simulate
the logic of any computer program and can be used to characterize the theoretical properties
of algorithms.

A common way to characterize problem hardness is to estimate the resources taken by
an algorithm to compute the solution as functions of the size of its input (the problem
size). The limiting (asymptotic) behavior of these functions, usually expressed in big O
notation (where “O” refers to the maximum order of the function in the worst case scenario,
excluding coefficients and lower order terms), provides a good indication of algorithm
complexity, describing the growth in resource usage relative to the growth in input size.

Notation Name Example
O(1) constant test if a binary number is even or odd
O(logn) logarithmic binary search
O(n) linear finding an item in an unsorted list or array
O(nlogn) | loglinear or quasilinear | fast Fourier transform, heapsort, quicksort,
merge sort
O(n?) quadratic bubble sort, insertion sort
direct convolution
O(n?) cubic naive multiplication of two n X n matrices
calculating partial correlation
tree edit distance
O(n°) polynomial maximum matching for bipartite graphs
O(c™), ¢ > 1 | exponential solving the traveling salesman problem using
dynamic programming

Table 2.1: Algorithm complexity classes, in increasing complexity from top to bottom
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Table 2.1 shows the most common complexity classes for algorithms, based on their
behavior when the input size is changed. The most common analysis method employed in
the study of algorithms is time complexity analysis®, which gives a theoretical bound for the
time needed by an algorithm to run (as a function of the length of its input).

In computational complexity theory, problems are considered tractable (feasibly com-
putable) if they can be solved by a deterministic Turing machine (DTM) in polynomial
time. That is, if the running time is bounded by a polynomial expression in the size of the
input for the algorithm. Such problems belong to the computational class P. Problems for
which a “quick” polynomial time solving algorithm is not known are said to be “hard” and
are usually approached in practice using different strategies. In the following subsections
some examples of computationally-hard combinatorial problems will be given. Though
in no way exhaustive (as such efforts are beyond the scope of this work), the treatment
of each example will outline the main reasons why heuristic methods are so suitable for
combinatorial optimization problems.

2.2.2 The Subset Sum Problem (Unidimensional Knapsack)

The subset sum problem (SSP) poses the following question: given a set of integers S =
{x1, ..., x,} and a target value s, is there a non-empty subset of S whose sum is the closest
to s without exceeding s?*

Several solving approaches are possible:

¢ The naive approach, which computes the sum of each possible subset of § has a
complexity of O(2"n) since there are 2" subsets each containing at most n elements.

o While still exponential, the algorithm introduced by ( , ),
achieves a computational complexity of O(2"/?) by arbitrarily splitting S in two,
generating a sorted list of all possible sums for each split, and then merging the lists
(the merging can be done in linear time).

¢ Dynamic programming achieves pseudo-polynomial time by taking advantage of the
SSP’s optimal substructure and overlapping subproblems properties. The resulting
algorithm is polynomial in the size of the problem but exponential in the number of
bits used to represent it and has a complexity of O(n") where r is a constant which
bounds all subset sums. For the case in which x; is positive and bounded by a fixed
constant C, the time complexity becomes linear O(nC) ( : ).

3Time complexity is usually counted as the number of basic operations (ie., operations like addition, division
etc. that take a fixed amount of time) performed by the algorithm, where the algorithm is modeled by a
Turing machine.

4The more general Knapsack problem is: given a set of items, each with a mass w; and a value v;, we have to
determine the number of each item to include in a collection so that the total weight is less than or equal
to a given limit and the total value is as large as possible. We recognize an SSP instance when for each
item w; = v; (unidimensional case).
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There is no known algorithm for the SSP that runs in less than O(2"/?) in the general
case, thus, for large enough n exact solvers become unfeasible. A good compromise in
this situation would be to look for an approximate solution that is easier to compute
and guarantee an accuracy bounded by a parameter ¢. We mention a few approximation
algorithms for the SSP:

o ( , ) solve the SSP in O(min{n/e,n + 1/¢*log(1/¢)}) time and
O(n + 1/¢) space, with accuracy ¢

o ( , ) improved upon the previous result and achieve O(min{n -
1/e,n + 1/¢*log(1/¢)} time and O(n + 1/¢) space complexity.

o ( , ) give an approximate algorithm with runtime com-
plexity of O(n?/¢) and bounded by a polynomial in 1/e (where ¢ > 0 is an error
parameter).

In summary, the SSP is a difficult problem, as the combination of numbers that maximizes
the sum is hard to find. But the reason it was included here as an example is to illustrate
an important aspect that allows the characterization of hard problems in a more formal
way. We notice that for this type of problem, however difficult it may be to come up with
a suitable subset, any such candidate solution can be easily verified by simply computing
the sum. This means that at least in theory, we could simply try guessing the solution since
guessing costs nothing and verification costs nothing. Moreover, if we could keep guessing
and improve our guesses based on experience, we could eventually achieve optimal or near
optimal solutions.

This realization on the one hand, establishes the context for a new way to characterize
hard problems and on the other hand, serves as a justification of why heuristics can be very
useful in practice.

We continue with a formal definition of problem hardness.

2.2.3 Computational Class NP

Formally, problems for which no polynomial time solver is known, but for which a
polynomial verifier exists are said to belong to computational class NP> and can be described
by the following equivalent statements:

(@) They are verifiable by a deterministic Turing machine (DTM) in polynomial time

(b) They are solvable by a non-deterministic Turing machine (NTM) in polynomial time

>Whether or not a problem for which every solution can be verified in polynomial time is solvable in
polynomial time remains to be decided. The P = N P problem remains unsolved since its formulation in
Stephen Cook’s 1971 paper “The complexity of theorem proving procedures” ( , ). We say that a
problem H is NP-hard when every problem L in NP can be reduced in polynomial time to H.
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A particular case of the non-deterministic Turing machine is the probabilistic Turing
machine (PTM) which randomly chooses between the available state transitions at each
point according to some probability distribution. When the transition probabilities are
equal, the probabilistic Turing machine can also be described as a deterministic Turing
machine with an added tape full of random bits called the random tape.

Probabilistic models of computation are useful for describing heuristics or strategies
comprising of several heuristics which employ some form of “guessing” in order to come up
with potential solutions. Cheap solution validation (polynomial verifier) makes it feasible
to use different solving strategies in a two-step approach:

1) Generation of solution candidates by some heuristic
2) Validation of the generated candidates using a polynomial verifier

Many heuristics exploit known properties of the solution space (for example, by incorporat-
ing domain-specific knowledge provided by human experts) in order to produce solution
candidates that can then be validated in polynomial time.

2.2.4 The Traveling Salesman Problem

The traveling salesman problem (TSP) is a landmark problem and one of the most inten-
sively studied in the field of combinatorial optimization. It was proved to be NP-complete
by ( , ). The problem definition is equivalent to finding the Hamiltonian cycle
with the least weight in a complete weighted graph: given a list of cities and the distance
between each pair of cities, what is the shortest possible route that visits each city exactly
once and returns to the origin city? In its decision version, the problem formulation is:
given a length L, is there any tour in the graph shorter than L?)

This problem has many practical applications in the fields of logistics, planning, mi-
crochip design or even genome sequencing (when the concept of city is appropriately
represented by problem elements such as customers, soldering points or DNA fragments).
As with the previous example, there exist several polynomial time approximate algorithms
that are able to find “good” but non-optimal solutions to the TSP problem. The naive
brute-force approach for this problem would result in a runtime complexity of O(n!),
where n is the number of cities, rendering it highly impractical even for small tours (20
cities). The Held-Karp algorithm ( , ), one of the earliest algorithms to
employ dynamic programming, achieved a complexity of O(n*2"), still unfeasible for large
instances.

In recent years various algorithmic solutions employing branch-and-bound or cutting-
plane methods were able to improve the runtime complexity of TSP solvers. The best
approximation algorithm is Arora’s PTAS for the Euclidean TSP ( , ) based on
a geometric partitioning of the plane. It guarantees a (1 + 1/c)-approximation for every
¢ > 1in O(n(log n)°©)) time®.

6Sanjeev Arora and Joseph S. B. Mitchell were awarded the Godel Prize in 2010 for their concurrent
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Given its complexity and importance, the TSP problem has become a standard bench-
mark problem for combinatorial optimization algorithms. Heuristic methods for solving
the TSP problem can be classified into constructive and iterative methods. Constructive
heuristics execute a sequence of operations until a valid tour is reached, while iterative
heuristics start from a valid tour and try to improve it usually by local search. Constructive
heuristics include:

o Nearest-neighbour (greedy) heuristics build a tour by adding an edge to the nearest
unvisited city. For the Euclidean TSP, ( , ) showed that the
approximation ratio of the nearest-neighbour method is bounded above by a loga-
rithmic function in the number of cities, so that NN(I)/OPT(I) < 0.5(|log(n)] + 1),
otherwise the runtime complexity is O(n?)

o Savings heuristics as originally described by ( , ) try to obtain
the overall minimum cost by building a tour from edges ordered by increasing cost
(skipping edges that would lead to an invalid tour). Similar to the above, this algorithm
has a complexity of O(n*log(n)) with an approximation factor of [log(n)] + 1 when
the triangle inequality is satisfied.

¢ The algorithm by ( , ) guarantees an approximation factor of 3/2 for
Euclidean instances. The overall time complexity for Christofides algorithm is O(n?),
although in practice it is competitive and often surpasses the other algorithms.

Iterative heuristics are difficult to analyze from a theoretical perspective, however they
represent the most successful class of approximation algorithms. Furthermore, hybrid
approaches that combine local search with a higher-level guidance mechanism such as
metaheuristics have been shown to achieve near-optimal (and sometimes optimal) solutions
( , ; , ; , ). This statement
applies not only to the TSP but to other difficult combinatorial optimization problems.
Among the most used methods for the TSP we find:

o The 2-Opt (pairwise exchange) method by ( , ) is probably the most popular
TSP solving method as it usually achieves very good results on “real world” Euclidean
instances. It works by removing two edges from the cities graph and then recon-
necting the relevant cities in an (locally) optimal way. According to (

, ), the 2-Opt method requires a subquadratic number of improving
steps to reach a near-optimal solution. Another study by ( , ) presents
a family of problem instances on which 2-Opt can take an exponential number of
steps. So far, the worst case running time on Euclidean instances is unknown.

¢ The Lin-Kernighan (L-K) algorithm ( , ) or k-Opt works by
deleting k mutually disjoint edges and reassembling the remaining fragments into
a tour leaving no disjoint subtours. The authors state that their method generates

discovery of a PTAS for the Euclidean TSP
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optimum or near-optimum solutions for the TSP problem in O(n?) approximate
runtime with above 95% confidence. From the general k-opt family, the 3-opt method
developed initially by (Lin, ) as an extension to the work of Croes works very
well in practice as well. Additionally, when the edges are not completely disjoint (two
of them are adjacent to each other), it is possible for 3-opt to achieve considerable
improvement over 2-opt by restricting the 3-changes to the subset of adjacent edges.

o Stochastic optimization methods were also successfully employed for solving the TSP.
For example, ( , ; , ) were able to efficiently achieve
near-optimal solutions with a simulated annealing algorithm inspired by the Monte
Carlo method of sampling the configuration space of a thermodynamical system
( , ; , ), in which the total energy of
the system was equivalent to the TPS tour length.

¢ Other metaheuristics for solving the TSP include genetic algorithms, tabu search
( , ) or ant colony optimization ( , ) (we will talk about
these methods later).

The L-K algorithm in its many implementations was the preferred way of solving the

TSP problem for over two decades. The common practice suggested by (Lin, ) was to
start the search multiple times from randomly generated initial tours in order to increase
the chances of finding the best tour; however it was shown by ( , ) that

finding the global optimum by repeated random starts becomes unmanageable for large
numbers of cities. It was instead suggested to extend the L-K neighbourhood by sampling
locally optimal tours using a sampling biased towards shorter tours. By combining local opt
with simulated annealing (slightly changing the current best tour and keeping it if better),

the new algorithm by ( , ) known as Chained Lin-Kernighan was able to
significantly outperform L-K. Currently the state-of-the-art implementation of chained
L-K by ( , , ) part of the Concorde TSP Solver is considered to be

the fastest exact TSP solver.

Summing up, heuristics are approximate methods that are used to find good (near-
optimal) solutions to NP optimization problems. These problems are characterized by
huge solution spaces that cannot be feasibly explored in an exhaustive manner with our
current knowledge of algorithms. We defined NP problems in a formal manner as either
verifiable by a DTM in polynomial time or solvable by a NTM in polynomial time. It follows
through the equivalence of definitions that heuristic solvers for any such problem can be
either be deterministic or non-deterministic (ie., stochastic). For example, local search
heuristics such as neighbourhood search can be either deterministic (nearest-neighbour) or
stochastic (generate neighbours according to some probability distribution).

7h’ctp: //www.math.uwaterloo.ca/tsp/concorde/index.html
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2 Heuristics and Metaheuristics

2.3 Metaheuristics

2.3.1 Definition

We can define metaheuristics® as high-level strategies that guide a hierarchical collection
of subordinate lower-level procedures or heuristics towards a given goal. A good overview
of metaheuristics, including a number of definitions from earlier literature is given in (

, 2003):

“A metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts
for exploring and exploiting the search space, learning strategies are used
to structure information in order to find efficiently near-optimal solutions.”

( , 1996)

“A metaheuristic is an iterative master process that guides and modifies the
operations of subordinate heuristics to efficiently produce high-quality so-
lutions. It may manipulate a complete (or incomplete) single solution or a
collection of solutions at each iteration. The subordinate heuristics may be
high (or low) level procedures, or a simple local search, or just a construction
method.” ( , )

“Metaheuristics are typically high-level strategies which guide an underlying,
more problem specific heuristic, to increase their performance. The main
goal is to avoid the disadvantages of iterative improvement and, in particular,
multiple descent by allowing the local search to escape from local optima. This
is achieved by either allowing worsening moves or generating new starting
solutions for the local search in a more “intelligent” way than just providing
random initial solutions. Many of the methods can be interpreted as intro-
ducing a bias such that high quality solutions are produced quickly. This bias
can be of various forms and can be cast as descent bias (based on the objective
function), memory bias (based on previously made decisions) or experience
bias (based on prior performance). Many of the metaheuristic approaches rely
on probabilistic decisions made during the search. But, the main difference
to pure random search is that in metaheuristic algorithms randomness is not
used blindly but in an intelligent, biased form.” ( , )

All of the definitions above outline several important properties of metaheuristics:

¢ They provide high-level guidance for a number of lower-level problem-specific
procedures that have to work together towards the goal

8 meté + heuriskd, meaning beyond, in an upper level (from Greek)
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¢ They represent general, problem-independent optimization paradigms
¢ They provide near-optimal (approximate) solutions

¢ They use randomness in a beneficial way, to improve convergence and avoid getting
stuck in local optima

o They provide a balance between diversification (the ability to “jump” in different
regions of the search space) and intensification (the ability to improve locally within
neighbourhoods in the search space).

From the computational complexity viewpoint, both heuristics and by extension, meta-
heuristics are assumed to be at most polynomial in runtime. Therefore a metaheuristic will
always contain a polynomial verifier along with other deterministic or non-deterministic
components.

A prime example of a metaheuristic that can efficiently explore a combinatorial search
space was given in the TSP example. The chained Lin-Kernighan algorithm achieved its
speed by combining aspects of heuristic search (k-opt) with aspects of stochastic optimiza-
tion (simulated annealing). Metaheuristics that make use of non-deterministic or stochastic
components are studied in the field of Stochastic Optimization. The idea is to inject random-
ness into the process in order to accelerate progress (convergence speed), make the method
less sensitive to modeling errors and avoid getting stuck into local optima.

2.3.2 Randomized Algorithms and Probabilistic Methods

It is important to distinguish between stochastic methods such as Chained L-K that
vary their output (with a small chance of producing incorrect output) and deterministic
methods that incorporate a probabilistic element only in selecting their input, in order to
reduce the expected running time or memory usage. Randomized algorithms can be split
into two categories, “Las Vegas” and “Monte Carlo™:

o Las Vegas algorithms always produce the correct answer in an amount of time that
can vary randomly but will be bounded in expectation. For example, the quicksort
algorithm is usually randomized by choosing a random pivot. The randomized ver-
sion has the nice property of O(n log n) expected worst-case complexity (as opposed
to O(n?) for the non-randomized version).

¢ Monte Carlo algorithms have deterministic runtime but produce non-deterministic
results (there is a chance the output may be incorrect). The vast majority of meta-
heuristics fall into the category of Monte Carlo methods.

The history of these two names is definitely interesting and deserves attention. For the Monte Carlo
method, the reader is invited to study the papers of Metropolis ( , ;
, ) or the fascinating historical account of ( , ). The “Las Vegas algorithm” was
coined by mathematician Laszl6 Babai ( , ) to denote a stronger procedure where the correctness
of the result can be checked.
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By using Markov’s inequality (sometimes also referred to as Chebyshev’s inequality), a Las
Vegas algorithm can be converted into a Monte Carlo algorithm through early termination.
A succinct formulation of the difference between the two types of randomized algorithms
is that Monte Carlo algorithms are always fast but only probably correct while Las Vegas
algorithms are always correct but only probably fast.

When tackling hard optimization problems, one cannot hope to achieve the best of both
worlds (in terms of speed and correctness). Instead, we are rather interested in achieving
a high probability of success (the algorithm output is correct most of the time) within a
short amount of runtime. From this point of view, metaheuristics represent a very good
compromise between runtime and correctness.

In practice, for large problem instances metaheuristics have proven themselves superior
to exact methods like branch-and-bound or dynamic programming. By incorporating
some degree of randomness either at the level of the whole strategy or in the lower-level
components, the problem space can be more efficiently sampled leading to better results
and runtime performance. Of course, the fact that metaheuristics follow a search strategy
and use randomness effectively and beneficially makes them vastly superior to random
search.

2.3.3 Metaphors and Metaheuristics

Many different physical, biological or social phenomena have inspired the design of
metaheuristics. Table 2.2 shows a list of metaphors along with the optimization methods
that they inspired.

Metaphor Optimization method

Intelligent behavior of colonial organisms | Ant colony optimization, artificial bee
(swarm intelligence) like bacteria, bees, ants, | colony, bacterial colony optimization, ar-

cells, etc. tificial immune system, etc.

Memory (remembering previous steps) Tabu search, Scatter search

Annealing (thermodynamic process) Simulated annealing

Natural evolution Evolutionary programming, evolution

strategies, genetic algorithms, genetic
programming, differential evolution, etc.

Behaviour of various biological species of | Shuffled frog leaping algorithm, cuckoo
insects and animals search, etc.

Table 2.2: Metaphors and metaheuristics

The general concepts behind metaheuristics (and their metaphors) include:

¢ Making random moves in the solution space
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o Keeping a record of the past trajectory in order to avoid “walking in circles” (tabu
search, scatter search)

o Accepting “worse” solutions with some probability, to avoid getting stuck in local
optima (simulated annealing)

¢ Having “agents” explore different regions of the solution space, exchange informa-
tion and perform a cooperative search (ant colony optimization, particle swarm
optimization)

¢ Gradually generating and improving solution candidates by making them compete
for survival (evolutionary optimization methods)

2.3.4 Taxonomy of Metaheuristics

It would be beyond the scope of this work to delve too deeply into the details of the
various types of metaheuristics. However, a short description of the main types of meta-
heuristics will be given below. For a more in-depth treatment of metaheuristics, the reader
is invited to take a look at the excellent (and free) book by ( , ) or the overview of
( : ).

Metaheuristics can be classified according to many different criteria, depending on
whether they are nature-inspired or not, whether they are trajectory (single point search) or
population-based, whether they use dynamic or static objective functions, single or various
neighbourhood structures, or whether they incorporate some kind of memory or not.

2.3.5 Trajectory-based Metaheuristics

Trajectory methods owe their name to the fact that the search starts from a single initial
state that is gradually improved upon, describing a trajectory in the state space. The fitness
landscape for this type of methods is defined by the representation together with the
neighbourhood structure from which new solutions are extracted. The manner in which
new solutions are picked from the neighbourhood determines whether the method is
greedy, probabilistic, or somewhere in between.

Local Search

The most basic trajectory-based methods are local search methods in which a move
(a transition from one state to the next) is only performed if the new solution candidate
(extracted from the neighbourhood) is better than the previous best. This kind of local
search is also called iterative improvement due to the condition for accepting moves. The
performance of local search methods strongly depends on the neighbourhood function
and on the termination conditions (which can vary from reaching a local minimum to
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exceeding a maximum number of iterations or CPU time). Local search methods include
hill climbing and its variants, tabu search and simulated annealing.

Simulated Annealing

Simulated annealing ( , ; , ) resolves the problem of
getting stuck in local optima by sometimes accepting “worse” moves, with decreasing
probability dependant on the temperature T of the thermodynamic system and on the
quality difference between the two solution candidates. The probability is usually computed

f(s")=£(s)
T

using the Boltzmann distribution exp ( ), where s represents the current solution

and s’ the new solution that was sampled from the neighbourhood.

Tabu Search

Tabu Search (TS) ( , ) is probably the most popular local search metaheuristic.
The main idea behind TS is to avoid cycles (and implicitly, local optima) by forbidding or
penalizing certain moves in the solution neighbourhood. This idea is realized by using a
memory structure in which the most recently visited few solutions are stored (for example,
those visited in the past n iterations). These solutions are said to be “tabu” and are penalized
or altogether forbidden to be visited again. The memory structure is called a tabu list and
its capacity is called the tabu tenure.

Scatter Search

Scatter Search (SS) ( , )is an evolutionary method inspired from earlier ideas of
combining decision rules and problem constraints for solving combinatorial and nonlinear
optimization problems. SS consists of different components which work together to
systematically combine solution vectors within (or around) a region of the solution space
given by a set of reference points (good solutions obtained by prior problem solving efforts).
A more in-depth discussion of SS and its components is available for example in (

, 2006).

2.3.6 Population-based Metaheuristics

Strictly speaking, population-based methods are those methods which produce new so-
lutions by use of recombination operators such that parts of the old solutions are combined
in new ways. This category is represented mostly by evolutionary algorithms modeled
after the process of natural evolution, which will be discussed in detail in Chapter 3. In
evolutionary methods, solution improvement is realized via the interplay between recom-
bination operators (crossover and mutation) and the selection process which allows only
the fittest individuals to survive and be part of the next iteration.
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In a more relaxed classification, population-based methods could also include meth-
ods that employ different search techniques, such as particle swarm (PSO) (
, ) or ant colony optimization (ACO) ( , ) (see below).
The evolutionary-inspired population-based methods are discussed in Section 3.2.

Particle Swarm Optimization

Particle swarm optimization (PSO) ( , ) uses a population of
particles that are initialized with a random velocity which gives them a trajectory in the
solution space. At the end of each iteration, the fitness values are calculated for each particle.
Then, each particle is accelerated towards fitter particles in the solution space (either taking
the best known solution, or just the best known solution among a neighbourhood of the
particle being moved).

2.3.7 Constructive Metaheuristics

In contrast with iterative improvement methods, constructive metaheuristics build
solutions out of basic solution elements, one element at a time. As we have seen in the TSP
problem example, constructive heuristics can implement some kind of greedy principle
combined with a local improvement phase designed to improve the solution after the
construction phase.

Greedy Randomized Adaptive Search

Greedy randomized adaptive search (GRASP) ( , ) could be described
as a probabilistic greedy method in which solutions are constructed by randomly choosing
at each step between a number of high-quality moves that are ranked by a greedy ranking
method.

Ant Colony Optimization

The ant colony optimization (ACO) ( , ) method exchanges information
between ants (agents) by having each ant deposit a trail of pheromones on its walked path.
The amount of deposited pheromones depends on the path length and shorter paths are
favored by depositing more pheromones. The probability that other ants would choose to
walk the same path is then weighted according to the pheromone concentration. In the
end, the optimal path within the graph or lattice will be the one favored by the ants with
the highest pheromone concentration. Due to its working principle, ACO can be used for
solving computational problems which can be reduced to finding good paths in graphs.
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2.4 The No Free Lunch theorem

We discuss here aspects of the No Free Lunch theorems and their implications on
metaheuristics and in particular evolutionary algorithms. This discussion is important
because it provides a necessary context for the more detailed discussion about evolutionary
search landscapes, neutrality, and genotype-phenotype mappings in Chapter 4.

The no free lunch theorem (NFL) states that all algorithms that search for an extremum
of a cost function f perform exactly the same when averaged over the set F of all such
functions. It was developed as a “framework for investigating search” that can describe
problems from an information-theoretical perspective and help design more powerful
algorithms that match the particular features of particular problems.

Although NFL concepts were previously known in the computer science community,
( ) ) were the first to provide a formal mathematical proof,
highlighting the need for exploiting problem-specific knowledge to achieve better than
random performance. In their original phrasing, the NFL theorem states that "there are
no «free lunches» for effective optimization; any algorithm performs only as well as the
knowledge concerning the cost function put into the cost algorithm”. The original paper
includes a proof of the NFL theorem for deterministic, non-retracing algorithms but the
authors explicitly state that their results also apply to stochastic and retracing algorithms.
This last point especially concerning metaheuristics such as evolutionary algorithms was a
point of open debate, as we will see in what follows.

In the context of optimization, the same authors ( , ) discuss
the utility of search algorithms based on what can be deduced a priori from their mathemat-
ical properties. In this approach, algorithm performance is assessed in terms of the number
of distinct function evaluations required to find a certain solution using an oracle-based'”
model of computation, and the results are given in a probabilistic formulation.

2.4.1 Implications for Metaheuristics

The implication of the NFL theorem is that, since some black-box algorithms will
outperform others on some problems and will be outperformed on other problems, there is
no reason to assume that one search method is better than the others, or even that it will be
better on average than random search. In the particular example of evolutionary algorithms,
this means that we cannot assume natural selection to be an effective search strategy and
furthermore, nothing can be stated about the usefulness of evolutionary heuristics. The
take-home message is that any blackbox algorithm has the same average performance as
random search, and that problem-specific knowledge has to be incorporated in order to be
better than random search. As we will see, this is not entirely correct.

It will not come as a surprise that the conclusion by Wolpert and Macready on the

19An “oracle” is a computational construct that can decide certain problems in a single operation
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usefulness of guided random search methods did not sit well with other proponents of
metaheuristics, and sparked some controversy in the computer science community. Some
of the arguments and further developments of the NFL theorem are summarized below:

o ( , ) argued that the scenario on which the NFL is based does not
reflect a realistic optimization scenario. They showed that in restricted black box
optimization scenarios where it would actually make sense to apply evolutionary
algorithms, there exist correlations between fitness values of different points in the
solution space. The way these correlations or dependencies are exploited by the
various search algorithms can explain why one algorithm may outperform another,
invalidating the NFL theorem. The authors provide empirical proof that evolutionary
algorithms perform just as well as the other specialized algorithms in concrete
optimization scenarios. They conclude that the NFL theorem can only be applied to
unrestricted black box optimization scenarios that do not occur in practice. Although
specific techniques are superior to general ones in some scenarios, a “small free lunch”
or “free appetizer” is still possible.

o ( , ) prove that the NFL theorem holds for a set of functions if
and only if that set of functions is closed under permutation (c.u.p.), meaning that for
every f € F, f : X — Y, every permutation of f is also in F, where the permutation
of of f is the function o f : X — Y defined by s f(x) = f (7' (x)). This sharpening
of the NFL has powerful implications as it ultimately leads to the conclusion that in
most cases NFL theorems are not applicable (see below).

o ( , ) prove that the actual fraction of permutation-invariant
subsets of the set of all possible functions is “negligibly small”, then contend that
“classes of objective functions resulting from important classes of real-world problems
are likely not to be closed under permutation”. This means that for important classes
of real-world problems, the sharpened NFL scenario is not satisfied. The authors
notice that the fact a problem class is not c.u.p. does not lead to a “free lunch”, but
ensures the possibility of a “free appetizer”.

o ( , ) use the sharpened NFL theorem to determine the average
number of fitness evaluations necessary to reach a desirable solution in the context of
evolutionary search. They find that this number depends on the size of the genotype
space and the number of genotypes mapped to optimal solutions, but is not greatly
affected by neutrality (ie., increase of genotype space). We briefly sketch the formal
argument:

o Let G be a finite search space with cardinality n = |G|

o Let F,, € FY be the set of all functions where m elements in G are mapped to
optimal solutions. It can be shown that F,, ¢ F9 is c.u.p.
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o It results from the NFL theorem ( , ) that the time to find
an optimum averaged over all f € F, is the same for all algorithms

o Then, the expected number of evaluations E{T,,} averaged over F,, C FY is

equal to
n+1

E{Tn’m} B m+1

o The average number of evaluations E{Tj., ., } needed to find a desirable solu-
tion increases with increasing neutrality factor k and has the limit

n

lim E{Teppm} = —
k— o0 m

o For k > 1itholds
n—m

0
(1+km)(1+m+km) g

E{Tws1ynk+1)ym} = E{Tenem} =

o Therefore, in the considered NFL scenario enlarging the genotype space by
adding redundancy without a bias does not considerably increase the average
number of iterations needed to find a desirable solution if initially m is large
enough. In the worst case when initially just one element encodes a desir-
able solution (m = 1), the deterioration of the average search performance is
bounded by a factor of two.

o ( , ) show that free lunches can arise in multiobjective op-
timization and that the NFL does not generally apply. The reason is given by the
fact that multiobjective optimizers usually combine a generator (the ‘algorithm’ in
the NFL sense) and an archiver which filters the sample generated by the algorithm
in a way that undermines the NFL assumptions. Thus, the conclusion that some
multiobjective approaches are better than others.

o ( , ) point out that, since the set of all possible functions is
uncountably infinite and the set of all possible programs is only countably infinite,
the set of all possible cost functions represents a small subset of the set of all possible
functions. Therefore, the space of all possible discrete function is largely composed of
incompressible functions'! (ie., functions that cannot be described by any algorithm),
making the NFL theorem less relevant.

""Here the term compression refers to the concept from algorithmic information theory that describes the
Kolmogorov complexity of a string s. A string is incompressible if it cannot be compressed, ie. encoded
using fewer bits than its original representation, because it contains too few repeating sequences. Russian
mathematician Kolmogorov proved that some strings are incompressible using any algorithm. For more
information, see ( , )
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Then, they argue that search is often not blind, in the sense that generic methods can
exploit application-specific operators and representations while still maintaining
their generality by being able to solve many different instances of the same problem.

Finally, they prove by contradiction that NFL does not hold for NP problems since
otherwise such a result would imply P = NP:

“if No Free Lunch holds for any NP-complete problem, then it immedi-
ately follows that no algorithm is better than random enumeration on
the entire class of NP-complete problems (because of the existence of a
polynomial-time transformation between any two NP-complete prob-
lems). However, this would also prove that P # N P, since it would prove
that no algorithm could solve all instances of an NP-complete problem
in polynomial time”.

o ( , ) show that there are free lunches in coevolutionary
contexts when self-play is involved (two “players” working together to produce a
“champion”) as the objective function depends on the moves of both players, thus
invalidating the NFL hypothesis.

o ( , ) investigate the extension of NFL theorems to countably
infinite and uncountably infinite domains and show that NFL does not hold for
continuous domains.

With regard to genetic algorithms, convergence analysis proved that the canonical GA
can converge to the global optimum:

o ( , ) derived a global convergence proof for a class of genetic algorithms that
incorporate certain aspects of simulated annealing (each generation, some randomly
selected individuals can survive regardless of their fitness).

o ( , ) showed that the canonical genetic algorithm with mutation, crossover
and proportional selection will converge to the global optimum only when elitism is
used to always maintain the best solution in the population.

o ( , ) also showed (using Markov chain theory) that global
convergence can be guaranteed with a prespecified level of confidence, giving also a
lower bound of the necessary number of generations.

o ( , ) demonstrate that there is a free lunch if a non-uniform
many-to-one mapping exists between the space of programs (genotypes) and the
space of functionality (phenotypes).

o ( , ) show that for symbolic regression problems the set of fitness
functions ¥ is c.u.p. if and only if a particular set of geometric constraints are
satisfied. They identify situations where a free lunch does indeed exist for genetic
programming.
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2.4.2 Summary

In conclusion, the NFL theorems may appear to have limited practical significance but
are in fact very helpful in giving a more accurate picture of what can be realistically expected
from optimization algorithms, especially in areas where a trade-off between generality and
specificity needs to be achieved.

They have powerful implications especially in the case of evolutionary algorithms, where
it is shown that neutrality given by the non-injectiveness of the genotype-phenotype map is
a necessary ingredient of self-adaptation and can improve performance ( ,

).

Using the sharpened NFL, ( , ) showed that redundancy of the
genotype space does not greatly increase the average number of iterations needed to find
a solution if the initial population is large enough. Furthermore, the neutrality property
implies that the genotype does not encode just the phenotype but also information on
further explorations. This last aspect is particularly important (as we will see in Section 4.4)
as it shows that neutrality is directly correlated to the algorithm’s ability to evolve good
solutions.
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3 Evolutionary Computation

3.1 Introduction

3.1.1 Evolution through Natural Selection

“I have called this principle, by which each slight variation, if useful, is
preserved, by the term Natural Selection.” (Charles Darwin, The Origin of
Species, 1859)

Modern evolutionary theory as we know it today began in the 19th century with the
works of Charles Darwin, who theorized that all species had developed from common
ancestors and had become different from one another under the effects of a process he called
natural selection, and Gregor Mendel, considered the father of genetics, who discovered the
rules of heredity.

The idea that useful random changes might be preserved was traced by Darwin to ancient
times, when Aristotle considered the question whether different traits appeared accidentally
and survived due to their usefulness:

“So what hinders the different parts (of the body) from having this merely
accidental relation in nature? As the teeth, for example, grow by necessity, the
front ones sharp, adapted for dividing, and the grinders flat, and serviceable
for masticating the food; since they were not made for the sake of this, but it
was the result of accident. And in like manner as to other parts in which there
appears to exist an adaptation to an end. Wheresoever, therefore, all things
together (that is all the parts of one whole) happened like as if they were made
for the sake of something, these were preserved, having been appropriately
constituted by an internal spontaneity; and whatsoever things were not thus
constituted, perished and still perish.” (Aristotle, Physicae Auscultationes, 1ib.2,
cap.8,s.2)

In nature, the concept of usefulness counts towards the one single goal of every living
organism: to survive long enough to reproduce. Under Darwin’s theory, useful changes
that improve an organism’s ability to survive and to produce offspring are preserved and
transferred to the next generation of organisms. A central assumption in this theory was
of course the idea that these useful changes were heritable and could be transferred from
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parents to offspring. But in 1859, the year Darwin put forward his theory of evolution
by natural selection, there existed no clear knowledge about how these changes or traits
might actually be inherited. Darwin himself came up only years later in 1868 with a
hypothetical theory called pangenesis that speculated the existence of gemmules or “particles
of inheritance”, responsible for the inheritance of certain physical characteristics.

Unfortunately, Darwin was not aware of Gregor Mendel’s inheritance experiment on
pea plants: Mendel provided an explanation for the underlying mechanism behind heredity
which later became known as Mendel’s Laws of Inheritance. In Mendel’s vision, inheritance
worked through the transfer of discrete inherited units that determined an organism’s visi-
ble traits. Mendel also showed that recessive traits could be hidden for several generations.
Although Mendel did not use the term gene, he saw the distinction between what we now
call the genotype and phenotype. Mendel’s work published in 1865 went largely unnoticed
until the very beginning of the 20th century, when it was rediscovered by botanists Hugo
de Vries, Carl Correns and Erich von Tschermak.

The term gene was coined in 1909 by Danish botanist Wilhelm Johannsen who used it
to describe the basic units of heredity, while the word genetics originates from the Greek
yevetixoo (genetikos), derived from yéveawo (origin) — the origins of the traits passed down
from parents to offspring. Johannsen was also the first to make a clear distinction between
genotype and phenotype, proposing in his 1911 paper titled “The Genotype Conception
of Heredity” the idea that genotypes determine phenotypes under the influence of the
environment. The genotype-phenotype distinction later became the basis for the field of
developmental biology which studies the mechanisms through which genotypes determine
phenotypes.

3.1.2 A Short History of Population Genetics

In the beginning of the 20th century, Lamarckian and orthogenic theories were used
by the majority of biologists to explain the mechanisms of evolution which had lead to
the complexity of natural life. These outdated and inaccurate theories were eventually
invalidated by new discoveries in the field of genetics most prominently by geneticists Theo-
dosius Dobzhansky, Sewall Wright, Sir Ronald Aylmer Fisher and John Burdon Sanderson
Haldane.

Theodosius Dobzhansky, an Ukrainian-born American scientist, played an important
role in the shaping of the new theory, defining evolution as “a change in the frequency of
an allele within a gene pool”. In his work he supported the idea that natural selection takes
place through genetic mutations. He showed that populations in the wild had large amounts
of genetic diversity and clear differences between subpopulations (as opposed to what was
generally assumed at the time). Dobzhansky was also familiar with the theoretical research
done by the population geneticists such as Wright or Fisher and used mathematical models
to explain how mutation rates vary with different population sizes. His more accessible
treatment of the mathematics of population genetics, put into perspective in the context of
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macro-evolutionary patterns observed in nature have made his 1937 book “Genetics and
the Origin of Species” a popular, highly influential and far-reaching work.

Sewall Wright was an American geneticist considered to be one of the founders of popu-
lation genetics, along with Ronald Fisher and J. B. S. Haldane. Wright’s major contribution
was the mathematical theory of genetic drift (known also as the Sewall-Wright effect) and
the concept of effective population size, roughly defined as the number of individuals in a
population who contribute offspring to the next generation. Wright also came up with the
idea of adaptive landscapes, expressing the mean fitness of a population as a function of
allele frequencies at one or more loci. Wright and Fisher held conflicting views of evolu-
tion: according to Wright, evolution resulted from gene interactions and the interaction of
drift with selection; according to Fisher, evolution was mass selection acting on relative
fitnesses in large populations. The longstanding argument between Wright and Fisher
was considered to be a “central, fundamental and very influential” for the development of
modern evolutionary theory ( , )-

Sir Ronald Fisher was a British statistician, mathematician and biologist who established
himself as one of the founders of the modern synthesis through his major contributions in
the fields of statistics, quantitative genetics and evolutionary theory. His close friend E. B.
Ford describes his brilliant achievements:

“Fisher was far ahead of his contemporaries, so far, indeed, that when his
epoch-making book, Statistical Methods for Research Workers, was published
in 1925, it did not receive one favorable review. At the time of his death in
1962, it was in its 14th edition, with reprints, and had been translated into six
languages.”

In his 1930 book, The Genetical Theory of Natural Selection, Fisher explained evolution
as natural selection acting on the variation produced by combinations of discrete genes,
changing the allele frequencies in a population. Fisher was the first to provide an explanation
(known as “Fisher’s principle”) why the sex ratio in most sexually reproducing species is
approximately 1:1. He showed that the probability that a mutation increases an organism’s
fitness is inversely proportional to its magnitude, and proved that more variation increases
the chances of survival, therefore larger populations are more likely to survive. He also
founded the field of quantitative genetics and contributed mathematical tools and methods
for calculating gene frequencies, estimating genetic linkage and explaining Mendelian
inheritance within the continuous, gradual context of evolution. Together with geneticist
E. B. Ford, Fisher showed that natural selection was a much stronger force than had been
assumed at the time and explained the presence of polymorphism in nature due to selection.

J. B. S. Haldane was another British scientist (later naturalised Indian) with important
contributions to statistics, biometry and population genetics. Haldane demonstrated genetic
linkage in mammals in his 1915 paper “Reduplication in mice”. Along with Sewall Wright
and Ronald Fisher, Haldane was one of the three major contributors to the mathematical
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theory of population genetics, using maximum likelihood methods for the estimation of
human linkage maps and developing mathematical models for allele frequency changes at
a single gene locus. In his ten-paper series entitled “A Mathematical Theory of Natural and
Artificial Selection” and later in his book “The Causes of Evolution”, Haldane explained the
mathematics behind natural selection and Mendelian inheritance in terms of changes in
gene frequencies and the interaction between selection, mutation and migration.

By the early 1930s, the works and efforts of the leading population geneticists have
resulted in a consistent mathematical framework which integrated natural selection with
Mendelian genetics. Thus the new discipline of Population Genetics was born, becoming
the core of the modern evolutionary synthesis. Scientists had managed to identify the
main factors that influence evolution and explain their mechanisms within a mathematical
framework, although the relative importance of these factors remained subject to debate.

An understated aspect of the new framework was that it did not represent merely a
confirmation and formalization of previous Darwinian and Mendelian hypotheses. It
represented a paradigm shift in its own right, shifting focus from individual organisms
and speciation at the level of individuals to processes happening at the level of genes and
populations. The change in perspective did not happen without opposition. In particular,
reconciliation between the continuous microevolution determined by the accumulation of
small genetic changes and the macroevolutionary leaps observed by paleontologists in the
fossil records was still not fully achieved.

3.1.3 The Modern Synthesis

“..a study of the effects of genes during development is as essential for an
understanding of evolution as are the study of mutation and that of selection.”
(Julian Huxley, Evolution: The Modern Synthesis, 1942)

The so-called modern synthesis was a mid-century effort by the leading biologists of
the time to create a unifying view of evolution, merging ideas from different fields of
biology such as genetics, botany, ecology, morphology, paleontology and systematics. This
synergistic approach was necessary in order to bridge the gap between the theoretical
work of mathematicians and statisticians and the experimental observations of geneticists,
naturalists and paleontologists.

The name was coined by evolutionary biologist Sir Julian Sorell Huxley (brother of
famous novelist and philosopher Aldous Huxley) in his book entitled “Evolution: The
Modern Synthesis” ( , ). Intimately familiar with the works of his predecessors,
Huxley explained with great clarity the ideas of the time that evolution happens through
changes in gene frequency due to genetic drift, gene flow and — most importantly — natural
selection.

Built on the foundation of population genetics, the modern synthesis was further ex-
tended most notably by biologists Ernst Mayr, Gaylord Simpson and Ledyard Stebbins.

33



3 Evolutionary Computation

Mayr invented the concept of a biological species and developed models to explain the
occurrence of speciation. Simpson — a paleontologist, used fossil evidence to validate
the modern synthesis. He supported the claim that small, continuous, gradual change
described as microevolution could be extrapolated to explain the macroevolution observed
by paleontologists. In his work “Tempo and Mode in Evolution”, he showed that evolution
can take place at varying rates — very fast, average and very slow — and that differing
rates yield different patterns of evolution. Stebbins was a botanist whose most important
work “Variation and Evolution in Plants” helped integrate botanical science into the modern
evolutionary synthesis. Stebbin’s work explained evolutionary mechanisms in plants and
provided the conceptual framework for the field of plant evolutionary biology.

By the end of the 1950s, the modern synthesis had become the fundamental framework
of evolution, containing several important ideas:

¢ Evolution is gradual, through the accumulation of small genetic changes
¢ Change is determined by natural selection acting on genetic variation
¢ Other mechanisms are also present, in particular gene flow and genetic drift

¢ Events identified in the fossil record are consistent with evolution through natural
selection

¢ There is a clear distinction between genotypes and phenotypes

¢ The environment affects phenotypes but not genotypes

With the modern synthesis, the scientists of the time had made the best of the knowledge
they had available. However, in the 1950s the DNA, as well as many of the biological
mechanisms present inside the cell and inside the gene had not yet been discovered, and
biologists had yet to understand the role of genes in development.

3.1.4 Developmental and Molecular Genetics

In current times, the field of genetics deals predominantly with the functioning and
behavior of genes. We know now that a gene is a DNA sequence that codes for a known
cellular function or process. Physically speaking, a gene is made up of molecules called
nucleotides that are named according to the four nitrogenous bases they contain: cytosine
(C), guanine (G), adenine (A) and thymine (T). Therefore, a concrete gene is given by a string
of nucleotides such as “CTGGAG”. Mutations occur at gene level when nucleotides are
inserted, changed or deleted from the DNA sequence.

Under environmental pressure, mutations can either have an immediate effect or they
can accumulate over time, leading to evolutionary change. Adaptation is considered to be
the consequence of genetic change, manifesting itself at the level of the phenotype through
the acquisition of traits that enhance the fitness and survival of individuals. Environmental
factors can also turn genes on and off and affect how cells read genes, therefore affecting the
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phenotypic traits of the organism. An organisms’ phenotype and behavior are influenced
by genetic as well as environmental factors'.

In its early stages, evolutionary theory concerned itself solely with the mechanisms
of gene expression and the correlation between genes and phenotypes, with no special
emphasis on the developmental aspect and the causal relationships within the evolutionary
process. However, at the beginning of the 21st century, despite modern tools and techniques
such as whole genome sequencing, it is still not possible to establish a clear relationship
between genotypic and phenotypic variation.

Understanding the mapping of genotypes to phenotypes represents a core aspect of
modern biological research. Despite a historical systematic bias towards linear causation
schemes in biology, the post-genomic era marks an increasing focus towards a systems
approach trying to clarify the generative properties of genetic variation and how phenotypic
variation is generated given a genetic background ( , ).

3.2 Evolutionary Search Methods

The idea of artificial evolution appeared quite early in the field of computer science.
We find it in the work of Alan Turing, where it was used to outline a teaching process
for machines ( , ), or in the work of John von Neumann on self-reproducing
automata ( , )2

Metaheuristics that implement various aspects of biological evolution belong to the cate-
gory of Evolutionary Computation (EC). These algorithms iteratively improve a population
of solution candidates called chromosomes or individuals through the repeated action of
recombination® and fitness-based selection.

Algorithm 1 shows a high-level algorithmic outline of the evolutionary process. Evolu-
tionary methods with the general structure given in Algorithm 1 differentiate themselves
from one another by the way solution candidates are encoded (the chromosome represen-
tation) and by the concrete implementations of the recombination and selection operators.
The recombination step is usually realized by multiple recombination operators that can
be applied with different probabilities.

The most popular EC metaheuristics include evolutionary programming (

, ), evolution strategies ( , ; , ), genetic algorithms

'The common example illustrating the environment’s importance is two seeds of genetically identical corn,
one placed in a temperate climate and one placed in an arid climate. The one in the arid climate only
grows to half the height of the one in the temperate climate, due to lack of water and nutrients in its
environment.

2For a more in-depth and comprehensive account of evolutionary algorithms we turn the reader to (

) )-

3We describe recombination as the action of producing new genetic variation from the existing variation,

ie., creating new solution candidates from the old ones.
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1 initialization: random starting point or collection of points in the solution space;
2 fitness evaluation: assign fitness values to the initial solutions;

3 while stopping criteria not satisfied do

4 | parent selection: select parent individuals for recombination based on fitness;
recombination: generate new child individuals from the selected parents;
fitness evaluation: calculate objective values for each solution;

offspring selection: fill mating pool with individuals based on their fitness;

N S w»n

8 return: current solution or best solution from a population of solutions;

Algorithm 1: General workflow of evolutionary methods

( , ), differential evolution ( , ) and genetic programming

3.2.1 Evolution Strategies

Evolution Strategies (ES) were originally developed in the late 60s from a set of rules for
driving a physical system towards an optimal state ( , ). The rules
in their original formulation were the following:

1) Change all variables at each step, mostly slightly and at random

2) If the new set of variables does not diminish the goodness of the device, keep it,
otherwise return to the old status

Recognizing the efficiency of these rules in optimizing noisy and multimodal processes,

as well as their similarity with the process of evolution (where the first rule models mutation

and the second rule models natural selection), Rechenberg and Schwefel coined the name

evolution strategy and shifted their focus on the new method in their respective dissertations

( ) ) and ( , ).

Initially, ESs worked with a “population” of just two individuals, one parent individual
and one descendant obtained via mutation, thus being named (1 + 1)-ES. Mutation was
realized by applying a vector of normally distributed random numbers from N(0, ¢*), such
that a new solution was given by:

x'(t) = x(t) + N(0,7")

The values of ¢! € R" determine the so-called “mutation strength” and can either remain
constant over time or be dynamically adjusted using Rechenberg’s 1/5 success rule, developed
analytically by calculating the convergence rates ( , )

cg-ot ifpl<1/5
o =3¢ -0t ifpl > 1/5
gt ,if pl =1/5
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where p! is the frequency of successful mutations and step sizes ¢4, ¢; € R are control
parameters of the evolution strategy. The 1/5 rule can be stated as follows:

The ratio of successful mutations to all mutations should be 1/5. If it is greater
than 1/5, increase the standard deviation, if it is smaller, decrease the standard
deviation.

( , ) show that the (1+1)-ES can optimize linear functions in O(n In n)
expected time with mutation rates of size ©(1/n) but will need exponential time for
polynomials of degree 2 and unimodal functions, where n is the length of the parameter
vector.

Rechenberg was also the one to come up with the idea of having a population of ¢ > 1
individuals, and this version was named (u + 1)-ES by Schwefel. The (u + 1)-ES also
benefits from a recombination operator that generates an offspring from two randomly
selected parents from the population. If the offspring is fit enough it will replace one of
the parents, thus keeping the population size constant. ( , ) showed that
crossover can significantly speed up the evolution. In the case of ESs, one disadvantage of
having a recombination operator and a population of individuals is that self-adaptation of
step sizes is no longer possible since offspring with reduced mutation variances are always

preferred ( ) )-
The intrinsic tendency of the (u + 1)-ES to reduce mutation strength led Schwefel to
introduce two new versions of ESs ( , ):

o The (u + A)-ES, in which 1 > 1 descendants are created at every generation and the
worst A out of all the u + A individuals are discarded.

o The (4, 1)-ES, in which the selection takes place among the 1 offspring only and the
parents are completely replaced by the offspring. Obviously in this strategy A > u.

When p parents are involved in the creation of one offspring, the ES is described using
the notation (u/pT1)-ES.

Another motivation for the (u + A)-ES and (y, 1)-ES was the possibility to simultaneously
adapt the individual components of the mutation vector ¢' by adding it as part of the
individual’s genotype. The mutation operator was adapted to handle this change ( ,

):
a’t = r(P")
mnt __ ty _ mnt o _mt
a i_m(ai)_(x N )

t t
o= _eN(O,ALT)

x//t — xlt + N(O, U_/It)

In the above equation, r represents the recombination operator and m represents the
mutation operator which in the first step adjusts the ¢ vector according to the normal
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distribution N (0, Ac) (wWhere Ac is the mutation step size meta-parameter). Then mutation
is applied on the part of the individual which encodes the problem with the self-tuned
mutation strength. The idea behind the use of the exponential for the calculation of &' is
to permit a wider variation range for the mutation strength, under the implicit assumption
that good individuals will pass on their “good” settings for the mutation strength to their
offspring via recombination, causing the search to take larger steps towards the optimum.

In a further analysis of the two member ES using a sphere model of the objective function,
Schwefel also derived a more precise formulation of the 1/5 success rule:

After every n mutations, check how many successes have occurred over the
preceding 10n mutations. If this number is less than 2n, multiply the step
lengths by the factor 0.85; divide them by 0.85 if more than 2n successes
occurred.

Another significant improvement comes from ( , ) who in-
troduced a new step-size control method for ES in which they use step history information
(accumulated in a so-called evolution path) to automatically tune the covariance matrix
of the multivariate distribution from which new candidate solutions are sampled, such
that the algorithm is more likely to perform mutation steps in the right direction with
an adaptive step size. The new approach, entitled Covariant Matrix Adaptation Evolu-
tion Strategy (CMA-ES) is a state-of-the-art evolutionary algorithm for unconstrained or
bounded constraint optimization problems.

For a more in-depth look at evolution strategies, the reader may also consult (

, ) and ( , ).

3.2.2 Evolutionary Programming

Evolutionary Programming (EP) represents a similar optimization approach to ES,
developed independently by ( , ) initially for the optimization of finite state
machines, and performed according to the following steps:

1) Inititalization: The initial population of ¢ machines P; = (N, S;,L;, 0, 4;), Vi €
{1,2,...,u}, where Nj; represents the number of states in the machines, selected at
random uniformly from {1, 2, ..., Nyuax }, Si represents the randomly selected start
state, L; the number of links and O; the output symbols.

2) Fitness evaluation: A score describing how well the FSM was able to solve the problem
at hand (prediction or control).

3) Mutation: In the original formulation, mutation consisted of FSM modification
operations like adding a state, deleting a state, reassigning a start state or reassigning
a link or an output symbol. The number of mutation operators M; to be applied
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was determined by sampling a Poisson random variable with mean parameter /111
obtained from the parent’s mean parameter A;:

A =2 +0.5N(0,1)

4) Fitness evaluation

5) Selection: For population sizes smaller than 10, the better half of the population
according to fitness was chosen as parents for the next generation. For larger popu-
lation sizes, tournament selection was used.

EP was refined and adapted to the continuous optimization domain by ( , ) and
shares a number of features with ES, such as the real-valued representation, normally
distributed random mutations and self-adaptation of the strategy parameters. A scaling
parameter o was introduced for the self-adaptation of strategy parameters.

xi = x; + N(0,07)

ol =0i+a-0;-N(@O1)
If any value o; becomes nonpositive, it is reset to a small value ¢ ( , ). In the
experiments of ( , ) & was set to a value of 0.01.

One notable difference though between ES and EP is the absence of a recombination
operator in EP. Furthermore, EP implements a softer kind of probabilistic selection which
makes it a slightly weaker optimization method than ES, according to ( , ).

Furthermore, ES use the mutated strategy parameters for modification of object variables,
while EP first modifies object variables and mutates strategy parameters in the second step,
leading to a delayed effect of strategy parameter changes ( , ).

3.2.3 Differential Evolution

Differential Evolution (DE) ( , ) is a parallel direct search method
that uses a population of n D-dimensional parameter vectors x; g, where i = 1,2, ...,n. DE
differs from other methods in the way new solution candidates are generated, by adding a
weighted difference vector between two population members to a third member.

Different DE strategies are usually denoted by DE/x/y/z where x represents the way
of producing mutants, y represents the number of difference vectors involved in crossover
and z represents the crossover type. For example, a DE/rand/1/bin will choose a random
vector to be mutated, use one difference vector and a binomial crossover scheme.

The mutation operator in DE has received a lot of attention leading to the development
of several mutation variants, described below. Several mutation schemes are possible:

1) DE/rand/1
ViG+1 = %rc + F - (xr,6 — xra,G)
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2) DE/best/1
ViG+1 = Xpest,G T+ F- (xrl,G - xrz,G)

3) DE/current-to-best/1
This mutation scheme incorporates an extra variable A to control “greediness”

ViG+1 = XiG + A+ (Xpest.g — %ig) + F - (X6 — %1,.6)

4) DE/rand/2

Vig+1 = %ig + F - (xp,6 = xr,6) + F - (xr,.6 — %4,G)

5) DE/best/2
ViG+1 = Xbest,G T F- (xrl,G - xrz,G) +F- (x1’3,G - xm,G)

In the above, 11, 15, 13, 4 # i represent random integers chosen from the interval [0, n — 1],
G represents the generation number and F is a real constant factor which controls the
amplification of the differential variation.

Crossover (parameter mixing) was also introduced as a way to increase diversity (and
make larger steps in the solution space)

u’i,G+1 = xl’],G + F : (xrz,G - er’G)

DE uses two different crossover operators:

1) Binomial crossover This type of crossover selects each component to be used in
the offspring from the mutated vector according to independent Bernoulli (binomial)
trials. The probability that a component is mutated is p,, = CR(1—1/n)+ 1/n where
n is the number of components and CR is the crossover rate.

2) Exponential crossover For this crossover, CR controls not only the probability for
mutation but also the number of components to be mutated. We denote the bound
for the number of mutated components with L and give the probability distribution
for the case where we have h mutated components:

(1-CR)CR" if1<h<n
P(L=h)=
IR (63 ifh=n

As far as selection is concerned, newly generated individuals are accepted into the new
population based on the greedy criterion: the new trial vector replaces the target vector if
it yields a better cost function value.
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3.2.4 Genetic Algorithms

Genetic Algorithms (GA) were introduced by ( , ) in their book “Adaptation
in Natural and Artificial Systems”. Although initially developed as a tool for the study of a
more general theory of adaptive systems, GAs have found many applications in real-world
optimization problems from many technical and engineering fields. Especially suited for
combinatorial optimization problems, GAs use a binary encoding and make explicit use of
genetic operators called crossover and mutation for the generation of new solutions. In
analogy with nature, the bit positions in the binary chromosome are called loci, the variable
at a given locus is a gene and its value it an allele.

As a theoretical justification for the algorithm’s optimization capability, Holland devel-
oped an equation called the “Schema Theorem” which demonstrates how the evolutionary
search is guided by the selection mechanism towards “promising regions of the search
space”. Roughly speaking, the Schema Theorem describes the GAs ability to explore hyper-
planes in the solution space and gradually close in to feasible regions where the optimum
might be found. It does so by factoring in the disruptive effects of crossover and mutation
on the distribution of certain patterns (as we will see bellow) in the bit string population of
individuals, under a proportional selection scheme.

Recombination in Genetic Algorithms

In a GA, recombination takes place through crossover and mutation. Crossover takes
two parent bit string individuals and exchanges parts of their chromosomes in order to
create new child individuals. Mutation creates new individuals by making random changes
in a parent bit string. The main exploration tool is the crossover operator, through which
a new child individual is created from two parent individuals, in a manner similar to the
sexual reproduction from biology. Crossover returns a new bit string obtained from the
combination of two parent bit string individuals.

The three most common crossover operators used by GAs are the one-point, two-point
and uniform crossover.

1) One-point crossover The one-point crossover takes two bit strings # and v of length
[ and picks a random integer ¢ in the range [1, []. Then, two new child individuals u’
and v’ are produced by swapping between # and v the bit values from positions 0 to
c.

2) Two-point crossover Like its name suggests, the two-point crossover takes two
bit strings # and ¥ of length [ and randomly chooses two numbers ¢, d in the range
[1,1]. Then, it swaps the bit values between i and ¥ on the portion defined by the
two indices ¢ and d.

3) Uniform crossover The uniform crossover operates according to a probability p
of swapping bit values between the two parents. It iterates over the two parent bit
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strings and if p is greater or equal than a random number generated uniformly on the
interval [0, 1], then it swaps the bit values. In this context, p is also called a "mixing
ratio” as it determines how many genes come from the first parent and how many
from the second parent.

‘0|O|1|1|1|l O|1|0|O|0‘Parent0

Swap bit values
at positions 0 to ¢

o tfofofi]olt[t]t]1]1]parent:

[

(a) One-point crossover

‘0|O|1 1|1|1|0 1|0|O|0‘Parent0

Swap bit values
at positions ¢ to d

ot ofo ottt 1]1]parents

c d

(b) Two-point crossover

oot t][1]1]o]1]o]o]o]Pparento

Swap bit values
with probability p

‘0|1|0|0|1|0|1|1|1|1|1‘Parentl

(c) Uniform crossover

Figure 3.1: Crossover operators

Holland’s introduction of crossover as the main GA recombination operator (as opposed
to mutation which was the main operator used by evolution strategies) was based on the
idea that two good parents will have a good chance of producing an even better offspring.
However, crossover alone cannot guarantee progress as new solutions will always be inside
the region of the solution space defined by the hypercube bounded by the initial binary
vectors. If the global optimum is outside of this region, the algorithm will not be able to find
it. Therefore, the algorithm will be sensitive to population size and random initialization.

To minimize the risk of premature convergence and improve the performance of the
genetic search, mutation needs to be introduced in the population as a diversity bringer.
Here, the concept of diversity has the same meaning as in nature: new genetic material
introduced by mutation will help the algorithm explore previously inaccessible regions
of the problem space. The mutation operator changes one or multiple bit values in the
individual according to a predefined probability p.
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Selection in Genetic Algorithms

The selection operator is responsible for deciding which child individuals make it into the
next generation based on their relative fitness. Many studies of GA selection are available
in the literature ( , ; , ; , ;

, ). We present the two main types of selection:

Fitness-proportionate Selection In fitness-proportionate selection, each individual
is assigned a relative selection probability based on its relative fitness compared to the
cumulated fitness of the population. An individual i from a population of size n will have a
chance of being according to its fitness f;:

pi = nfi
=1 fi

Examples of fitness-proportionate selection are roulette-wheel selection ( , ;
, ) and stochastic universal sampling ( , ; .

)

Ordinal Selection Ordinal selection methods fill the recombination pool with individ-
uals selected from groups of the population. Tournament selection ( , ),
picks s individuals from the population at random and puts them together in a group
where they compete against each other for a place in the recombination pool. Truncation
selection, used in the Breeder GA ( , ) tries to fill
the recombination pool using only the best T'% individuals in the population.

Holland’s Schema Theorem

Holland’s schema theorem provides a theoretical explanation for the GA’s ability to
produce increasingly good solutions by factoring the effects of crossover, mutation and
fitness-proportionate selection into an equation which explains the increase in average
quality in the population of binary vectors.

A schema (pl. schemata) H is a string of symbols from the alphabet {0, 1, *}, where *’
represents a wildcard symbol that can be matched by eitheraOora 1 (x € {0, 1}). Schemata
can be seen as templates which describe sets of strings on the alphabet {0, 1}. For example,
the schema 1*0* describes the set of all strings which have a 1 at position 1 and a 0 at
position 3. Obviously, this set will contain four strings, 1000, 1001, 1100 and 1101. A
schema H can be described by the following properties:

¢ The order O(H) represents the number of fixed positions inside the schema

o The defining length L(H) represents the distance between the first and last fixed
positions
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o The average fitness f(H) is given by the average fitness of all the strings matching the
schema

Using these properties, the Schema Theorem states that short, low-order schemata with
above average fitness increase exponentially in successive generations. This schemata
were also called building blocks as they were believed to have a big contribution to the
optimization results. The reasoning is as follows: the children of fit individuals will likely
have a selective advantage unless disrupted by crossover or mutation. The probability of
disruption can be described within the schema itself as the probability that one of the bits
in the fixed positions is perturbed. Therefore, the lower the order (less fixed bit positions
that can be disrupted), the lower the probability. Similarly, the shorter the defining length,
the less chance that a schema is split by crossover.

The disruption probability in the case of crossover depends on the number of positions
N where crossover can take place, and the schema defining length L(H):

L(H)
PriDe} = peg—
In the case of mutation, the probability for disruption depends on the schema order and
can be expressed as
Pr{Dp} =1-(1- pm)O(H)

For p,, < 1, the schema survival probability for mutation may be approximated as 1— pg(H).

Using the equations above and ignoring the small cross-product terms, the total probability
of disruption can be expressed as
L(H)
p=p_ Pt OH)pn
where p., pm are the probabilities of crossover and mutation. The expected frequency of a
schema H is described by the following inequality:

m(H, t)f(H,t)
(1)

where N is the number of bits (length of the representation), p. and p,, are the probabilities
of crossover and mutation, m(H, t) is the number of strings belonging to schema H at
generation f, f(t) is the average fitness at generation t and f(H, t) is the average fitness of
schema H at generation ¢.

Holland defines the GA intrinsic parallelism in terms of schemata by observing that
the sampling of a new chromosome yields information about the sampling averages of
each of the 2! schemata of which it is an instance. This information can be useful under
the assumption that correlations exist between the various instances of a schema. This
particular assumption represents the main argument for the effectiveness of the genetic
search.

E(m(H,t+1)) > (1-p)
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In practice, the schema theorem may fail to account for sampling artifacts in finite
GA populations, especially in the context of multimodal solution spaces where selection
may steer the search in the wrong direction. Furthermore, a number of dissenting views
regarding Holland’s schema theorems have been expressed by other researchers dealing
with the mathematical and statistical analysis of GAs and their convergence.

Criticism of the Schema Theorem

Grefenstette ( , ) claims that the introduction of schemata
only creates artificial confusion. They criticize the mainstream interpretation of the schema
theorem describing it as a tautology:

“The estimate of the fitness of a schema is equal to the exact fitness in very
simple applications only. Therefore interpretations using the exact fitness
cannot be applied in connection with the schema theorem. But if the estimated
fitness is used in the interpretation, then the schema theorem is almost a
tautology, only describing proportional selection.”

Moreover, Grefenstette objects to the fact that the schema theorem estimates only the
disruption probability. Their alternate explanation of the GA search strategy is by analogy
with scatter search, with selection and crossover leading to a concentration of individuals
into promising areas.

Radcliffe ( , ) showed in the context of real-valued problems that gather-
ing information about the performance of any subset of the chromosomes provides no
information about the performance of the remaining structures — even when the schema
theorem is obeyed. Therefore, the search could not be effective except by chance because
the schemata would not relate chromosomes with correlated performance.

Vose ( , ) conjenctured, using computer simulations of GAs mod-
eled as dynamical systems in a high-dimensional Euclidean space, that GA populations
often alternate between generations of relative stability and periods of sudden rapid evolu-
tion. Vose explains this phenomenon known in biology as punctuated equilibria in terms
of properties of the selection (“focusing operator”) and recombination (“diffusing operator”)
operators. One of their conclusions is that “the emergence of growth of a string having
greater fitness typically requires events less probable than does focusing a population
towards a prevalent high-fitness string whose dominance is not interfered-with by finite
population effects”. In other words, the diffusion property of the recombination operator
under selection explains the search better than the schema theorem.

Rudolph ( , ) also stated that schema theorems have limited explanatory
power. He showed that although the schema theorem may give some clues about the
dynamics of the search, it does not imply convergence to the global optimum (nor does it
imply non-convergence).
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Altenberg ( , ) analyzed GAs using Price’s theorem® and found that the
schema theorem has no implications for how well a GA is performing. The main point of
criticism is that the schema theorem does not account for the intuitive idea that offspring
with above-average fitness can be produced by parents belonging to schemata of above-
average fitness. In other words, he found that an increase in the frequency of schemata
of above-average fitness says nothing about GA performance. Expressing the schema
theorem in terms of Price’s theorem, Altenberg shows that GA performance depends on
the algorithm’s ability to increase the upper tail of the fitness distribution of the population.

Miihlenbein ( , ) describes GAs as parallel random search algorithms
with centralized control represented by the selection schedule. He then questions the
utility of the schema theorem as it only accounts for proportional selection and it regards
the recombination operators (crossover and mutation) as disruptions of the population.
Furthermore, he claims that the schema theorem cannot be used to explain the GA search
strategy as it does not include the gene frequencies of the actual population, and is only
limited to proportional selection.

“Price’s theorem is a mathematical identity used for investigating an evolutionary process in terms of how
a trait or gene changes in frequency over time. It was introduced by mathematician Richard H. Price in
1970.
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Chapter 3 provided a synthesis of the most important concepts in the process of evolution
and the main evolutionary computation methods. Now that we are finished with the
prerequisites, we are ready to move forward to a detailed discussion of genetic programming
— our main tool for the study of artificial evolutionary dynamics.

Genetic programming (GP) ( , ) represents, in a manner of speaking, the “perfect
playground” for the experimental investigation of many biological ideas such as inheritance,
diversity, evolvability and dynamics, in a simpler (but not necessarily less complex) setting
where the user can control various aspects of the evolutionary process and study their
effects.

In contrast to other methods such as genetic algorithms, evolutionary programming
or evolution strategies, GP does not encode its solutions directly as a binary vector, real
vector, etc. but represents its individuals as computer programs which are then executed in
order to solve the problem. A computer program is nothing more than a set of instructions
that tell the computer what to do - in our case, how to solve a given problem.

Figure Fig. 4.1 shows the general flowchart of GP evolution.

4.1 Solution Encoding

Since there are more than one way to represent or encode (as chromosomes encode
genetic information) a computer program, GP can be seen as a sort of meta-evolutionary
optimization model in which several predefined components (the recombination compo-
nent, the selection component, the initialization component) interact with the encoding
and with one another according to the rules of evolution, to produce solutions (or tech-
nically speaking, to get computers to solve problems). In other words, GP is essentially a
domain-independent optimization method.

Since the development of the “standard” GP with syntax trees by ( , ), many
other GP variants appeared, differing from one another by the concrete implementation
of their encodings and associated operators. Additionally, GP encodings can be classified
as direct and indirect, based on whether the chromosome encoding is the same as the
solution representation. For example, an indirect encoding might use an integer vector
as a chromosome and a grammar with appropriate rules for translating the chromosome
encoding to a more meaningful solution representation (ie., a tree or a graph) that can be
evaluated by an interpreter on the problem domain.
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Figure 4.1: Flowchart of the GP evolutionary process

4.1.1 Syntax Tree Encoding

Since GP’s invention by ( , ), syntax trees have remained the most popular chro-
mosome encoding, and “standard GP” the most popular GP variant. In a GP syntax tree,
internal nodes represent functions such as mathematical or logic operators and leaf nodes
represent terminals such as variables or constants. For example, a chromosome encoding
instructions for the Santa Fe Trail problem could encode in its tree structure a combina-
tion of conditional and movement instructions such as (IF (FOOD-AHEAD MOVE-FORWARD
TURN-LEFT)). A chromosome encoding a mathematical formula could contain combinations
of function symbols and terminals such as (+ (X 2 a) b), evaluated by the interpreter as
2a + b. In the given examples we used Koza’s original S-Expression syntax typical of LISP
programs, in which the first element represents an operator or function name (IF, +, X)
and the following elements represent arguments (a, b, 2, MOVE-FORWARD, TURN-LEFT).
S-Expressions are equivalent to syntax trees as the one shown in Fig. 4.2. Direct tree
representations in which the tree data structure resides in memory have the advantage of
flexibility as they can be traversed, parsed or interpreted in many different ways (preorder,
postorder, breadth, using a stack, using a queue, etc).

The chromosome representation is a very important detail in the implementation of any
evolutionary search strategy. In GP, the elements of the alphabet which defines chromosome
encoding are directly related to biological concepts such as robustness and redundancy;
these concepts have a big influence on the evolutionary process.
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Closure and Sufficiency. Properties of Good Representations

In GP, the set of all functions and terminals is called the primitive set. An essential
requirement for programs encoded by the GP individuals is that any combination of
instructions must result in a valid program, or any combination of subexpressions must
result in a valid expression. In other words, the primitive set must satisfy the axiom of
closure.

Another requirement for the primitive set is sufficiency, in the sense that the algorithm
must be able to evolve solutions using the elements in the primitive set. For example, the
set of boolean functions {A, V, =} is sufficient for any problem in the boolean domain.

According to ( , ) good representations should respect the following two
principles:

1) The Principle of Meaningful Building Blocks
The user should select a representation such that short, low-order schemata are
relevant to the underlying problem and relative unrelated to schemata over other
positions.

2) The Principle of Minimal Alphabets
The user should select the smallest alphabet that permits a natural expression of the
problem.

Although the two principles were originally stated for GA representations, it is a reasonable
assumption that they apply to GP representations as well'.

A more powerful generalization of the above principles is given by ( , ) when
discussing the design principles of good representations. Radcliffe uses the Latin term
formae to emphasize the links between schemata and equivalence classes. Therefore in their
formulation formae are induced by equivalence relations. The precision of an equivalence
relation is defined as the number of formae it induces. We reproduce here the first two of
Radcliffe’s design principles and their explanations from ( , ).

1) Minimal redundancy
The representation should have minimal redundancy, and the redundancy should be
capable of being expressed in terms of the equivalence relations used. This would
allow the algorithm to “fold out” the redundancy (instead of treating redundant
solutions as unrelated).

2) Correlation with formae
Some of the equivalence relations, including some of low precision, must relate
chromosomes with correlated performance. This ensures that information can
be gathered about the performance of a forma by sampling its instances. Such
information is used [by the algorithm] to guide the search.

! Assuming ‘meaningful building blocks” and schemata can be defined for GP
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Linear Encoding Tree Encoding
Grammatical Evolution (GE) ( , | CFG-GP ( , )
)
Cartesian GP (CGP) ( : ) LOGENPRO ( , )
Gene Expression Programming (GEP) ( GGGP ( , )
, )

Table 4.1: Linear and tree-based grammar guided GP systems

We will refer to these principles later on, during our analysis of evolutionary dynamics
and building blocks.

‘exp‘

Figure 4.2: Example symbolic expression tree encoding a mathematical formula

4.1.2 Other Encodings
Grammar-based GP

In formal languages, grammars are defined as finite sets of production rules for strings.
Conversely, grammars can also be used within this formalism to recognize and validate
certain language constructs such as computer programs.

In the context of GP, grammars were introduced primarily to overcome the closure
requirements of the primitive set. Grammar-based GP uses grammars to map chromo-
somes to computer programs, therefore separating the evolutionary search domain from
the representation space. Grammars can also be used to immediately invalidate non-viable
individuals (those individuals whose chromosomes do not map to valid computer pro-
grams).

Grammar-based genotype encoding can be either linear or tree-based. Linear encodings
use bit strings or integer vectors while tree encodings use derivation trees. The main
variants are presented in Table 4.1.
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Tree representations in grammar-based GP are considered more powerful but linear
representations have the advantage of a vast background of theory and practice from
other evolutionary algorithms with a fixed-length representation such as GAs. For further
information we turn the reader to ( , ).

Graph-based GP

Graph theory defines trees as a simple, undirected, connected acyclic graphs. Addi-
tional edges in a tree could mean, from a GP perspective, the ability to evolve different
kinds of structures such as neural networks or finite-state automata, or to achieve more
compact representations by exploiting modularity within the structure of the computer
programs. However, graph-based representations come at the cost of a more complicated
logic required by the GP operators such as crossover and mutation.

Examples of graph-based GP include Parallel Distributed Genetic Programming (PDGP)
(Poli, ), Cartesian GP (CGP) ( , ). CGP is both grammar-based and graph-
based as the linear representation is expanded into a graph before evaluation, using rules
which map the integer tuples from the linear representation to graph nodes placed on a
2-dimensional lattice. Special care must be taken at the level of linear GP operators that
the created offspring can be expanded into valid graph representations.

Linear GP

In linear GP the chromosomes are represented by fixed or variable-length instruction
sequences. The idea behind linear encodings is to move the representation closer to the
machine level, using linear structures and registers for the evaluation of individual fitnesses.
The simplicity of the encoding gives up some flexibility in return for greater speeds, usually
orders of magnitude faster as individuals do not have to be evaluated by a tree interpreter
or parsed by a grammar. Notable examples of GP systems using a linear encoding are
Linear GP ( , ), Stack-based GP ( , ) and
Machine-code GP ( , ).

4.2 Genetic Programming Operators

Together with the representation, the choice of genetic operators is an essential, critical
aspect of GP performance. In this section, we will present the main operators required by a
GP system in order to evolve a population of syntax trees. For an easier notation, from now
on we will refer to ‘syntax trees’ simply as trees and we will use the following terminology
to refer to its properties:

o The root node represents the topmost node of a tree.
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¢ The node depth represents the number of edges on the longest path from the node to
a leaf. Thus, the tree depth is given by the depth of the root node.

o The tree length represents the total number of nodes (including the root node) con-
tained in the tree.

¢ The minimum and maximum node arity represent the minimum and the maximum
number of children that the node is allowed to have.

Generally speaking, a GP system needs to include the following components:

1) A tree initializer, used in the preliminary phase to initialize the population.
2) A tree evaluator, used to interpret the syntax trees and assign fitness values.

3) A selection operator. By default GP uses the same selection operators described in
Section 3.2.4. Additionally, GP can employ specially-tailored selection operators
which use supplementary criteria in choosing which individuals participate in re-
production. Special selection criteria can lead to dramatically different algorithmic
dynamics.

4) Crossover and mutation operators. These operators modify the tree structure by
making changes to leafs, nodes or subtrees. A detailed description is given below.

4.2.1 Tree Creation

Originally Koza ( , ) suggested three methods for tree creation: grow, full,
and ramped hald-and-half. The methods generate tree individuals by recursively adding
subtrees to a randomly-chosen root node until the specified tree depth or length limits
are reached. The nodes to be added are picked at random from the available primitive set,
with a specified probability of choosing between functions or terminals. The difference
is that while the grow method can pick any node as a child and can generate trees of any
shape and size, the full creation method is restricted to complete trees where leafs are only
allowed to be placed on the last level. The ramped half-and-half method simply initializes
some of the trees (half) with the grow method and the others with the full method.

Koza’s tree creation methods provided a reasonably-good initialization for the genetic
search. It was generally assumed that good diversity in the initialization phase could be
obtained by using a large enough population size, to avoid sampling artifacts and to ensure
a more or less uniform distribution of tree shapes and sizes. However, the methods were
still sensitive to the depth and length control parameters and could not guarantee a target
length for all created individuals. In this context, researchers tried to improve tree creation
in order to provide a better start for the search procedure.

Attempts were made to ensure that the initial individuals are uniformly sampled from
the set of available trees according to the maximum tree depth and tree length parameters.
For example ( , ) suggested a tree generation algorithm based

52



4 Genetic Programming

on previous work by ( , ) on the random generation of combinatorial
objects. Their creation method uses precomputed information to ensure uniform sampling
from the set of all possible trees of a given size.

( , ) observed that GP search spaces are partitioned by the ridge in the
number of program versus their size and depth and proposed a ramped uniform random
initialization to straddle the ridge. Their tree initialization algorithm also derived from
( , ) generates a uniform range of tree sizes. According to Langdon,
the ramped uniform method represents an improvement over Koza’s ramped half-and-half
as it produces trees with shapes near the ridge in the search space.

Luke ( , ) identified several weaknesses in the tree creation methods introduced
by Koza: no control over the probabilities that certain function symbols are included (the
methods sample the available functions uniformly), no control over the generated tree
shape (in the case of the grow method) and no possibility to create trees with a fixed or
average tree length or depth. He proposed two new probabilistic tree creation methods
named PTC1 and PTC2 which allow the user to specify an expected tree size and a probability
distribution for the desired function nodes.

In a follow-up paper Luke and Panait ( , ) found that PTC1 and PTC2
do not offer any significant advantage in terms of solution quality as uniformity does
not have a big influence on improving fitness. However, the possibility to hand-tune
function probabilities and expected tree lengths during initialization is likely to have a
positive impact on algorithm dynamics and on the sizes of the resulting solutions and their
interpretability.

4.2.2 Selection

Fitness-based selection used by default in GP was already discussed in Section 3.2.4.
We discuss here some of the more subtle effects of the selection scheme. As selection only
acts on phenotypes, it does not protect the population against the deleterious effects of
crossover and mutation. Depending on the relative fitness differences between individu-
als, genotypes with high adaptive potential affected by some deleterious change may be
discarded altogether by selection in the early stages of evolution. This leads to the loss of
potentially useful genetic variation, decreasing the population’s adaptive potential.

Depending on how they sample the distribution of fitness values, different selection
schemes will exert different levels of selection pressure on the population and will have
different effects on algorithm dynamics and convergence.

Diversity and the Exploration-Exploitation Trade-off

In the context of genetic search, exploration refers to the algorithm’s ability to probe
different areas of the search space, and exploitation refers to the algorithm’s ability to focus
on a single area and locally improve solution quality.
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It is assumed that more diverse individuals in the population would correspond to
more spread out points in the solution space. Selection is a force that acts against genetic
variation by only preserving useful® variation and throwing away the rest. Therefore,
selection gradually changes the distribution of points in the solution space towards local
optima. It is shown in (Xie, ) that loss of population diversity in GP is entirely due to
the not-sampled individuals.

The antagonistic relationship between the exploration and exploitation aspects of genetic
search has been observed quite early. ( , ) analyze the available
selection schemes and their influence on algorithm convergence. Each selection scheme is
analyzed in terms of its growth ratio — the growth of an individual with a specified rank
in a population. They suggest a number of guidelines for maintaining a balance between
exploration and exploitation:

¢ Use slow growth ratios to prevent premature convergence
o Use higher growth ratio followed by mutation
¢ Permit localized differential mutation rates

o Preserve useful diversity through niching, dominance and diploidy

Choosing the right selection scheme has proven to be a delicate matter, especially as a
selection scheme’s effectiveness depends on the population size and the structure of the
fitness landscape.

Population diversity is generally seen by the GP community as a major factor in algorithm
performance. In many approaches, researchers have tried to obtain a more fine-tuned
control over the exploration-exploitation aspect of the search through the incorporation of
secondary mechanisms in the selection scheme meant to preserve and improve population
diversity. A summary of the various diversity measures and diversification strategies is
given below:

o ( , ) introduced soft brood selection to “shield reproduction from the
cost of producing deleterious offspring” and to “shift the evolution of representations
away from a conservative strategy towards an exploratory strategy”. Soft brood
selection works by producing a “brood” of offspring from two parents and then
holding a tournament between the brood members. The winner is returned as the
offspring contributed by the two parents.

o ( , ) used an analogy with statistical physics in which population diversity
and average fitness are seen as state variables corresponding to the entropy and
energy of a physical system. Diversity is taken at the semantic level and defined using
the Boltzmann entropy function in which the probabilities p; of a particle finding

2Usefulness in the context of GP is entirely dependant on fitness, therefore the rate of diversity decrease in
a population varies with selection pressure.
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itself in state i are interpreted as probabilities for an individual in the population to
belong to a certain fitness group. Rosca suggests that the correlation between the
two state variables can be used as a steering mechanism for the algorithm.

o ( , ) measured the average tree edit distances between the best individuals
in the population and the remaining ones and between crossover children and their
parents. They use these measures to characterize in a quantitative manner the
exploration and exploitation properties of the search.

o ( , ) introduced a correlative tournament selection method which tries to
mate individuals based on their correlation. Basically, one parent is chosen using a
regular selection scheme and the other as the one with the best correlation from a
set of randomly chosen candidates. The idea of this selection method is that similar
parents will produce better offspring.

o ( , ) suggested a “keep best” selection scheme where after
crossover is applied, the worst offspring is replaced by the best parent. The idea is to
ensure that good previous genetic material is being preserved.

o ( , ) used a variant of the edit distance where the cost of edit
operations is weighted according to the node level. While exponential in complexity
for unordered trees, the distance metric allowed the authors to employ distance-based
niching techniques in order to improve algorithm performance.

o ( , ) proposed a selection scheme guided by genealogy information and
named lineage selection. They define a genetic lineage as the genealogy formed by
an individual and all its descendants. The purpose of lineage selection is to “redirect
selection pressure from the fit to the fit and diverse”. Lineage selection works by

running tournaments between individuals belonging to distinct genetic lineages.

o ( , ) grouped individuals based on their fitness in intervals called
‘fitness segments’, then used a behavioral similarity measure based on an individual’s
‘behavioral history’ (a vector of past evaluations) to delete individuals that are too
similar (according to the Spearman correlation coefficient) with the average history
of their containing fitness segment. In addition, they incorporated the behavioral
history into the fitness calculation formula.

Adaptive Selection Pressure through Offspring Selection

Realizing the importance of preserving good genetic material in the population, (
, ; , ) introduced a selection scheme similar to
soft brood selection ( , ), but extended in such a way as to:

1) Preserve population diversity and use it in more efficiently
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2) Maintain the balance between exploration and exploitation by providing an adaptive
control of selection pressure

3) Support self-organization and emergence of building blocks by minimizing the
destructive effects of the recombination operators

Offspring selection represents an extension of regular selection methods where newly
produced offspring are conditionally accepted into the new population. The additional
selection criteria are verified in a post-reproduction selection step where the offspring are
evaluated and compared to their parents. Normally, this means that a specified inequality
equation between the offspring and parents fitness value needs to be satisfied. For example,
different offspring selection criteria might accept new offspring only if they fitness is better
than the best parent, the worst parent, or any intermediate value.

The work-flow of the offspring selection procedure is described in pseudocode in Algo-
rithm 2. The control parameters for the procedure are described below:

¢ The comparison factor ¢ controls the fitness threshold for the offspring selection
criteria and is dynamically adjusted during the run between [0, 1]. A value of 0 means
that the offspring has to be better than the worst parent while a value of 1 means
that the offspring has to be better than the best parent. The online scaling of the
comparison factor between 0 and 1 effectively implements a search strategy where
the algorithm is more focused on exploration in the beginning, gradually becoming
more and more directed towards the end. Similar to simulated annealing, the scaling
of parameter ¢ can take place according to different rules: linear, exponential, etc.
Usually, ¢ is kept fixed during the evolutionary run.

¢ The success ratio s specifies what ratio of the population should be filled with oft-
spring that outperform their parents (according to the offspring selection criteria). If
s < 1, then the remaining ratio of the population is filled with offspring randomly
chosen from the rejected pool of offspring that did not pass the offspring selection
criteria.

¢ The maximum selection pressure value p,,,, defines the maximum number of off-
spring that may be considered for the next generation, as a multiple of the actual
population size.

The offspring selection mechanism can be used to detect premature convergence when
the algorithm is no longer able to produce a sufficient number of successful offspring
(according to the population size and success ratio s) after ppqx - PopulationSize candidates
have been generated.

4.2.3 Crossover

The crossover operation plays an important role in GP as the main tool for exploring
large search spaces. GP crossover is usually performed by swapping randomly chosen
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Input:

o success ratio r
o comparison factor ¢
o upper limit for selection pressure p,. (expressed as a multiple of the actual

population size)

Output: a new generation of child individuals
1 POP; « population at current generation i;
2 POP;;, « future population to be created at generation i + 1;
3 POOL « pool of offspring that do not satisfy offspring selection criteria;
4 while |POP;,{| < r-|POP;| do
5 select parents using default method (tournament, proportional, etc.);
6 | generate a child by applying crossover and/or mutation on the parent(s);
7 fc < fitness value of the child individual;
8 | fp < fitness value of first parent;
9 | fp, < fitness value of second parent;

10 if fC > (min(fpl’fpz)+c' |fp1 - fpzl) then

11 ‘ add child to POP;,y;

12 | else

13 | | add child to POOL;
|[POP;,1|+|POOL]

14 Pactive < W;

15 if prax < Pactive then
16 L maximum selection pressure reached — stop the algorithm;

// At this moment r - |POP;| successful offspring will have been created
17 while |POP;,| < |POP;| do
18 L insert a random child from POOL into POP;,;

Algorithm 2: Pseudo-code description of the offspring selection scheme

subtrees between two parent tree individuals. As the main variation-producing operator in
GP populations, crossover has been thoroughly investigated and many different variants
and improvements can be found in the literature.

In its basic form (Fig. 4.3), crossover takes two parent individuals and generates a child
by replacing a subtree from the first parent with a subtree from the second parent. We
call the receiving parent that contributes the rest of its genotype the root parent and the
donating parent the non-root parent. Throughout this work, we use the fragment (as in
genotypic fragment) to denote a subtree that was swapped from the non-root into the root
parent.

Considering that a significant portion of all the nodes in the population are terminals,
it makes sense to bias the crossover towards function nodes; otherwise, crossover might
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simply replace one terminal with another, effectively behaving like point mutation. To
avoid this problem, in practice the crossover operator is biased towards function nodes
with a probability of 90%, as originally suggested in ( , ).

Root parent Non-root parent

Figure 4.3: Example crossover

The interplay between selection and crossover influences the way existing genotypic
variation within the population is used and maintained.

Crossover and Bloat

It was observed quite early during GP trials that the average program size increases with
the number of generations and this increase is not always accompanied by an increase in
fitness. This phenomenon, known as bloat has been found to affect the search negatively by
promoting large, overfit solutions and slowing down the algorithm as large programs are
more computationally expensive to evolve.

In practical terms, bloated programs contain regions of code which have no influence
on program output. Such regions with no useful function are called introns. A further
distinction can be made between code fragments that represent inviable code (for example,
a conditional branch that will never be hit) and code fragments that owe their neutral
(or even detrimental) effect on fitness to inappropriate function arguments like weighted
variables or constant values. In the second case, a bad or neutral code fragment can become
active after being improved through crossover or mutation.

Explanations for Bloat Early theorems regarded introns (inviable code in particular)
as the main reason for bloat proposing different explanations for their occurrence:

o Protective effects of introns ( ) ; ) ) suggest
that introns proliferate due to their protective role as a buffer against the disruptive
effects of genetic operators. Therefore, bloated individuals have a higher chance
of maintaining their fitness after selection. Additionally, as suggested by McPhee,
replication accuracy can act as a force towards more accurate solutions.

¢ Removal bias ( , ; : ) Since these regions
are more likely to be found towards tree extremities, the probability of crossover
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affecting fitness is inversely proportional with branch size. Therefore, fitness neutral
operations in regions of inviable code have a tendency to replace smaller subtrees
with average-sized ones.

o Fitness-based selection ( , ; , ) showed that bloat
is inherent to variable-length representations under fitness-proportional selection
when the genetic operators can alter the sizes of programs. They argue that variable
length allows many more larger representations to exist for the same fitness level,
leading to an increase in average program size as a side-effect of selection.

o Crossover bias ( , ,b) isolate the effects of crossover by using crossover
on a flat fitness landscape, and find that while crossover does not affect the average
program size, it changes the tree size distribution in the population to a Lagrangian
distribution of the second kind. This means that small programs will be present in the
population with a much higher frequency. They then argue that since small programs
are less likely to have good fitness, larger ones will be more likely to survive under
selection. Therefore, the crossover bias towards a particular distribution of tree
sizes ultimately translates into an increase in average program size under selection.
Intuitively, this may be explained by the fact that it is easier to achieve progress with
larger programs than with simpler (smaller) programs.

Bloat Control Methods The most obvious method for controlling bloat is to impose
static depth and length limits on the tree individuals. Another method for controlling bloat
in GP programs is the parsimony pressure method suggested by ( , ). The idea is
simple: to penalize program fitness based on their size according to the formula:

fp(x) = f(x) —c- £(x)

where £(x) returns the program size, and c¢ is a penalty factor. In practice, it is not easy to
find an appropriate value for the penalty factor c. ( , ) used a more
general form for the formula:

fp(x) = f(x) — g (£(x), 1)

where g is a function of program size and the number of generations t. They applied
Price’s theorem to the GP size evolution equation ( , ) and showed
that a covariant relationship exists between g and f. Taking the absence of growth in
the expectation is equivalent with Cov(¢,g) = Cov(?, f). Since the method deals with
expectations, a sufficiently large population size is needed.

Other Crossover Variants

Ideally, the goal of crossover is to produce useful genetic variation leading to adaptation
under the effects of selection. However, empirical evidence has led to criticism of the
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crossover operator for being highly destructive ( , ). Additionally ( ,
) showed crossover to be no better on average than mutation, although Angeline’s
criticism has been disproved by Koza in a later edition of their book ( , ).

In order to reduce bloat, preserve population diversity and increase evolvability, crossover
operators can include additional heuristics for selecting more appropriate subtrees to be
swapped (for example mechanisms for ensuring the exchange of homologous structures).

Many authors investigated crossover in terms of how it affects population diversity and
algorithm dynamics. As a consequence, multiple variants aimed at improving diversity and
GP search dynamics were proposed. Some of them are listed below.

o One-point crossover by ( , ) is basically a restricted version of
the standard crossover that only swaps subtrees with the same size and shape. The
main advantage of this form of crossover is that it allows (through its simplicity)
the calculation of crossover disruption rates on a model of GP schemata®. In their
experiments the authors confirmed that one-point crossover works very well in
combination with one-point mutation and outperformed the standard crossover
when a variable mutation rate is used.

o Size-fair crossover ( , ). The size-fair crossover choses a random crossover
point in the root parent and replaces it with a subtree of approximately the same
size from the non-root parent. This means that a terminal will always be replaced by
another terminal, while a function node will always be replaced by another function
node. The main idea of the size-fair crossover is to reduce bloat by controlling
program size during the recombination phase.

o Homologous crossover ( , ) The homologous crossover works in a similar
manner to the size-fair crossover, with the exception that the second subtree from
the non-root parent is deterministically chosen as the most similar to the subtree to
be replaced, with respect to size, position and shape. In their experiments, 16% of all
children produced by the homologous crossover were identical with the root parent,
compared to 7% for the size-fair and 5% for the standard crossover.

o Uniform crossover ( , ) This crossover acts on the common
region between the two parent individuals. This involves the additional effort of
aligning the crossover points and identifying the compatible subtree pairs. In their
analysis, Poli and Langdon showed that standard crossover behaves as a local search
operator, producing offspring which inherit most of their code from one parent
most of the time. Similarly, the size-fair crossover becomes more local as the search
converges. The uniform crossover, while still losing its global search properties, is
able to perform a less biased search since any node can be transferred from parent
to child with the same probability.

3Schema theorems for GP will be discussed in detail in Section 4.3
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o Semantically-driven crossover ( , ) The authors try to enhance
behavioral diversity by not allowing crossover child programs that are functionally
equivalent to their parents. Functional equivalence is calculated by bringing programs
to a canonical form where all redundant and unreachable arguments are removed.
Programs that reduce to the same canonical form are deemed functionally equivalent.
The semantically-driven crossover was shown to outperform standard crossover
and reduce the average depth of programs by approximately one-third.

o Probabilistic functional crossover ( , ) In an initial phase, this operator
calculates behavioral distances between a randomly selected crossover point in the
root parent and the nodes of the non-root parent parent. Then, the behavioral
distances are normalized and turned into selection probabilities, and the crossover
operator makes a weighted choice of the second subtree. The point behind this
approach is to increase the probability of beneficial crossover events.

o Semantic similarity crossover ( , ) follows a similar idea and defines subtree
sampling semantics as the collection of its evaluated values over a sequence of points
in the dataset. A sampling semantics distance between two nodes is calculated as
the Manhattan norm of the point wise differences between the sampling semantics.
Two nodes are similar if their sampling semantics distance falls within a predefined
interval. The crossover operator picks a crossover point in the root parent then swaps
it with the first node in the non-root parent that satisfies the semantic similarity
condition.

o Context-aware crossover ( , ) The context-aware crossover ran-
domly picks a subtree from the non-root parent and then produces a set of candidate
oftspring corresponding to each possible position where the subtree can be swapped
into the root parent. The best offspring in terms of performance is returned as the
result of crossover. Due to its exhaustive nature, this crossover greatly increases the
number of evaluations performed by the algorithm.

The crossover operators described above all have one thing in common: their authors
showed that each of them outperforms standard crossover in terms of search performance
and bloat reduction. In all cases, the perceived benefits come at the cost of significantly
increased computational complexity of the crossover operator due to the need to evaluate
multiple child candidates, to calculate distance metrics or to perform tree alignment op-
erations. Therefore, it could be argued that the claim of increased performance is not an
entirely fair claim. Furthermore, as the dynamics of the artificial evolutionary process in
GP are not fully known we cannot say for sure (in the spirit of the no free lunch theorem)
which methods are better to direct the search. In this context, a too-specialized crossover
may limit our ability to focus on the evolutionary system as a whole and investigate all of
its aspects.
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4.2.4 Mutation

Mutation in genetic programming is employed to inject new genotypic variation into
the population. It works best as a complement to crossover and acts mostly as a local search
operator. Similar to crossover, different variations exist:

o Point mutation randomly changes a single node in the individual. It ensures that the
mutated tree is valid by only exchanging compatible function nodes with the same
arity.

o Subtree mutation changes an entire subtree in the individual. The replacement subtree
can be randomly generated or can be created to be approximately the same size (a
size-fair mutation). Another version of this operator called shrink mutation replaces
a function subtree with a randomly generated terminal.

o Constants mutation only affects constants of a randomly selected subtree. Constant
mutation operators can also use local optimization methods

4.3 Genetic Programming Schema Theorems

With the development of GP many efforts by Koza and others were made towards a
working “GP schema theorem” that could explain its dynamics in a manner similar to
Holland’s schema theorem described in Section 3.2.4.

However, the difficulties posed by the highly-polymorphic, variable-length tree encoding
caused the theoretical advancements in the field of GP schema theorems to take place at a
very slow rate. Empirical investigations in this direction were especially difficult to set up
due to the vast number of subtree combinations that had to be analyzed.

At the most basic level, tree-based schema representations have to overcome all the
algorithmic challenges brought by dealing with labeled, unordered trees. Additionally,
encoding-specific particularities concerning the properties of the primitive set (for example,
whether some functions are transitive or not) have to be considered.

Once a suitable schema definition, along with tools for calculating its basic properties in
the population (such as frequency, average fitness, defining length, etc.) has been obtained,
the next step is to investigate the effects of genetic operators (crossover, mutation, selection)
on the distribution of schemata in the population.

In the last three decades, several schema definitions and methodologies have been inves-
tigated. Previous work in this area is summarized below.

4.3.1 Koza’s Schema Definition

( , ) defined schemas rather loosely as the set of subtrees which included in their
structure a predefined set of complete trees. For example, in Koza’s definition the schema
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H = {(+ 1 x),(X x y)} represents all the programs in which both expressions (+ 1 x) and
(X x y) occur at least once. One problem with this schema definition is that it does not
include positional information regarding the placement of the expressions within the tree,
making it impossible to calculate the schema order or defining length.

4.3.2 O’Reilly and Oppacher’s Schema Definition

( , ) extended Koza’s work and defined schemas as trees that
contained wildcard nodes identified by “don’t care” symbols denoted by '#’ Since wildcard
nodes can be matched by any other subtree (including leafs), they made an additional
distinction between subtrees (valid S-expressions) and fragments, defined as more general
expressions isomorphic to subtrees but not required to be complete (within a fragment,
a function node which would normally require arguments can have no children). Under
this definition, schema order was calculated as the number of non-# nodes. The schema
defining length was calculated as the sum between the fixed defining length (the number
of edges within each subtree or fragment) and the variable defining length (the number of
edges separating the groups of subtrees or fragments):

L(H) = Lfixed(H) + Lyar(h, H)

O’Reilly’s schema theorem only considers the effects of crossover. When the crossover point
selection probabilities vary between internal and leaf nodes, the probability of disruption
for program h sampling schema H is given by

Ly(H) + (1 = L) (L(H) — v(H))
Size(h)

pa(h) =

where v(H) represents the number of leaf crossover points, and L represents the selection
probability for leaf crossover points. The compactness of a program h is defined as the
opposite of disruption such that: C(h) = 1 — py(h).

The average probability that a schema H will be disrupted is given by

i(H,t)
_ Ly Pd(h)

Finally, with the same notation from the GA schema theorem, the equation for the GP
schema theorem has the expression:

E[m(H,t+1)] > m(H, t)@ (1 - p. - max{Py(H, h,t)})

where p, is the crossover probability, P, is the probability of disruption by crossover of

schema H, f is the average fitness of the population and f(H) is the observed fitness of the
schema.
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Disruption is defined as a probability Pr(E) of the event E that D, is less than a constant
f. A schema is disruption prone if Pr(E) < a, with @ a constant. Compactness is defined as
1 — Pr(E) so for Pr(E) > a the schema is compact.

O’Reilly and Oppacher give their result the following interpretation: “Compact schemas
with above average observed performance (GP Building Blocks) will be sampled at expo-
nentially increasing rates”.

4.3.3 Wigham’s Schema Definition

( , ) investigated schemas in the context of grammar-based GP. In their CFG-
GP( , ) individuals are derivation trees in which internal nodes represent
rewrite rules and leaf nodes represent functions and terminals used in the generated
programs. Genetic operators in CFG-GP manipulate the derivation trees and always
produce valid offspring derivation trees.

Whigham defined a schema as a partial derivation tree, and gave equations for the
probabilities of disruption under crossover and mutation, Py (H, h,t) and Py, (H, h,t).
Since the disruption probabilities depend on the size of the matching trees, Whigham took
the average probabilities Py, and Py, (for crossover and mutation).

Using these equations they arrived to the following expression:

E[m(H,t+1)] > m(H,t) f(I_:’ ) (P4, (H,t) - Py (H,1))

t

where
Rdﬁozﬁ—mmﬂmﬂ

mAHozﬁ—mﬁﬂﬂo)

with crossover probability p. and mutation probability p,,.

4.3.4 Rosca’s Schema Definition

( , ) was the first to introduce a schema representation as rooted trees, in which
wildcard symbols have a well-defined position in the tree relative to the root node. Rosca’s
reasoning for fixing the top-level structure of the tree-schema had been, in their own words,
that “the evolved structures appear to drift towards large and slow forms on average”. In
Rosca’s schema theorem the expression of the disruption probability is given by:

O(H)f(h)
heHPop(t) N(h) - Znernpop(r) f(h)

Pd(H, t) =
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where N(h) is the size of a program h matching the schema H. The schema theorem
equation becomes:

Elm(H.t +1)] > m(H. 0 (?’ D (1= (pm + po) - PalHL 1))

t

4.3.5 Poli and Langdon’s Schema Definition

( , ) defined schemas as rooted trees, with nodes from the primitive
set ¥ U T U {=}, where the wildcard symbol ‘=" represents a single node (function or
terminal). The main difference in using this schema representation is that, as opposed to
the previous schema definitions which allowed the set of matching trees to vary in shape
and size, in this case the shape and size of the matching trees will be fixed (the same size as
the schema itself).

The goal of making schemas independent of the matching trees’ shape and size was to
make the effects of genetic operators easier to calculate. The schema order, length and
defining are defined in the following way:

¢ The order O(H) of a schema H is given by the number of non-= symbols.

¢ The schema length N(H) of a schema H is given by the total number of nodes in the
schema.

¢ The schema defining length £(H) is given by the number of links in the minimum
tree fragment including all the non-= symbols within a schema H.

In their paper, Poli and Langdon considered all the cases in which a schema H can be
disrupted by crossover and mutation. The calculations apply to GP runs using fitness-
proportionate selection, one-point crossover, and point mutation:

¢ Point-crossover works by first identifying the common region between the two
parents and then swapping nodes from the same position in the common region
between the two parents, at a randomly chosen cut-point

¢ Point mutation works by changing a single node in the tree, and only with a node of
the same type (functions with functions and terminals with terminals)

The main results of Poli and Langdon’s schema theorem are given below, skipping the
full-length demonstration which can be found in ( , ). The theorem
is derived from calculating the probabilities of the events that affect schema sample count
from one generation to the next:

1) Disruption by crossover or mutation happens when the events D (H) (disruption by
crossover) and D,,(H) (disruption by mutation) take place

2) The event D (H) can take place in two mutually-exclusive situations. We consider
tree h instantiating schema H, and the zero-th order schema G(H) (the hyperspace
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associated with H):

a) his crossed with a program h ¢ G(H) (that has a different structure from H).
We denote this disruption event D, (H) = {D.(H),h ¢ G(H)}

b) his crossed with a program he G(H) (that has the same structure as H). We
denote this disruption event D.,(H) = {D.(H)|h € G(H)}.

The two mutually-exclusive events correspond to two distinct probabilities:

Pr{D.,(H)} = Pr{D.(H)|h ¢ G(H)} Pr{h ¢ G(H)}
Pr{D.,(H)} = Pr{D.(H)|h € G(H)} Pr{h € G(H)}

Since the two probabilities will need to be added together to obtain the expression
for the crossover probability of disruption, it is useful to rewrite some terms:

_ m(G(H), )f(G(H), )
M{(1)

Additionally, for the sake of brevity the notation pg;(t) was used to denote the term
Pr{D.(H)|h ¢ G(H)}.

Pr{h ¢ G(H)} =1-Pr{h € G(H)} = 1

In the case of mutation, the disruption probability is considerably easier to calculate.
For mutation probability p,,, the probability that all defining nodes of schema H
survive mutation unaltered depends on the schema order O(H):

Pr{Dy(H)} = 1= (1 = p,)° "

When p,, < 1, the equation can be simplified using the first terms of its Taylor
expansion:

Pr{Dn(H)} ~ pnO(H)

The expression for Poli and Langdon’s schema theorem after including all the proba-
bilities described above becomes:

E[m(H,t+1)] = MPr{he H} (1 - Pr{D,(H)})(1 — p. Pr{D.(H)})

Performing all the substitutions in the terms and considering the upper bound for
the possibility of disruption by crossover, Poli and Langdon’s schema theorem can
be rewritten as a lower bound for the expected number of individuals sampling a
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schema H:

f(H,1) O(H)
— : (1 - m)
T

E[m(H,t+1)] > m(H,t)

D _ _ m(G(H),1) f (G(H), 1)
{1 Pc pchff(t) (1 M?(t)
L(H) m(G(H),1) f(G(H),t) —m (H,1) f (H,1)
N(H) -1 M

The notation in the above expression is consistent to the notation used for the
expression of the GA schema theorem: M represents the number of individuals.
m(H,t) represents the number of strings matching schema H at generation t and
f(H, t) represents the average fitness of schema H at generation t.

In( , ), Poli and Langdon introduced new versions of the crossover
and mutation operators, namely the one-point crossover and point-mutation in order to
derive a schema theorem which gives a lower bound for the expected number of schema
instances at each generation. Their theoretical investigations produced the following
conclusions:

1) Because of crossover, the probability of schema disruption is very big at the beginning
of a run. In the beginning, crossover heavily counteracts the effects of selection.

2) Schemata with above average fitness and short defining length (with respect to
their total size) tend to survive more frequently, if their shape is of above average
fitness (f(G(H),t) > f(t)) and is shared by an above average number of programs
(m(G(H),1) > 1))

3) One-point crossover outperforms standard crossover

Exact Schema Theorem

In subsequent work, (Poli, ; , ) identified the main weaknesses
in their schema theorem, namely the presence of the expectation operator and a rather loose
lower bound for the expected number of schemas in the next generation. They work around
these limitations by extending the results of Stephens and Waelbroeck, who developed
an exact schema theorem for GAs with fixed-length string representation (

) ) )'

The constructive effects of crossover
Reformulating the results of Stephens and Waelbroeck, Poli arrives to the following form
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of the schema evolution equation for a GA with a fixed-length string representation:

N-1
a(H,1) = (1 = peo)p(H, 1)+ <2 Z p(L(H. i).0) p (R(H. i) 1)

where:
1) N is the length of the representation and py, is the probability of crossover.
2) p(H,t) is the selection probability of schema H at generation ¢

3) L(H, i) represents the schema obtained from H by replacing all elements from posi-
tion i + 1 to position N with * (don’t care)

4) R(H,1i) represents the schema obtained from H by replacing all elements from
position 1 to position i with * (don’t care)

The equation tells us that the total transmission probability «(H, t) of schema H depends
on the probabilities that lower-order schemas are present in the population (the terms
p(L(H,i),t) and p (R(H,i),t) in the equation). In more general terms as a function of
schema selection and creation probabilities, «(H, t) can be rewritten as:

a(H,t) = ps(H, t)p(H, t) + p.(H, t)(1 — p(H, t))

where

o ps(H,t) represents the probability that schema H survives crossover (offspring of
individuals sampling H will still sample H)

o p(H,t) is the schema selection probability

o pc(H,t) is the schema creation probability

Taking the schema sampling event (after crossover and selection) as a Bernoulli trial, the
number of times a schema H is sampled at step ¢ + 1 can be defined as a stochastic variable:

Pr{m(H,t+ 1) = k} = (AZ )a(H, H*(1 = a(H, 1))M*

where M is the number of individuals in the population. When k = 0, the probability of
schema extinction becomes:

Pr{m(H,t + 1) = 0} = (1 — a(H, 1))
The expectation and variance are given by:

E[m(H,t+ 1)] = Ma(H, 1)
Var[m(H,t + 1)] = Ma(H, t)(1 — a(H, t))
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Using the Chebychev inequality with the two equations above leads to a general schema
theorem without the expectation operator:

Pr{m(H,t + 1) > Ma(H,t) — kx/Ma(H, 1)(1 — a(H, 1))} > 1 — %

Hyperschema

In order to be able to define a schema transmission probability a(H, t) for GP in the same
way Stephens and Waelbroeck did for GA, Poli introduced a more general definition of
a schema called a hyperschema which included a second type of a wildcard symbol. Poli’s
hyperschema definition, given below, is the one which will be used in the remainder of this
work. By using the word schema, we will automatically refer to Poli’s hyperschema.

Definition (Hyperschema). A hyperschema is defined as a rooted tree were nodes could
be any of the symbols 7 U 7~ U {=, #}. The ‘=" symbol can match a single node (function
or terminal) while the #’ symbol can match any valid subtree.

Using this hyperschema definition, the total transmission probability can be expressed
in a very similar manner as before:

pxo

«(H,0) = (1 = prp(H ) + =

Z p (L(H, ), 1) p (R(H, ), 1)
where:
1) N(H) is the number of nodes in the schema H

2) L(H, i) is the hyperschema obtained by replacing with = all the nodes on the path
between crossover point i and the root node and with # all the nodes connected to
the nodes replaced with =.

3) U(H, 1) is the hyperschema obtained by replacing with a # node the subtree below
crossover point i

Finally, after all the prerequisites the exact schema theorem can be formulated:

Theorem (Exact GP Schema Theorem). The total transmission probability for a fixed-
size-and-shape GP schema H under one-point crossover and no mutation is

plhs, Oplha, 1)

a(H, 1) = (1=pro)p(H, )+pro- NC(hy, hy)

hi,h; EPﬂp(t)

Z 0 (hy € L(H,i))d (hy € U(H, i)
i€(h1,h2)

where

1) NC(hy, hy) is the number of nodes in the common region between hy and h;

2) C(hy, hy) is the set of indices of common crossover points.
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3) 0(x) is the Kronecker-Delta function (1 if x is true and O otherwise)

When the individuals have the same shape and size as schema H (belonging to the
zeroth-order schema G(H), a lower bound for the total transmission probability can be
obtained:

a(H,t) 2 (1 = pxo)p(H, 1)

N(H)-1
+ # Z Z p(hl, t)a(hl € L(H, 1)) Z p(hz, t)a(hz e U(H, 1))
i=l meG(H) h,€G(H)

where a few simplifications were made since hy, h, € G(H), therefore NC(hy, hy) = N(H),
therefore C(hy, hy) = {1,2,...,N(H) — 1}.

From the equation above, the schema theorem with schema creation correction can be
obtained:

Theorem (GP Schema Theorem with Schema Creation Correction). The lower bound
for the total transmission probability for a fixed-size-and-shape GP schema H under one-
point crossover and no mutation is

N(H)-1
(.0 2 (=pulp(H.0+ s D, p(LH.) 0 GUD.0p GUCH.H 0 G

The equation becomes an equality when all the programs in the population sample G(H).

Subsequent research in (Polj, ,b) extended the exact schema theorem from (Polj,

) based on microscopic properties (of single individuals) and produced a macroscopic

version where only the selection probability of lower or same-order schemata appear in
the formula.

Theorem (Macroscopic Exact GP Schema Theorem). The total transmission proba-
bility for a fixed-size-and-shape GP schema H under one-point crossover and no mutation
is

a(H, 1) = (1 = pxo)p(H, 1)

1
), ) vaaas Dy PLEHDNGL) p(UH )N GL1)
Tk NC(Gj, ) i€C(G,G)

Using a cartesian node reference system, ( , ,b) extended the exact
GP schema theorem to mutation and other crossover operators.
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4.4 Advanced Concepts in Genetic Programming

4.4.1 Genotype-Phenotype Maps

Since the Modern Synthesis and the integration of Mendel’s work with modern evo-
lutionary theory, the “gene as a blueprint” metaphor has become the generally accepted
explanation for phenotypic development. The relationship between genotypes and pheno-
types was believed to be one between two relatively regular and symmetric spaces, where
genes as distinct entities determined different phenotypic traits.

Attempts to model this relationship can be found as early as the inception years of the
Modern Synthesis. Most notably, Sewall Wright's fitness landscapes ( , , )
proved to be useful mathematical instruments for visualizing the fitness (reproductive
success) of different gene combinations. Wright's fitness landscapes were represented by
three-dimensional plots where the allele frequencies at two loci or two phenotypic traits
were shown on the x and y axes, while the fitness value of the given combination (as a
function of genotype or phenotype frequencies) was shown on the z axis (Fig. 4.4). In
general, a fitness landscape can be seen as a multidimensional space where genes represent
n — 1 dimensions and fitness represents the last dimension.

Figure 4.4: Sewall Wright's fitness landscape as originally shown in ( , ). Con-
tours on the map connect points with equal fitness.

Fitness landscapes make it easier to conceptualize the genotype-phenotype relationship
in terms of movement of populations across fitness landscapes. An important aspect
investigated by Wright was the existence of mechanisms through which a population of
genotypes can escape local peaks in the fitness landscape.
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“In a rugged field of this character, selection will easily carry the species to
the nearest peak, but there may be innumerable other peaks which are higher
but which are separated by “valleys”. The problem of evolution as I see it is
that of a mechanism by which the species may continually find its own way
from lower to higher peaks in such a field. In order that this may occur, there
must be some trial and error mechanism on a grand scale by which the species
may explore the region surrounding the small portion of the field which it
occupies. To evolve, the species must not be under strict control of natural
selection. Is there such a trial and error mechanism?” ( , )

In Wright's vision, populations could cross valleys in the fitness landscape through genetic
drift, natural selection and competition (accompanied by migration and interbreeding) with
other populations inhabiting neighbouring peaks. Wright believed that adaptive evolution
was enabled by a shifting balance between these evolutionary forces.

The capacity to overcome local optima represents a desirable property not only of
biological populations but also of optimization algorithms. Thus, the concept was readily
adopted by other areas where optimization could be seen by analogy as crossing a rugged
fitness landscape, full of hills and valleys. Fitness landscape analysis (FLA) deals with the
properties of algorithms and problem spaces which enable such low-fitness or neutral
areas to be crossed in the search for the global optimum. In optimization, FLA can offer a
significant advantage by allowing the practitioner to pick the most appropriate optimization
algorithm and settings according to the specific problem instances and the particularities
of it’s search space.

Using the analogy of evolution as a hill-climbing process, the question naturally arises:
what enables a population of genotypes to cross valleys or flat areas in the fitness landscape?
In order to keep evolving in the face of a changing environment, the population must be able
to accumulate mutations at the genotypic level while maintaining a certain level of stability
in the phenotype and producing appropriate phenotypic responses to environmental
changes.

The advent of molecular genetics has marked a paradigm shift from bean-bag genetics
and additive gene action to complex interactions within gene networks and epistatic effects
bearing subtle consequences to phenotypic development.

A later model of ( , ) known as the “NK model” introduced a
fitness landscape with tunable ruggedness using the two parameters: N — the number of
components and K — the degree of interaction between components. The “NK model”
defines a fitness function over binary strings of length N

F(S) = Z £(S)

where f(S;) represents the individual contribution for each position (or locus) i and is
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dependent on the value of K other loci:
f(Sl) = f(Si9 i’ s ;()

The advantage of the NK model is that it accounts for the epistatic effects in the genotype-
phenotype map. In order to account for neutral variation which was observed in biology,
the NK model was extended to include degeneracy for certain components so that their
contribution is either zero or bound to a limited range of contribution values ( ,

).

Modern developments in molecular genetics and developmental biology have shown
that genes do not encode information directly but are part of larger gene networks and are
therefore context-dependent. This discovery marked an important deviation from the idea
that genes were independent entities which determined distinct phenotypic traits.

In this context, systems biology has become an increasingly important field of research.
A systems-level approach is necessary to leverage the complexity of genotype-phenotype
relations ( , ). Although selection acts on pheno-
types, phenotypic variation is the product of both genetic and epigenetic processes. This
lead to the idea of the genotype-phenotype (G—P) map ( , ): a mathematical
structure whose properties can be used to investigate the patterns of phenotypic evolution
in an evolving system. In Alberch’s view, the mapping from genotype to phenotype is
determined by non-linear interactions at the molecular, cellular and tissue levels. The
interactive nature of developmental processes implies the existence of a cyclical/feedback
mechanism for gene expression - in other words, gene expression itself is under epigenetic
control ( , ).

Alberch defined the G—P mapping as a function of a given set of developmental param-
eters which (at least some) could be mathematically described. He derived his model from
previous work on pattern formation models such that morphological diversity is generated
by regulation (perturbation) in parameter values or initial conditions.

Fig. 4.5 illustrates how many combinations of parameter values can result in the same
phenotype as there is no one-to-one correlation between genetically or environmentally
mediated changes in parameter values and phenotypic transformation.

According to ( , ), Alberch anticipated the application
of contemporary complexity theory to organic development. He contended that changes
in the underlying parameter space are the main source of evolutionary processes and that
developmental systems possess the properties of complex dynamic systems.

( , ) explain the properties of the G—P map in their discussion of Alberch’s
concept:

1) The G—P map is complex: the same phenotype may be obtained from different
combinations of genetic informational sources

2) The area in parameter space where a particular phenotype exists gives an indication
to how stable it is likely to be against environmental and genetic perturbation
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Figure 4.5: Hypothetical parameter space composed of six phenotypes (A, B, C, D, E, F)
determined by the developmental interactions of two parameters x; and x,.
Image reproduced from ( , )-

3) The parameter space is marked by transformational boundaries: areas where a small
change will cause a transition from one phenotypic state to another

4) The phenotypic stability of a given population will depend on which area of the
parameter space it occupies, and in particular whether it is close to a transformational
boundary or not

The properties of the G—P map determine genetic operator behavior and topological
properties of the genotype-phenotype space ( , ). When multiple
genotypes can be mapped to the same phenotype and hence to the same fitness, we can speak
of an additional degree of freedom at the level of selection. In the presence of genotypic
degeneracy, the system evolves along preferred neutral network directions.

Patterns of phenotypic evolution such as punctuation, irreversibility and modularity are
also determined by the properties of the G—P map ( , ). Stadler
builds on the ideas from ( , ) who defined the notion of “nearness”
between phenotypes as the probability of one phenotype being accessible from another
through changes in the genotype. Phenotypic neighbourhoods defined this way are induced
by the G—P map and cannot be described simply by comparing morphological features.
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Figure 4.6: Genotype-phenotype map. Source: (Stadler and Stephens, 2003)

In genetic programming, the non-injectiveness of the G—P map results from the closure
property of the primitive set. Phenomena such as bloat further contribute to the many-
to-one structure of the G—P map. It is therefore important to consider GP evolutionary
dynamics in the context of non-injective many-to-one G—P mappings.

From a theoretical standpoint, understanding the relationship between genotypes and
phenotypes in GP boils down to understanding the behavior of its operators: selection,
crossover and mutation. While the theory has seen substantial progress in the last decade
with important results about crossover, selection, and the existence of GP schemas, it
remains still unclear how the overall interplay between operators at the genotype and
phenotype level affects evolutionary dynamics.

In this context, the empirical investigation of GP aspects such as the evolution of di-
versity can bring new insight on the properties of the G—P map. For example, (Winkler
et al, 2016) use structural and semantic similarity measures to investigate the relationship
between genotype and phenotype similarity for standard GP as well as two adaptive GP
variants, namely OSGP (Affenzeller and Wagner, 2003) and ALPS (Age Layered Population
Structure) GP (Hornby, 2006). They find significant differences between the dynamics and
G—P mappings of different algorithmic variants. This result confirms the intuition that
GP operators (selection in particular) have a big influence on the search behavior of the
algorithm, in terms of its ability to perform an efficient exploration of the solution space.

4.4.2 Emergence, Evolvability and Robustness

“Emergence” is not a term that can be easily explained; it is rather an elusive concept. It
is a favoured term of holistic thinkers that share the Aristotelic view of the “whole”, that
is “something over and above its parts, and not just the sum of them all”. According to
(Corning, 2002), the term “emergent” was coined by psychologist G. H. Lewes (I.ewes, 1879),
as a way to explain what the post-Darwinian scientists of the time considered a veritable
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puzzle: the human mind. Lewis argued that emergent phenomena such as evolution can
produce “qualitative novelties” that cannot be expressed in simple quantitative terms, these
novelties being “emergents” rather than resultants:

“[...] with emergents, instead of adding measurable motion to measurable
motion, or things of one kind to other individuals of their kind, there is a
cooperation of things of unlike kinds... The emergent is unlike its components
in so far as these are incommensurable, and it cannot be reduced to their sum
or their difference”.

Economist Jeffrey Goldstein defined emergence as “the arising of novel and coherent
structures, patterns and properties during the process of self-organization in complex
systems”. An important idea behind the concept of emergence is that “emergents”, macro-
entities that are formed from the micro-level components, exhibit properties and charac-
teristics that take explanatory precedence over the parts of which the whole is made up
(the idea of the “whole before its parts”). Emergent phenomena can appear in many kinds
of physical or simulated systems, but they share certain interrelated, common properties

( , ):

1) Radical novelty: The emergents have features that are not previously observed in the
complex systems under observation.

2) Coherence or correlation: Emergents appear as integrated wholes that tend to maintain
some sense of identity over time.

3) Global or macro level: Since coherence represents a correlation that spans separate
components, the locus of emergent phenomena occurs at a global or macro level.
Observing emergents is observing their behavior at macro level.

4) Dynamical: Emergent phenomena arise as a complex system evolves over time.
Emergence is associated with the arising of new attractors in dynamical systems.

5) Ostensive: Emergents are recognized by showing themselves (they are ostensibly
recognized).

As it is already apparent, many of the properties of emergent systems can be readily
identified in evolutionary systems as synergistic effects of the selection-variation loop: self-
organization, modularity, repetitive patterns and the emergence of new, better structures.
Although it may be argued that treating evolution as an emergent process is merely a
philosophical distinction, the change in perspective has powerful implications; it brings
into focus the necessity to investigate the fundamental mechanisms that allow a system to
evolve and the existence of phenomena that depend on the global properties of the system
as a whole rather than on any of its individual components.

Emergent behavior in biological systems is intimately connected with the concept of
evolvability, and the “evolution of evolvability” ( , ). Indeed, “natural selection
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must work not on the individual mutation, but also on the very mechanisms that generate
genetic variation — as does on all biological functions. [...] our genomes, and those of other
life forms, have evolved mechanisms that create different kinds of mutations in their DNA,
even to the point that there are genomic ‘interchangeable parts™ ( , ).

In GP, two of the most important phenomena, namely bloat and the emergence of
building blocks cannot be explained by any of the genetic operators alone. They are rather
emergent effects that occur not through any specific action but through an interplay of
genotypic and phenotypic effects.

One of the first accounts of GP as an emergent process ( , ) defines GP as
a weak evolutionary method that employs empirical credit assignment on the solution
representations to bias the search towards representations that are better suited for solving
the problem. Empirical credit assignment allows the dynamics of a system to implicitly
determine credit and blame; it is holistic, in the sense that credit is assigned to individuals
and not their representational components ( , ).

In Angeline’s view the fact that the algorithm did not rely directly on the representation
but on its more abstract phenotypic properties implied the existence of another mechanism
by which the representation is evolved in parallel to its phenotype. He defined evolvability
as “the ability of a population to produce variants fitter than any existing” and theorized
the existence of an emergent selection phenomenon in genetic programming coined as
the “evolution of evolvability” ( , ). Angeline further notes that it would be
improper to speak of “schemas” in GP, as weak evolutionary methods have no direct
correspondence between structures in the genotype and the features of the phenotype.

In a similar perspective, ( , ) argued that adaptation is an emergent prop-
erty achieved by selection on heritable variation: “because of the indeterminate size, struc-
ture and algorithmic properties of the tree-structured representation, both the genetics
and the representation can evolve as an emergent property of the dynamics. Thus, GP
has an intermediate combination of emergent and specified features”. Altenberg further
investigated the relationship between the “variational properties” of a program’s represen-
tation and the way changes in its structure map to changes in its performance. He showed
that evolvability changes during the algorithm run through the differential proliferation of
subexpressions within programs.

( , ) refined the concept of evolvability adding an alternative
definition as the propensity to vary. Their definition made the important distinction be-
tween the existing variation in a population (a concrete, quantifiable measure of the existing
differences) and the variability which represents a population’s potential to produce adap-
tive variation under the effects of genetic operators. Wagner and Altenberg showed that
evolvability as a property of a population’s variability depends critically on the structure
of the G—P map. Their notion of evolvability seems to be the inspiration for all ulterior
definitions.

( , ) find that redundancy of the G—P map favors evolvability by increas-
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Figure 4.7: Variation-selection emergent loop in GP. Source: ( , )

ing accessibility between phenotypes, and also allows individuals to maintain higher fitness
values as the majority of mutations will be neutral.

( , ) defined evolvability as “the capability of a system to generate
adaptive phenotypic variation and to transmit it via an evolutionary process”. They showed
that many properties of an evolutionary system can be linked to evolvability and that
improving a system’s potential to evolve can have powerful implications for artificial
evolutionary systems especially towards the goal of open-ended evolution. Furthermore,
they argue that modularity, a property of complex systems materialized as a loose horizontal
coupling between system entities at the same level, can be seen in the context of evolutionary
systems as a mechanism to promote evolvability.

More recently, ( , ) explained how “the variation-selection loop” is the driving
force for GP emergent phenomena (Figure 4.7). They outlined the correspondence between
emergent properties and GP elements:

¢ Variation in the genes (low level entities) of the artificial chromosomes provides
bottom-up causation: genotypes are mapped to phenotypes which in turn are mapped
to fitness values

o Selection is the mechanism for top-down (downward) causation, and fitness is the
property selected for, which determines which combinations of genes survive.

Commenting on Banzhaf’s essay, ( , ) acknowledged the occurrence of
GP emergent phenomena as a result of the relationship between selection and the genetic
operators. They also showed that through crossover a second level of replicator — the
subtree is present within the population. The replication rate of full programs is controlled
by their fitness, but the replication rate of subtrees is controlled by their effect on the change
of fitness. In ending, Altenberg observed that as completely formal systems, emergent
phenomena observed in GP are essentially mathematical by nature, believing them to be
solvable sometime in the future.

Thus, evolvability is an important emergent property of evolutionary systems. In evo-
lutionary computation, understanding the phenomena that influence the population’s
potential to evolve can be cast as a problem of understanding the relationship between
representation, variation-producing operators and selection mechanism.
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A closely related concept to that of evolvability is the concept of robustness, defined as a
system’s property to maintain its function against perturbations. More formally, we may

accept the definition of ( , ), which states that: “a [property] of a
[system] is robust if it is [invariant] with respect to a [set of perturbations]”.
As ( , ) points out, robustness — a fundamental feature of complex evolvable

systems — should not be misunderstood to mean staying unchanged; rather, to maintain its
specific functionality against perturbations, a system is often required to adjust its mode of
operation in a flexible way. In other words, robustness allows changes in the structure and
components of the system owing to perturbations, but specific functions are maintained.
Thus, in an evolutionary system we may define phenotypic robustness as the invariance of
fitness with respect to genotypic changes.

At a glance, robustness and evolvability share an antagonistic relationship, since by defi-
nition robustness decreases phenotypic variability. Therefore, robustness may potentially
lead to evolutionary stasis. For example, in their simulations of evolving RNA structures,
( , ) observed a dramatic loss of phenotypic plasticity under natural
selection, leading to extensive modularity and robustness, and ultimately leading to a loss
of phenotypic variability where phenotypes remained locked in a suboptimal-state and
the population became trapped in regions where most genetic variation is phenotypically
neutral. Modularity supports robustness of the system as a whole by isolating the effects of
perturbations to independent functional areas. However, ( , ) suggest that
the relationship between robustness and evolvability is unclear. They describe a number of
scenarios in which robustness may enhance evolvability:

1) Hidden pleiotropic effects may promote evolvability in the genetic background of a
robust trait. Then, evolvability becomes a selective advantage for the robust trait by
facilitating adaptations of pleiotropically related characters.

2) Phenotypic robustness implies the existence of neutral networks in genotype space.
The population may then move across these networks through genetic drift, reaching
points with a higher adaptive potential. Therefore neutrality increases long-term
population evolvability. Neutrality is also important from a purely theoretical per-
spective, as shown in ( , ) (see Section 2.4).

3) Robust states may accumulate hidden genetic variation (or potential variation) that
is only expressed when the genetic background changes ( , ). Such
hidden variation may become (in the right conditions) the fuel for further evolution,
thus increasing evolvability.

Another theory by ( ) ) suggests that robustness is a prerequisite for evolvabil-
ity, as evolvable systems need to be robust against environmental and genetic perturbations.
They also describe the main mechanisms through which robustness is achieved, namely
genetic buffering and modularity. The genetic buffering mechanism is also referred to as an
evolutionary capacitor (see point 3 above). ( , ) also suggest that robustness
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and epistasis can have a positive role as accumulated cryptic genetic variation may facilitate
adaptive evolution. At the same time, genetic buffering may also be one of the contributing
forces for bloat in genetic programming (see Section 4.2.3).

Recent investigations by ( , ,b) show that robust genotypes play a
crucial role in the evolutionary process as they are visited more often and can guide the
search to their adjacent phenotypes. They also find that neutrality improves evolvability,
enabling evolutionary systems to produce novel more adaptive phenotypes. Additionally,
their quantitative study suggests that robustness and evolvability may manifest differently
at the genotypic and phenotypic level.

In summary, evolvability, robustness and modularity represent evolved, emergent prop-
erties of biological systems, playing an essential role in understanding GP evolutionary
dynamics. It is therefore important to study them in relation to the G—P map and its in-
trinsic properties (such as redundancy), and also in relation to the selection, recombination
and mutation operators which shape the genetic make-up of the population.
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Trajectories

In the context of optimization algorithms, the notion of a search trajectory implies the
existence of a finite sequence of points in the solution space which the algorithm explores in
its path from initialization towards the final solution. Understanding the algorithm search
trajectories is particularly important in the case of metaheuristics as they can offer valuable
insight into the properties of the search space and into the dynamics of the algorithm
itself. This aspect is particularly relevant in cases such as GP when a solid mathematical
foundation is not readily available.

In genetic programming, the search progresses through the interplay of genotypic and
phenotypic search operators. The genotype space is where the solution representations live
and get combined, while the phenotype or fitness space represents the evolutionary arena
where the solution candidates compete for survival. As already outlined in Section 4.4.1, the
non-injective mapping of genotypes to phenotypes to fitness makes it difficult to investigate
and understand how the actual genetic variation at the level of the solution representation
is exploited, preserved and improved by the algorithm. Thus, GP evolutionary trajectories
need to be analysed within the framework of genotype-phenotype maps on both genotypic
and phenotypic levels.

The following aspects are particularly relevant for the investigation:

1) The evolution of genotypic and phenotypic diversities

2) The effectiveness of genetic operators in producing new useful variation
3) The importance of genetic robustness and evolvability in the population
4) The inheritance of genetic material across lineages

5) Self-organization and the occurrence of schemata and building blocks

This thesis presents a new methodology for the analysis of the above-mentioned aspects
and their synergistic effects on population dynamics. The methodology, consisting of novel
computational tools and algorithms, was developed using HeuristicLab ( , ;

, ), a free (opensource GPLv3), flexible and powerful optimization frame-
work developed by members of the Heuristic and Evolutionary Algorithms Laboratory
(HEAL) at the University of Applied Sciences Upper Austria.
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Testing and validation of the new analysis methods and algorithmic improvements
was performed on a class of symbolic regression benchmarks as well as real-world prob-
lems. The next section is dedicated to HeuristicLab, providing a general overview of the
framework and a detailed description of symbolic regression within HeuristicLab. The
implementation and main features of the genetic programming algorithm in HeuristicLab
is also described.

5.1 Symbolic Regression in HeuristicLab

Symbolic regression represents the task of finding the best mathematical model that
best fits a given dataset. The idea introduced by ( , ) is to evolve mathematical
expressions that approximate the evolution of a given data series.

For an in-depth discussion of HeuristicLab architecture and capabilities, we turn the
reader to ( , ). The main features of HeuristicLab include:

¢ Plugin-based architecture: every new algorithm or methodology can be encapsulated
in a plugin.

o Powerful algorithm model (Fig. 5.1) divided into three layers for maximum flexibility:
the data model, the operator model and the execution model.

o Automatic experiment creation according to user-specified number of repetitions
and parameter grid

o Comprehensive and easy to use analysis tools (charts, box plots, statistical measures)

Engine
executes hosts
Operators process—p Scopes "4_—|
I—conta|
refer to contain
L ¢ contaln
Parameters refer to—3»  Variables

contain

contain—»| Data

Figure 5.1: The HeuristicLab algorithm model. Source: ( , )
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Symbolic regression in HeuristicLab is implemented according to the HL algorithm
model, and consists of:

1) The symbolic expression tree encoding
2) The operators which manipulate the encoding (ie., tree creation, mutation, crossover)

3) The algorithms which define the rules by which the operators interact with the
encoding and the data, such as genetic programming in its various incarnations: GP,
OSGP, NSGA-II, SASEGASA, RAPGA, etc. More details in ( , ).

In HeuristicLab, objects that represent functions acting on the encoding and executed by
the execution engine are called operators. According to Fig. 5.1, operators are configured
via parameters which are saved as scope variables, and can be executed sequentially or in
parallel. The scopes themselves can be nested following a tree structure such that different
operators can share the same parameters and retrieve their values by doing a scope tree
lookup. A special category of operators are the analyzers, which are usually employed to
gather information about the state of the population at any given moment. Examples of
analyzers for the symbolic expression tree encoding are those which calculate the average
population fitness, average tree length, symbol or variable frequencies, number of evaluated
solutions, and so on.

At the level of the encoding, linear scaling ( , ) is employed in order to improve
the evolvability of the population. In combination with the Pearson’s R? fitness function
which is independent of scale and offset, this allows the algorithm to avoid the additional
effort of evolving the individual tree structures and parameters in the correct output range.

Another property of the symbolic expression tree encoding is that it can be configured
to accept different configurations of symbols (functions and terminals) according to the
desired function and terminal set. The symbol configuration, also called the grammar,
defines the rules that the genetic operators need to respect, such as what kind of nodes
to create, how many children and of what kind a node is allowed to have and so on. For
implementation reasons, each symbolic expression tree includes two additional nodes at
the top, a program root node and a start node which are immutable. This practically means
that every tree in the population will have an effective length equal to the actual length
minus the two fixed nodes.

Concerning the genetic operators, HeuristicLab supports most of the operators described
in Section 4.2 such as:

o The grow, full, ramped-half-and-half and PTC2 tree creation (Section 4.2.1)

¢ Proportional, linear rank, tournament, random, gender-specific and offspring selec-
tion (Section 4.2.2)

¢ One-point, context-aware, semantic similarity and probabilistic functional crossover
operators (Section 4.2.3)
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¢ Point, uniform and structural mutation (subtree removal or replacement)

In summary, HeuristicLab offers all the tools and algorithms necessary for solving
symbolic regression problems. In order to take advantage of them, the evolutionary tracking
methodology described in this thesis was developed as a HeuristicLab plugin on top of
existing functionality, adding new operators which offer new insight and new functionality
to the genetic programming algorithm.

5.2 Analysis of Evolutionary Dynamics

5.2.1 Population Diversity

An overview of different approaches for preserving GP population diversity was given in
Section 4.2.2. In this work, diversity at both phenotypic and genotypic levels was analysed
with the help of two new measures: one correlation-based measure for semantic similarity
and one structural measure (based on a distance similar to the edit distance) for genotypic
similarity.

The similarity measures presented below are informally regarded as distances although
they do not satisfy the triangle inequality (so in this regard, they are not true metrics). They
are however symmetric, so that for a population of n individuals, only the upper triangle
portion of the similarity matrix needs to be calculated, so a number of @ similarity
calculations needs to be performed. Therefore, the average similarity measure S will have
the general formula:

o Zie S(TLT))

nn—1)
To enable an easier analysis and display of similarity values, the similarity measures de-
scribed below have been explicitly designed to return values in the interval [0, 1], where
0 means complete dissimilarity and 1 means complete similarity. Average population

diversity is obviously given by 1 — S.

S=2. (5.1

Phenotypic Similarity

Phenotypic or semantic similarity provides a measure of how closely two individuals
behave regarding their response on the training data. The similarity is calculated using the
Pearson R? coefficient of determination:

(5.2)

2
Rﬁ(,y — (ﬂX7Y)2 — (M)

oxoy

Since the R? coefficient is undefined when Var(x) = 0 or Var(y) = 0, phenotypic
similarity between two trees with constant responses on the training data cannot be
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calculated directly. In this special case, the similarity between the two trees is considered

to be 1 if both trees have a constant response, and 0 otherwise'.

Thus, for two trees T and T, with responses r; = response(T;) and r, = response(T3),
we calculate phenotypic similarity using the formula:
1 if Var(r;) = Var(r,) =0
PhenotypicSimilarity(Ty, T>) = {0 if Var(r;) = O or Var(r;) = 0, (5.3)
Rfm otherwise

Genotypic Similarity

Genotypic similarity between two tree individuals reflects the degree to which their
respective structures overlap. Historically, the tree edit distance and its variants were used
to calculate GP structural similarity ( , ; , ). However,
calculating the edit distance between labeled, unordered trees was shown to be NP-complete
( , 1992).

We employ a distance measure based on the largest common forest between two trees,
called the bottom-up tree distance ( , ). The bottom-up tree distance represents
a particular case of the isolated-subtree distance ( , ). The
algorithm (implemented in HeuristicLab) has the following advantages:

¢ Runtime complexity linear in the size of the trees

<

Compatible with ordered or unordered labeled trees (with the same complexity)

<

No extra edit operations or costs need to be defined

¢ Configurable tree matching behavior

The bottom-up tree distance is computed in two steps described below. We consider
two trees T1 and T, and the largest common forest F = Ty U T, (consisting of the disjoint
union between the two trees).

1) The forest F is compacted to a directed acyclic graph G, during a bottom-up traversal
of F (in the order of non-decreasing node height). Two nodes in F are mapped to the
same vertex in G if they are at the same height and their children are mapped to the
same sequence of vertices in G. The bottom-up traversal ensures that children are
mapped before their parents, leading to O(|T;| + |T3|) build time for G. This step
returns a map K : F — G required to compute the bottom-up mapping.

A drawback is that similarity will be zero if one of the variances is 0, regardless how close to zero the other
one may get. Experiments with this method indicate that this scenario (when only one of the variances
is zero) occurs in 5% to 10% of all similarity calculations, therefore have no meaningful impact on the
average.
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Figure 5.2: Example bottom-up tree mapping. From ( , )

2) The second step iterates over the nodes of T} in level-order and builds a mapping
M :T; — T, using K to determine which nodes correspond to the same vertices in
G. The level-order iteration guarantees that every largest unmapped subtree of T}
will be mapped to an isomorphic subtree of T,. Similarity between two trees T; and
T, is computed from the mapping M using the Serensen-Dice coefficient’:

. 2-|M]|
BottomUpDistance(Ty, T,) T+ D) (5.4)
The above formula will always return a similarity value between [0, 1]. Matching
behavior can be configured as “strict” or “relaxed” (structural matching only, ignoring
constants and variable weights) by changing the way node labels are defined in the
algorithm.

5.2.2 Genetic Operator Effectiveness

The effectiveness of genotypic operators is measured in terms of fitness, in order to see
how often an operator can produce adaptive (as opposed to deleterious) changes. Operator
effectiveness can bring important insight about the behavior of the genetic operators and
the dynamics of the evolutionary process.

o The average fitness improvement is calculated by subtracting the parent fitness from the
child fitness. In the case of crossover, the root parent is considered. For a population
of N individuals, the average fitness improvement is given by:

N
7= % ; (Fitness(t;) — Fitness(p;)) (5:5)

where t; is a child individual and p; is its parent.

2 Another possibility would have been to use the Jaccard index J(T;, T,) = %, however this would’ve
been slightly more computationally expensive due to the calculation of the set union T} U T5.

86



5 Tracing of Evolutionary Search Trajectories

o The best fitness improvement is given by the difference between the fitness values of
the best individual and its parent:

Qbest = Fitness(tpest) — Fitness(ppest) (5.6)

The reasoning behind the formula is to get a more accurate picture of the underlying
operator dynamics. For each of the operators (crossover or mutation) the best
child was selected according to the best quality. This means that the best fitness
improvement does not reflect the greatest relative parent-child quality difference,
but rather the improvement that could be made in terms of the overall best quality
among all offspring.

5.2.3 Heredity, Inheritance and Genealogy Analysis

Genealogy analysis, providing lineage and inheritance information, represents a less
explored aspect of GP evolution that can offer important insight into the dynamics of
the selection-variation loop and the propagation of genetic material. At its core, the
methodology developed in this section allows us to:

1) Build the complete genealogies of all individuals in the population during an algo-
rithmic run

2) Record all the inherited genetic information, consisting of genes (subtrees) and their
positional information in the parent and child chromosomes

Genealogy Graph: Recording Evolution

The term genealogy comes from the Greek words yevea (genea) and Adyoc (logos), literally
translated as “generation knowledge”. Genealogies are also known as family trees, due to
their tree-like shape where the root of the tree represents the individual whose ancestry is
being investigated.

When communities of individuals reproduce over the generations with no significant
influences from external factors such as migration, it is often the case that most individuals
are related to a certain extent, sharing common ancestors. From a representation perspec-
tive, the presence of common ancestors in the family history means that the genealogy is no
longer a tree but a graph. If we assign a direction to the edges in the graph according to the
direction of inheritance (from ancestor to descendant), we obtain a directed graph structure
in which vertices represent individuals and arcs represent hereditary relationships.

For the analysis of population genealogies in GP, a directed graph data structure was
implemented in HeuristicLab for storing individual genealogies and hereditary information.

Terminology
The information stored by the genealogy graph in its arcs and vertices is described below:
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o Vertices represent individuals in the directed graph and hold information regarding
each individual’s structure, fitness and generation.

o Arcs represent hereditary relationships and hold information regarding the genes
inherited by the offspring from their parents.

The following terminology is used to describe the exchanges of genetic information
recorded in the genealogy graph:

¢ When performing crossover between two parent individuals, the first parent will
contribute its whole root structure minus one subtree which will be replaced by
a subtree contributed by the second parent. We denote the first parent as the root
parent and the second parent as the non-root parent.

¢ We use the name genetic fragment (or simply, fragment) to denote a subtree that
was inherited through a genotypic operation. For example, the subtree swapped
by crossover from the non-root parent or the one altered by mutation. Fragments
are stored in the arcs of the genealogy graph (since arcs represent the direction of
the inheritance) along with positional information that allows them to be readily
accessed from the structure of the child individual or the structure of the non-root
parent (when applicable).

Building the Genealogy Graph
When crossover is followed by mutation, the results of both operators are stored in the

Parent 0 Parent 1
Rank 0
Crossover fragment
Rank 0.5 Intermediate vertex
Mutation fragment
Rank 1 () Child

Figure 5.3: Intermediate crossover child saved as a vertex in the genealogy graph, where
the vertex rank represents the generation. The intermediate rank value (0.5)
means that the intermediate child is not part of the population at generation 1.

graph, first the intermediate crossover individual and then the final offspring after mutation
(Fig. 5.3). As the population size, number of generations, mutation and crossover rates are
fixed, we can approximate the number of vertices and arcs in the graph. For example, if
we consider the genealogy graph G(V, A) of a population of n individuals running for g
generations with mutation probability p,, and crossover probability p,, the expected values
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for the number of vertices and arcs will be:

E[IVI]=p- @+ 1)+ (p-g-pc- pm) (5.7)
E[Al] =@ pc+pm)-p-g (5.8)

The two terms in Eq. (5.7) can be explained as follows:

o The first term (g + 1) represents the g generations of individuals plus the initial
population. The p - (g + 1) vertices correspond to the individuals in the population
at each generation.

¢ The second term represents the number of intermediate vertices added to the graph
when crossover and mutation are applied in succession. The probability of this
event is pp, - p.. At the same time, since the last generation does not participate in
reproduction, only g generations need to be considered, giving the quantity p-g-p.-pm.

The expected number of arcs in Eq. (5.8) follows a similar line of reasoning:

¢ Two arcs are added from the two crossover parents to the child

¢ One arc is added when a new individual is obtained via mutation

Fig. 5.4 shows a genealogy graph obtained from a population of 30 individuals that ran
for 20 generations. Fitness is represented in the graph with the help of a heatmap where
warm colors represent better fitness. Fig. 5.4a shows the fitness distribution of the whole
population per generation and Fig. 5.4b shows the genealogy of the best solution obtained
by the algorithm.

Ancestries and Root Lineages
At any given generation the genealogy graph can be queried for information regarding
an individual’s concrete evolutionary history, such as its ancestors, descendants or root
lineage. Let G = (V, E) be a genealogy graph and let v € V be a vertex representing an
individual:
o We define the ancestors of v as the set of vertices u € V such that for each u, there
exists a directed path from u to v.

o We define the descendants of v as the set of vertices w € V such that for each w, there
exists a directed path from v to w.

o We define the root lineage of v as the directed path from v’s oldest ancestor to v where
every vertex is a root parent.

Genealogy graphs can be used to extract information about algorithm dynamics and
genetic operator behavior, such as:

o Fragment length (ie., the average size of the subtrees swapped by crossover)
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Figure 5.4: Example genealogy graph
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o Reproductive success, defined as the amount of children produced by each individual
of the previous generation

o Effects of the selection mechanism on the population

¢ Evolution of quality across lineages

Trace Graphs: Evolutionary Trajectory Analysis

Genealogy analysis can offer important insight into the dynamics of the evolutionary
search. However, further analysis is necessary to explain the exact mechanisms of inheri-
tance and the influence of properties like evolvability (discussed in Section 4.4). For the
detailed analysis of inheritance patterns a new methodology entitled subtree tracing was
developed, which can decompose any subtree in the population (any genotypic structure)
to the sequence of genotypic operations that have built up its structure.

We define a subtree’s trace graph as a collection of vertices representing the ancestor
individuals from which parts of its genotype were inherited, connected by arcs representing
the genetic operations involved in the transfer of said parts. Therefore, the set of vertices
included in a trace graph represents a subset of the vertices contained in the genealogy
graph. In the following, we use the term subtree to refer to the subtree whose trace graph
we want to calculate.

Essentially, the tracing algorithm walks the genealogy graph from a given starting point
and follows a set of predefined rules for deciding which direction to consider. The rules
depend on the relative positions of the traced subtree and the genetic fragment injected
into the current individual’s structure by one of the recombination operators. Finally,
the algorithm selectively adds the visited vertices to the trace graph (connected by arcs
showing gene inheritance). The resulting trace graph represents a compact enumeration of
the events that have lead to the formation of the traced subtree.

Algorithm Description

It is clear that the subtree tracing algorithm needs to consider the effects of both crossover
and mutation. We regard mutation and crossover as recombination operators which difter
in the number of parents required for producing an offspring. Both operators produce
offspring by applying a change on the structure of the root parent. The change can be of
random origins (mutation), or it can originate from the non-root parent (crossover).

In the general case, the subtree that needs to be traced can be partially inherited from the
root parent, with the other part either inherited from the non-root parent or introduced
by mutation. Thus, the tracing procedure can be implemented as a recursive strategy
decomposable to smaller subtrees that need to be individually traced. For simplicity and
without loss of generality, we describe the procedure only for the more general case of
CroSsover.
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Since two parents and two inherited structures are involved, the algorithm needs to
branch itself out and walk the genealogy graph in two directions: the direction of the root
parent (tracing the original inherited structure) and the direction of the non-root parent
(tracing the inherited genetic fragment).

In order to correctly identify the subtrees that need to be traced, the algorithm uses posi-
tional information stored in the genealogy graph as tree node indices in the ordering given
by a preorder tree traversal. For example, in Fig. 5.5, a crossover operation exchanged the
subtrees with preorder indices 4 and 1 in the root parent and non-root parent, respectively.
In order to trace down the whole structure of the child individual (the subtree with the
root at preorder index 0), the tracing algorithm will have to follow its structure in the root
parent (at preorder index 0) and in the non-root parent (at preorder index 1). In the general
case, the tracing algorithm must be able to start tracing from any given preorder index.

Root parent Non-root parent Child
(x) Sul/)‘Er’e_e‘s\Vvap Inherited (X)
0\~

Figure 5.5: Preorder arithmetics for subtree inclusion

When tracing arbitrary subtrees, the rules for walking over the genealogy graph depend
on the relative position between the traced subtree and the genetic fragment swapped by
crossover. A set of simple arithmetic rules is used to determine the inclusion relationships
that define the decision points in the algorithm:

1) The traced subtree contains the fragment
2) The fragment contains the traced subtree

3) The traced subtree and the genetic fragment are distinct

Let s;, s; be the preorder index and length of the traced subtree and f;, f; the preorder
index and length of the fragment. Table 5.1 describes the algorithm’s decision process, where
the last column of the table represents the corresponding line numbers from Algorithm 3.

We introduce three methods:

¢ The TraceRecursive method represents the main entry point of the algorithm and
implements the logic for walking the genealogy graph. Its arguments specify the
starting point of the tracing procedure (genealogy graph vertex current and subtree
index s;) and the previously inserted trace graph vertex last along with the preorder

92



5 Tracing of Evolutionary Search Trajectories

Condition Description Decision Line

1) (si < fi) A(fi <si+s1) Fragment C Subtree Trace both 26 — 30
(fi<s)ANGi<fi+f) Subtree C Fragment Trace fragment | 18 — 20
3)(si+s1 < fi) V(fi + fi <si) | Subtree N Fragment = @ | Trace subtree 22,23,32,33

Table 5.1: Tracing cases

indices s; 145t and f; a5 Of the previously-traced subtree and fragment. The previously-
inserted vertes last and its associated trace data are used by the procedure to connect
vertices with arcs in the trace graph.

In cases 2) and 3) from Table 5.1 when no branching is involved (the fragment is not
contained by the subtree), the algorithm can simply skip the current genealogy graph
vertex and continue from the parent vertex. When doing so, the preorder index s;
of the traced subtree in the parent needs to be adjusted when f; ,, + fi < s;, since
the fragment length may be different than the length of the subtree contained by the
parent at the same index. This adjustment is done at line 23 in Algorithm 3.

Walking over genealogy graph vertices when their content is not relevant to the
currently traced subtree represents a big advantage as it leads to compact trace graphs
which show in a clear manner how structures are assembled by the algorithm. At
the same time, compactness of the trace graph automatically implies the existence
of genetic hitchhiking when for example an arc depicts the transfer of a genetic
fragment from an ancestor to a descendant several generations apart.

As the name implies, the AddTraceNode method (Algorithm 4) adds a new vertex to
the trace graph. We remind that vertices of the genealogy and trace graphs uniquely
represent individuals from the population. Since common ancestors are frequently
encountered in GP lineages, the algorithm uses a caching mechanism to remember
already added vertices.

The ConnectLast method connects the newly added trace graph vertex to the previ-
ously added one (adding an arc between current and last) — see Algorithm 5. Another
fine point in the implementation of the tracing algorithm is given by the handling of
common ancestors, as their corresponding vertices in the trace graph can be seen as
“Intersection points” for multiple evolutionary paths. Multiple evolutionary paths
going through the same pair of graph vertices can be distinguished from one another
based on the genetic information that was transferred on each path. This gives rise
to a couple of important consequences:

1) The trace graph is a multigraph (it can contain multiple arcs connecting the
same pair of vertices, depending on the evolutionary path)

2) Arcs need to hold positional information of the subtree and fragment (see above

93



5 Tracing of Evolutionary Search Trajectories

terminology)

The ConnectLast method takes all these requirements into account and performs a
caching of arcs according to the subtree and fragment positions. Each arc is uniquely
identified by the trace data tuple {s; current, fi.current> Silast> filast } cONtaining the subtree
and fragment indices in the current and last vertices.

In addition to the caching mechanisms necessary to ensure the correct tracing of genetic
fragments, the algorithm employs an additional cache (implemented as a hash set) for the
argument sets of the TraceRecursive method. This is done simply to ensure that no effort
is duplicated when the algorithm revisits some of the genealogy graph vertices’. Another
speed optimization that was used in the implementation was to cache the preorder lists
of tree nodes such that when a tree node is accessed by its preorder index, only the first
access will be O(n), with all the subsequent accesses from the same tree being O(1).

Trace-based Analysis Methods

We have shown in the previous sections how genealogy information recorded during
the run of the algorithm can be used to enable more powerful analysis methods based on
subtree tracing.

The tracing methodology can identify the complete trace graph (showing gene prop-
agation from ancestors to descendants) of any subtree in the population. When applied
on the whole population (ie., by tracing the root of every tree), trace graphs can reveal the
patterns of evolution (specific to the given problem instance) such as the most influential
ancestors in the population (ie., those whose genes propagated with the greater frequency
in the population) or the most sampled subtrees with respect to crossover and mutation.

Contribution Ratio

The idea behind the contribution ratio is to define a measure of the effort spent by the
algorithm in order to achieve useful adaptation. Thus, we define the contribution ratio r as
the percentage of an individual’s ancestry from which its structure was inherited:

|Trace(individual)|

_ 5.9
' | Ancestry(individual)| 59)

Identification of Problem Building Blocks

Trace graphs represent useful tools for representing the origins of inheritance in a compact
way. Aggregating trace graphs over the whole population can provide useful statistical
information regarding the most sampled subtrees in the population. The aggregated data is

3For a graph of ~125.000 vertices, this optimization alone makes a difference from 10-11 minutes to under
1 second when tracing the best solution of the algorithm. Furthermore, using a persistent cache between
the calls to TraceRecursive will bring increasing speed benefits as the cache grows.
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1 Method TraceRecursive(current, s, last, s;jast, fijast)
Input: Genealogy graph vertex current representing a tree, subtree preorder index

o ® N BT A W N

— e e e e
A T A W N = O

17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33

34
35

36
37
38

si, trace graph vertex last, preorder indices s; 451, filast

Output: The trace graph of the specified subtree
g < current;
while deg™(g) > 0 do

arcs < InArcs(9);
fragment < fragment received from the non-root parent;

s; < the length (number of nodes) of the traced subtree;

po « the source of the first arc (the root parent);

fip, < the preorder index of fragment in the root parent po;
fi < the length (number of nodes) of fragment;

if |arcs| = 2 then
p1 < the source of the second arc (the non-root parent);
fip, < the preorder index of fragment in the non-root parent py;
if fi,Po = s; then
8§ < Pi;
Si < fipss
continue;
f fip, < sithen
if f;,, + fi > s; then

g < pi;

Si < Si + fip, = fipos

else

o

8 < Po;
Si <= si + [NodeAt (g, fip )| — fi5
continue;

f fip, > si then
if f;,, < si + s, then
last < AddTraceNode(g); // current node becomes
TraceRecursive(po, si, last, si, fi p,);
TraceRecursive(pi, fip,, last, s, fipy);
break;
else
8 < po;
continue;

o

if |arcs| = 1 then
L Trace mutation — see Algorithm 6 ;

if last # null then
current «— AddTraceNode(g);
td « Connectlast(current, last);

last

Algorithm 3: Recursive subtree tracing - Trace Method
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1

SO NI Y N G PR

Method AddTraceNode(g)
Input: Genealogy graph vertex g.

Output: The trace graph vertex v corresponding to g.

v < null,

if g has already been mapped to a node in the trace graph then
‘ v « trace node corresponding to g;

else

L v« Copy(9);

Add v to the trace graph;

return v,

Algorithm 4: AddTraceNode () method

Method ConnectlLast (current, last, td)
Input: Current trace graph node current, last node last, trace data td

Output: The trace graph node corresponding to g

2 if no arc with trace data td exists from current to last then
3 L add an arc current — last;
Algorithm 5: ConnectLast() method
1 if |arcs| = 1 then
2 | ifsi = fip V(i < fipo A fipo <Si+ )V (fipy < S8i Asi < fip, + fi) then
3 last < AddTraceNode(g); // current node becomes last
4 i < min{s;, fip, };
5 TraceRecursive(po, i, last, Silast> filast);
6 break;
7 else
8 g «— Po;
9 if f;;, < si then

| si — INodeAt (g, fip)| — fi;

Algorithm 6: Subtree tracing — Mutation
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calculated using a number of simple additions to the implementation of Algorithm 3 such
that:

¢ The TraceRecursive procedure uses a persistent caching scheme when tracing all
the individuals in the population

o A node weight associated to each tree node is incremented for each subtree found at
index s; by the tracing procedure

Since the weights are incremented for each of a subtree’s nodes, the weights of child
nodes will always be greater or equal than the weights of their parents. To account for this
additive effect, we calculate a node’s sample count as the difference between its own weight
and the weight of its parent.

5(0)5(0) 8(0)8(0)

Figure 5.6: Subtree weights (above each node) and sample counts (bold font, in brackets)

Node weights are calculated during the run of the algorithm by computing the trace
graphs of all individuals in the population at every generation.

5.2.4 Schema-based Analysis Methods

According to GP schema theories (see Section 4.3), schemas represent tree patterns of
above-average fitness. Their frequency in the population varies depending on the statistical
properties of the genotypic operators such as selection, crossover and mutation. Schemas
are defined as tree patterns where nodes marked by the symbols {=, #} represent wildcards.
The ‘=" symbol represents a single node which can be a function or a terminal®. The ‘#’
symbol represents a node which can be matched by any other subtree, including leafs.

The occurrence and propagation of schemas through the interaction of genetic operators
at the phenotypic and genotypic level is fundamentally connected with the evolvability
of the population and the properties of the G—P map. In this section, we introduce a
methodology for the analysis of common schemas in the population.

The schema analysis methodology can be broken down into the following essential
components:

4=’ nodes will always match another node of the same type and arity — functions with functions and

terminals with terminals
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1) Pattern matching for unordered trees with wildcards

2) Schema template generation from the existing population

Tree Pattern Matching

Trees are fundamental data structures used for the representation of information in a
structured, organised way. With the advent of web-based technologies and the increasing
popularity of tree-structured document formats, tree pattern matching algorithms have
become a necessity for fast information search and retrieval. In particular, the field of XML
query matching has produced efficient matching algorithms for wildcard unordered tree
patterns.

For our schema-based analysis, the algorithm by ( , ) was implemented
in HeuristicLab. This algorithm performs a bottom-up matching of data trees against a
wildcard query pattern and decides if a data tree D matches query tree Q. The answer is yes
if a non-injective mapping exists between Q and D, such that each parent-child pair in Q
has a matching ancestor-descendant pair in D. Time complexity is O (|D| - |Q| - depth(Q))
using a stack of depth bounded by O (depth(D) - branch(D)).

Since schemas need to be matched top-down as well as bottom-up, additional restrictions
were added to the algorithm implementation so that two nodes are matching only if:

1) They are on the same level in the tree.

2) Their parent nodes and child nodes are matching as well.

Note that in this particular use case, the algorithm will not be exact in all cases. The
added restrictions cannot completely eliminate cases when the mapping between Q and
D remains non-injective. This can happen in rare situations especially when Q is small
and is included in D, or when D contains identical repeating patterns within its structure.
However the above criteria ensure a low probability of mismatches, which only occur when
the compared trees are structurally almost the same.

Schema Generation

Schema frequencies vary in the population according to the statistical properties of the
genetic operators. In particular, “at the level of the microscopic degrees of freedom, the
strings, we established that the action of crossover by its very nature introduces the notion
of a schema” ( , ).

We start our search for common patterns in the population by looking at the distribution
of genetic material from one generation to the next in the genealogy graph. Individuals that
were favored by selection will have produced more offspring via crossover or mutation.
Thus, a logical approach would be start from the changes produced in the tree structure of
the root parent. A heuristic approach is used to generate possible schemas:

1) Group individuals based on their common root parent
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2) Identify all genetic fragments and their respective positions in the root parent

3) For each fragment f with preorder index f; in the root parent, replace the node
at position f; with a wildcard. The replacement is done according to a minimum
schema length requirement that can be defined as a parameter for the procedure.
Positions f; that would cause the schema length to fall under the requirement are
skipped.

Algorithm 7 provides a detailed pseudocode description of the schema generation algo-
rithm. The number of generated schemas and their structure depends on the minimum
schema length limit. An important implementation detail is given by the fact that the
cutpoint preorder indices are sorted in descending order so that subtree replacement does
not invalidate remaining indices. Additionally, replacing wildcards bottom-up tends to
produce more specific schemas and not very general ones.

1 Method GenerateSchemas(genealogy graph, minimum schema length)
2 schemas < new list; // list holding the generated schemas
// use genealogy information to group offspring with common parents
3 group all children of the current generation based on their common root parent;
4 foreach root parent p do
5 if length(p) < minimum schema length then
6 L continue;
7 schema « copy of p;
8 replaced <— false;
9 indexes « preorder indices of the crossover cutpoints in all children;
10 sort(indexes); // sort indices by cutpoint level in descending order
11 foreach index i from indexes do
12 subtree «— the subtree at position i in schema;
13 if length(schema) - length(subtree) + 1 < minimum schema length then
14 L continue;
15 replacement <— new wildcard node; // either = or #
16 ReplaceSubtree(subtree, replacement); // replace the subtree with
the wildcard in the parent’s structure
17 replaced < true;
18 if replaced then if the schema contains at least one wildcard
19 L add schema to schemas;
20 return schemas;

Algorithm 7: Schema Generation

Schema frequency analysis matching generated schemas against the population can
reveal new detailed insight concerning the convergence behavior of genetic algorithms and
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can provide a theoretical basis for new algorithmic improvements. We explore below the
possibility of enhancing algorithm performance using a schema-based method of control-
ling population diversity and preventing premature convergence during the evolutionary
run.

5.2.5 Schema-based GP Diversification Strategies

Diversity is considered an essential factor for GP performance. Many approaches for
preserving diversity and “good genetic material” have already been tried in the literature
and discussed in Section 4.2.2. However, existing strategies based on heuristics such as
“avoid too similar parents when performing crossover”, “avoid individuals with a common
lineage”, or other strategies at the level of the selection scheme are often too inflexible and
cannot be effectively tuned for a wider range of fitness landscapes.

In order to be effective, genetic diversification strategies need to be implemented at the
level of the genotypic operators themselves, exploiting not only inheritance information in
the population but also the structural and semantic characteristics of the individuals.

In this section, we introduce a novel diversity-improving method which takes into

account all the above aspects:

o It is structural, as it considers individuals belonging to common schemas

o It is hereditary, as it uses the genealogy graph for schema generation

<

It is semantic, as it considers phenotypically-similar individuals

<

It is adaptive, as differential mutation rates can be applied within locally converged
clusters of individuals

The schema-based diversification strategy implemented using the methods introduced in
Sections 5.2.1 and 5.2.4 can be readily applied to existing GP systems. The idea is to achieve
a finer balance between the exploration and exploitation aspects of the search by detecting
the moments when the algorithm begins to converge towards (local) optima points and
injecting new diversity in the population via mutation. Convergence is detected with the
help of schemas and phenotypic similarity: an additional mutation step is performed when
a schema starts to dominate in the population (above a certain frequency threshold) and
the individuals matching it are also semantically similar.

The diversification strategy can be tuned using a set of parameters that are described
below:

¢ The minimum schema length parameter controls the size of the generated schemas.
This parameter is useful to avoid situations where the replacement of cutpoints close
to the root of the tree would lead to very generic schemas such as for example (+ #
#) (in postfix notation).
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o The minimum schema frequency parameter sets a threshold for the relative number
of matching individuals. Intuitively, this requirement helps establish the conditions
under which a schema can be said to dominate the population.

¢ The minimum phenotypic similarity parameter is used to set additional trigger condi-
tions for the diversification. Setting the phenotypic similarity threshold to a high
value means that diversification will be applied only when highly similar individuals
belonging to the same schema are present in the population.

o The replacement ratio parameter determines what proportion of the individuals
matching a schema are mutated during the diversification phase. This parameter
can be set to a fixed value which remains the same during the algorithm run, or
it can be dynamically adjusted as a function of schema frequency. The dynamic
replacement ratio rule can be set from a number of standard functions shown in
Fig. 5.7. Intuitively, the proportion of mutated individuals within a schema should go
up with the schema frequency as schema frequencies should be negatively correlated
with population diversity.

o The random replacement parameter specifies whether or not the individuals matching
a schema should be selected for mutation at random or based on their quality. When
quality is used as a selection criteria, the individuals with the lower quality are picked
first for mutation.

0.4 0.6 0.8
Schema frequency

) Lty o ) tamho) o ph 2 TR

Figure 5.7: Dynamic replacement ratio rules

101



5 Tracing of Evolutionary Search Trajectories

Schema diversification affects the dynamics of the search in more subtle ways:

o Diversification is applied at the end of the algorithm main loop (after selection,
crossover, mutation), therefore it breaks the guarantee that all individuals in the
next generation will be fitter than their parents (according to the offspring selection
comparison factor).

o As diversification usually damages the quality of the individuals, a selection mecha-
nism more tolerant with respect to these lower-quality individuals is needed (such
as random selection or gender-specific). In order to allow the algorithm to converge
even when a lower selection pressure is applied on the population, it makes sense
to select not for fitness but for adaptive fitness that is, using an offspring selection
mechanism as described in Section 4.2.2 in order to ensure that the fitness of the
child individual is always better than at least one of the parents.

The new algorithm, called OSGP-S (Offspring Selection GP with Schemas) is compared
with the other algorithms in Section 6.3.4.
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In this chapter experimental results obtained using the analysis methods introduced in
Chapter 5 will be presented. According to the specific methodology, we distinguish two
types of analysis methods:

1) Online methods for the analysis of evolutionary dynamics such as tree and fragment
length, phenotypic and genotypic diversity, genetic operator improvement or parent
distribution according under different selection mechanisms

2) Oftline (aposteriori) methods for the analysis of gene and building block propagation
in the population. These methods require the complete genealogy graph of the
population for their calculations, and can be quite constly in terms of memory usage
and computational effort. We also include in this category the tracing methodology
which can be applied to the individuals in the population in order to investigate their
genetic history.

All the algorithms were tested on a collection of benchmark and real-world problems as
described in Table 6.1. The last column in the table refers to the best achievable quality
considering noise on the training data.

Name Function Training | Test Best R?

Poly-10 f(X) = x1%2 + X3X4 + X5X6 + X1X7X9 + X3X6X10 250 250 1.00
Pagie-1 fr,y) = = + T;‘, 676 | 1000 1.00
Friedman-II | f(x) = 10sin(7x;x;) + 20(x3 — %)2 + 10x4 + 5x5 + noise 500 | 5000 ~0.96
Tower Unknown function of 25 variables 3136 | 1863 | unknown

Table 6.1: Problem formulas, training and test partitions and best achievable quality.

We begin our analysis with the Standard GP (SGP) algorithm, followed by the Offspring
Selection GP (OSGP) algorithm and the Offspring Selection GP with Schemas (OSGP-S)
which employs the diversification strategy introduced in Section 5.2.5.

For each algorithm, similar configurations using a different selection scheme were
compared with the purpose of highlighting the differences in their dynamics determined
by the interplay of genetic operators.
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6.1 Standard GP

6.1.1 Experiment Configuration

The standard GP experiments were performed using a population of 1000 individuals
and a generation limit of 500 generations. The depth and length limits for the trees were set
to 12 and 50 nodes, respectively. Subtree-swapping crossover was applied with a probability
of 100% and mutation was applied with a probability of 25%. Every time mutation was
applied, of the following manipulations was uniformly chosen to be performed on the tree
individual:

¢ Parametric (point and multi-point) mutation
¢ Change node type mutation
¢ Replace subtree mutation

¢ Remove subtree mutation

Finally, the function set used by the algorithm was composed of the arithmetic functions
{+, =, X, +}. Contribution ratios, phenotype and genotype similarities were sampled every
10 generations, while all other measurements were performed every generation.

For the standard GP, two algorithmic configurations using proportional and tournament
selection with a group size of 4 individuals were tested. To avoid sampling artifacts, the
results presented in the following sections were averaged over 50 algorithmic runs for each
configuration. In each figure, the black curve represents the average value while the gray
curves represent the individual values for each of the 50 runs.

An overview of the best and average solution qualities achieved by each algorithm
configuration is provided in Tables 6.2 and 6.3.

6.1.2 Best and Average Solution Quality

Concerning the best solution quality, Table 6.2 shows that SGP with tournament selection
outperforms SGP with proportional selection on every test problem, although on average,
as shown in Table 6.3, SGP with proportional selection produced solutions with better
generalization capabilities for the Poly-10 and Pagie-1 problems.

’ Selector ‘ Poly-10 ‘ Pagie-1 ‘ Friedman-2 ‘ Tower ‘
Proportional | 0.8970 | 0.9866 0.7878 0.8738
0.8993 | 0.9864 0.8106 0.8777
Tournament | 0.9782 | 0.9999 0.9057 0.8898
0.9813 | 0.9999 0.8990 0.8902

Table 6.2: SGP Best Solution Qualities
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Selector Poly-10 Pagie-1 ‘ Friedman-2 Tower
Proportional | 0.7719 £ 0.1471 | 0.9077 + 0.5200 | 0.7084 + 0.0229 | 0.8341 + 0.0184
0.7423 £0.1855 | 0.7905 + 0.2657 | 0.7202 £ 0.0632 | 0.8388 +0.0193
Tournament | 0.7620 + 0.1581 | 0.9142 + 0.0591 | 0.8150 + 0.0481 | 0.8610 + 0.0153
0.6878 £0.2461 | 0.7201 £ 0.3090 | 0.7791 £ 0.1197 | 0.8621 £ 0.0150
Table 6.3: SGP Average Solution Qualities
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Figure 6.1: SGP Average Population Quality

Fig. 6.1 shows that in all cases, tournament selection leads to a higher average quality in
the population and a shorter duration of the exploratory phase of the algorithm, marked by
a steeper increase in average quality. Looking at operator improvement charts, we notice
that a higher average quality is correlated with a higher negative average improvement
for both crossover and mutation. We can conclude that in the absence of an offspring

selection mechanism, both crossover and mutation will, on average, worsen the fitness of
the individuals they are applied on.

6.1.3 Selection Ratio and Parent Distribution

Figs. 6.2 to 6.4 reveal significant differences between the two selection mechanisms in

the number of unique parents selected for recombination at each step and their distribution
curves.

Unsurprisingly, the stochastic nature of the tournament selector makes its behavior
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Figure 6.2: SGP Average Selection Ratio

completely independent from the shape and characteristics of the fitness landscape, leading
to identical selection ratios and parent distributions for all test problems. On the other
hand, proportional selection is more sensitive to the distribution of fitness values in the
population and is therefore influenced by the specific problem instance.

6.1.4 Average Tree and Fragment Length

The evolution of GP tree sizes shown in Fig. 6.5 is consistent with the crossover bias
theory proposed by ( , ): crossover bias pushes tree sizes to a Lagrange
distribution of the second kind, where smaller trees are much more likely to be sampled by
the crossover operator. As smaller programs tend to be less fit, the selective advantage of
larger programs has the effect of increasing the average population size. This effect is more
pronounced with high selection pressure, explaining the observed differences between
proportional and tournament selection.

While surprising at first, the larger mutation fragment size can be explained by the
presence of the multi-point mutation operator which affects all the leaf nodes in the tree,
in which case the mutation fragment is considered to be the subtree rooted into the lowest
common ancestor of all the mutated nodes. Since random mutation samples trees uniformly,
the difference in average mutation fragment size reflects the difference in average tree size
between the two selectors.

Crossover bias also explains the decrease of average tree size after the first generation
observable especially in Figs. 6.5b to 6.5d, as the crossover operator transforms the tree
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Figure 6.6: SGP Average Crossover Fragment Length
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Figure 6.7: SGP Average Mutation Fragment Length

size distribution generated by the PTC2 tree creator. The same bias is responsible for the
decrease in average crossover fragment size after the first generation.

Fig. 6.6 suggests a negative correlation between average tree length (indirectly determined
by the selection pressure) and average crossover fragment size. To explain this phenomenon,
we performed a smaller experiment where we calculated the tree size distribution in the
population (Fig. 6.8a), the size distribution of crossover fragments (Fig. 6.8b) and the size
distribution of the subtrees that they replace in the root parents (Fig. 6.8¢c). These results
were averaged over 50 algorithmic runs and 100 generations for each run.

Fig. 6.8a shows that the higher average tree length determined by the tournament
selection scheme has an underlying size distribution skewed towards larger trees. For
example, we see that the higher average tree size under tournament selection is mostly
due to the increased frequency of trees with length between 37 and 49 nodes'. Figs. 6.8b
and 6.8c show that on average, for both selection methods, larger subtrees are replaced
with smaller ones. This confirms that the increase of average tree size in the population is
entirely due to selection.

Despite the difference in the distribution of tree sizes, we notice that the replaced subtree
sizes are distributed the same (ie., crossover’s choice of cutpoint in the root parent produces
on average the same distribution regardless of actual tree size distribution and average
length). The observed behavior suggests an additional crossover bias imposed by the

"Note that since the used primitive set has an arity of 2, all trees and subtrees are binary trees and have an
odd number of nodes.
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maximum tree size restriction towards smaller fragments sampled from the non-root
parent, which explains the crossover fragment size difference observed between the two
selection schemes.

This behaviour is typical of the size-restricted crossover operator used in HeuristicLab,
where the choice of the second crossover point in the non-root parent is subject to size
restrictions so that the offspring does not exceed the maximum size limit.
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Figure 6.9: SGP Average Genotype Similarity

6.1.5 Population Diversity

Figs. 6.3 and 6.4 have already outlined important differences between the behavior of
the two selection operators in terms of how children are produced. We saw that overall,
tournament selection produces the same parent distribution independently of the con-
crete problem instance and the relative fitness differences between the individuals in the
population. Obviously, the strong bias towards fitter individuals — as determined by the
tournament group size of 4 — leads to increased genotypic similarity between the child
individuals as shown in Fig. 6.9.

With regard to the phenotype similarity shown in Fig. 6.10, we notice similar similarity
levels for both selection schemes on the Poly-10 and Pagie-1 problems, and higher phe-
notypic similarity under proportional selection on the Friedman-2 and Tower problems,
despite the fact that average population quality was higher on all problems when using the
tournament selection scheme. This shows that actual fitness bears little influence on the
similarity between the semantics of individuals (observed at phenotype level).

6.1.6 Genetic Operator Effectiveness

Figs. 6.11 to 6.14 show the average crossover and mutation improvement calculated
using Eq. (5.5). We notice that the average parent-child fitness difference is always negative
which means that on average, the crossover and mutation operators are actually worsening
the fitness of the individuals they act upon. This negative improvement is also influenced by
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Figure 6.10: SGP Average Phenotype Similarity

the average population quality (Fig. 6.1), since higher fitness leads to a decreased probability
of adaptive change and to increased chances of deleterious genotype changes.

For the reasons detailed above, we observe a more pronounced loss of fitness in the
case of the tournament selector. We can conclude that both crossover and mutation
are not effective in producing adaptive change (ie., that would lead to increased fitness).
Considering a typical scenario where adaptive changes are produced in a small fraction of
offspring while the remaining ones will be less fit than their parents, it is easy to imagine
how selection - favoring the more fit phenotypes — can lead to pronounced loss of diversity
in the population. In other words, if genotypic operators are not effective, diversity loss
becomes an unfortunate side effect of maintaining an overall fitness improvement over the
generations (driven by selection).

6.1.7 Schema Frequency Analysis

In order to investigate schema propagation within the GP population, we selected for
analysis the best run from each algorithmic configuration. The best qualities obtained by
each algorithmic configuration are displayed in Table 6.2. Schemas with a minimum length
of 10 nodes were generated and matched against the population.

For each algorithmic run, the relative frequency of the most common schema, its average
quality compared to the average population quality and the average genotype and phenotype
similarity of its matching individuals were calculated. Due to the length of the runs,
the relative schema frequencies, average quality and the similarities of their matching
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Figure 6.11: SGP Proportional Selector Average Crossover Improvement
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Figure 6.12: SGP Tournament Selector Average Crossover Improvement
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Figure 6.13: SGP Proportional Selector Average Mutation Improvement
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Figure 6.14: SGP Tournament Selector Average Mutation Improvement
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individuals (genotypic and phenotypic) were calculated every 10 generations.

Due to their size, the tables showing the concrete schema instances identified in each
problem instance are omitted in this section and shown in Section 7.3. They can be
correlated with the frequency and similarity measurements shown below.

The results aggregated in Figs. 6.15 to 6.18 reveal a number of interesting aspects re-
garding the differences between the dynamics of the two selection schemes:

1) Schemas generated using the method described in Section 5.2.4 are of above-average
quality. For both selection schemes, the average schema quality curve exceeds the
average population quality, as seen in Figs. 6.15 and 6.16.

2) The evolution of the relative schema frequency (calculated as the ratio of matched
to total number of individuals) shows clear differences between the two selection
schemes: for all the tested problems, the higher selection pressure applied by the
tournament selector on the population leads to a higher relative frequency of the
most common schema.

3) The evolution of schema frequency can be correlated with the obtained population
quality. For example, the more significant quality differences in favor of the tourna-
ment selector on the Friedman-2 and Tower problems can be linked with superior
convergence measured as increased relative schema frequency. We notice that in
the case of proportional selection no schema convergence could be observed on the
Friedman-2 and Tower problems.

4) With respect to population diversity, we compared the results in figures Figs. 6.17
and 6.18 with those in Figs. 6.9 and 6.10. We notice that average similarity within
schemas is always considerably higher than the average genotype and phenotype sim-
ilarities over the whole population. Correlated with schema frequency information,
this offers more detailed insight on the rate of diversity loss in the population and
on the suitability of the various selection schemes on different problem instances.

Opverall, schema analysis represents a powerful instrument for investigating aspects such as
rate of convergence and diversity loss under different selection mechanisms.

6.1.8 Analysis of Solution Contribution Ratio

Contribution ratio, defined as the proportion of an individual’s ancestors which con-
tributed with genes to its structure, represents a new measure of the evolutionary effort
expended by the algorithm for finding solutions. This aspect of the search concerning the
way in which better genotypes are assembled is intimately related to the G—P map and
the evolution of population diversity. The expression for the contribution ratio given in
Eq. (5.9) requires the computation of individual trace graphs. Thus, the subtree tracing
algorithm described in Section 5.2.3 was applied each generation on the whole popula-
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Figure 6.15: SGP Proportional Selector Schema Frequencies and Quality
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Figure 6.16: SGP Tournament Selector Schema Frequencies and Quality
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Figure 6.17: SGP Proportional Selector Schema Similarities
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Figure 6.18: SGP Tournament Selector Schema Similarities
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’ Selector | Poly-10 | Pagie-1 | Friedman-2 | Tower ‘
Proportional | 19.13% | 29.8% 27.58% | 32.3%
Tournament | 12.22% 8% 3.9% 6.9%

Table 6.4: SGP Best Solution Contribution Ratio

’ Selector |Poly-10 Pagie-1 | Friedman-2 | Tower

Proportional 53831 74553 77750 | 122302
281324 | 250484 281921 | 379558
Tournament 21918 15521 6838 13589
179427 | 192924 173279 | 196297

Table 6.5: SGP Best Solution Trace v. Ancestry Size

tion, simultaneously constructing the trace graph of each individual and incrementing the
weights of the traced subtrees.

In what follows, we show for each problem and algorithm configuration the contribution
ratio for the best solution and the most sampled subtrees from the whole genealogy of
individuals and subtrees.

The results from Tables 6.4 and 6.5 show that a relatively small percentage of individuals
from the best solution ancestry had an actual contribution to its structure (in terms of
inherited genes). Tournament selection in particular leads to a very low contribution ratio
as the high selection pressure leads to fewer unique individuals involved in the offspring
creation process.

The trace graph and ancestry sizes seen in Table 6.5 can vary depending on several
factors such as the number of common ancestors within an individuals lineage, the actual
number of times when the individual was being passed as an elite from one generation to
the next, or the generation number when the best solution quality was achieved.

Results in Figs. 6.19 and 6.20 reveal the relationship between selection acting at pheno-
type level and the variation-producing operators acting at the genotype level. The graphs
were obtained in two steps:

1) For each generation, rank the population according to fitness, so that rank O corre-
sponds to the best individual, rank 1 to the second best, and so on.

2) Sum the average node weight and the number of produced offspring of all individuals
of the same rank.

The correlations between the curves, displayed in Table 6.6 validate, on the one hand, the
correctness of the tracing methodology and on the other hand, bring additional details about
the dynamics of the search. For example, the spikes in the cumulated subtree sample count
curve show that, at some point during the evolution one of the subtrees was sampled for a
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Selector Poly-10 ‘ Pagie-1 ‘ Friedman-2 ‘ Tower ‘

Proportional | 0.6517 | 0.9837 0.9430 0.9080
Tournament | 0.9150 | 0.9295 0.8084 0.9207

Table 6.6: Correlation between the cumulated subtree sample count and the cumulated
parent contribution ratio curves from Figs. 6.19 and 6.20
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Figure 6.19: SGP Proportional Selector Cumulated Subtree Sample Count and Parent
Contribution Ratio

large number of times propagating itself in future individuals and having a big influence on
the search outcome. In this way, numerous large spikes are connected, through the action
of selection and crossover, with the low contribution ratios observed in Table 6.4.

The analysis of the solution contribution ratio using trace graph can also reveal details
regarding the significant solution building blocks which could be identified by the algorithm
during the evolutionary search. These building blocks identified as the most sampled
subtrees in the population can for example offer insight to the practitioner about the
structure and characteristics of the fitness landscape for unknown instances of symbolic
regression problems.

To illustrate the identification of relevant building blocks, we show for each problem the
10 most sampled subtrees together with the total number of times they were sampled by the
genotypic operators. These measurements were computed for the best runs corresponding
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Figure 6.20: SGP Tournament Selector Cumulated Subtree Sample Count and Parent
Contribution Ratio

to each problem and algorithmic configuration using the tracing and subtree sample count
methodology described in Section 5.2.3. The best solution qualities extracted from the best
runs in each algorithm and problem configuration are shown in Table 6.2.

It is clear that the most sampled subtrees will more accurately represent the actual
problem building blocks when the solution found by the algorithm gets as close as possible
to the actual formula. Therefore, since the best solutions obtained by SGP with tournament
selection are clearly superior to those obtained by SGP with proportional selector, we
expect the former to have produced the most relevant subtree sample count measurements.
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[ Subtree [ Count H Subtree Count
x3 %1) 130902 | (x y) 59352
* x5 xg) 112361 | (*y ) 50828
(* x4 x3) 59896 (*yx) 36468
(+ ('Y‘ X5 xﬁ) (4< P X1)) 13592 (A‘(JC x) 30.496
(+ (% x2 x1) (* x5 x6) ) 9108 FxCyy) 21168
(+ (* x4 x3) (* x2 x1)) 6287 FyCExy)) 20691
(+ (*x2 x1) (*x2 x1)) 5883 *x(*Fxy)) 14866
(+ (* x2 x1) (* x4 x3)) 5285 CyCxy)x) 13363
(+ (* x5 x6) (* x5 x6) ) 5117 CExtyy)x) 12979
(+ (* x5 x¢6) (* x4 x3)) 4990 *yExx)) 11826

f(X) = x1x2 + X3%4 + X5X6 + X1 X7X9 + X3X6X10 f(x,y) = ﬁ + Hy%
(a) Poly-10 (b) Pagie-1

[ Subtree Count H Subtree Count
(+ X4 xz) 33800 ('K X23 xﬁ) 64568
(+ X1 xz) 13016 (/ X6 xl) 18208
(+ X1 X4) 12317 (/ (%< X23 x(,) xl) 7824
(+ X2 X4) 9827 (A‘( X6 x23) 5032
(+ X4 X4) 9076 (A‘( X6 xé) 2361
(+ X5 X4) 7546 (')< c ('K X23 xg)) 1940
(+ X1 X5) 7093 (* X23 (/ X6 xl)) 1575
(+ X4 X5) 6918 (* (* X23 xs) x5) 1449
(+ x4 x7) 6728 (+ (* x23 x6) (* x23 x6)) 1432
(* x1 x2) 4066 (* x23 (* x23 x6)) 1292

f(x) = 10sin(rx;x3) + 20(x3 — %)2 + 10x4 + 5x5 + noise Unknown function of 25 variables
(c) Friedman-2 (d) Tower
Table 6.7: SGP Proportional Selector Most Sampled Subtrees

[ Subtree [ Count H Subtree Count
(* x9 x7) 84237 *yy) 99933
(* x4 x3) 51600 (*x x) 96250
(* x3 x10) 47703 Cyyo 24346
(* xg x3) 24688 (/c(*xx)) 20203
(* ¢ (* x9 x7)) 23141 (* (* x x) x) 15167
(+ x5 (* x3 x10) ) 15727 (/CFcoyy) 15012
(+x1 x7) 12191 FEExx)x)x) 9973
(+ x5 (* x4 x3)) 9028 CCEEExx)X)X)0) 7625
(+ x5 (* xg x3)) 8933 -*xx)c) 7078
(+ x5 (*x9 x7)) 8921 (/CFeco)-Fyy)o) 6835

f(X) = X122 + X334 + X5X6 + X1X7X9 + X3X6X10 f(x,y) = ﬁ + 1+)1r4
(a) Poly-10 (b) Pagie-1

[ Subtree Count H Subtree Count
(+ X4 X5) 88868 (+ X13 JC15) 56169
(" x1 x2) 88049 | (/x23 *cx1) 55440
(x; %1) 64208 | (x; x1) 54137
(* (" x1 x2) (* %2 x1)) 18964 | (*x6 (/ x23 (Fcx1))) 37365
(+ (*xp x2) (+ x4 x5)) 17645 (/ (* x1 x1) x11) 31569
(- (Fxp x2) (Fx2x1)) 0 15616 (* x1 x10) 8564
(4< X3 x;) 8865 (/ X2 (*Cxlo)) 5885
(* (+ (* 21 x2) (+ x4 x5)) (- (* (* x1 x2) (* x2 x1)) ©)) 6561 (/ x3 x23) 4825
(+ X2 (+ X4 XS)) 6353 (/ X2 x24) 3728
(+(*XZ xl)(+x4 x5)) 5463 (/(*cxl)x”) 3256

x) = 10sin(wx;x3) + 20(x -1 2+10x4+st+noise
2

(c) Friedman-2

Unknown function of 25 variables

(d) Tower

Table 6.8: SGP Tournament Selector Most Sampled Subtrees

121
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Tables 6.7 and 6.8 show the problem-specific elements of the formula the algorithm was
able to identify:

¢ On the Poly-10 problem, the most sampled subtrees are the ones representing the
two-variable products such as x1x,, x3x4 or x5x¢, followed by sums of these products
such as x1x, + x3x4 and so on. This shows that the algorithm is at least able to find
and assemble the basic building blocks of the formula. However, only SGP with
tournament selector was further able to find the more difficult variable combinations
such as x3x19 or x7x9.

¢ On the Pagie-1 problem, the most sampled subtrees are those who encode products
or powers of the x and y variables. In particular SGP with tournament selection was
able to find the term x* among other combinations of factors.

¢ The target formula for the Friedman-2 problem contains a sinus term which cannot
be modeled directly by the algorithm since no trigonometric functions were included
in the primitive set. However, the algorithm correctly identified the term xx; (the
argument of the sinus) as the most sampled subtree in the population, considering
its two instances in Table 6.8c, where it is present both as x;x, and x,x. The second
most sampled subtree, namely x4 + x5 accounts for the last two terms of the formula,
also representing a genuine problem building block.

¢ We cannot say anything about the Tower formula since the objective function is
unknown. However, the variables x1, x5, X¢, X10, X11, X13, X15, X23 and x,4 were
identified by the algorithm as being the most relevant. This illustrates the practical
benefits of the approach: even for unknown problems, the subtree sample counts
methodology can offer information regarding the most important solution elements.

In conclusion, the tracing methodology brings important benefits for the study of GP
evolutionary dynamics by allowing us, one the one hand, to get more detailed insight
into genetic operator behavior and the inheritance patterns they determine, and on the
other hand to identify relevant problem building blocks via the subtree sample counts
approach, that can potentially be translated into new knowledge about the problem by
domain experts.

6.2 Offspring Selection GP

6.2.1 Experiment Configuration

The Offspring Selection GP algorithm (OSGP) was used with a population of 500 in-
dividuals. Strict offspring selection was used after recombination, meaning that only the
offspring which outperformed both parents were accepted into the population. The tree
length and depth limits were the same as for standard GP, namely 12 levels depth and 50
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Selector ‘ Poly-10 ‘ Pagie-1 ‘ Friedman-2 ‘ Tower ‘
Proportional 0.9999 | 0.9999 0.8841 0.8885
0.9999 | 0.9999 0.8772 0.8917
Gender Specific | 0.9999 | 0.9999 0.8967 0.8959
0.9999 | 0.9999 0.8836 0.8975

Table 6.9: OSGP Best Solution Qualities

nodes maximum length. A crossover probability of 100% and a mutation probability of
25% were used along two different selection schemes: proportional and gender-specific. In
gender specific selection, the first parent is chosen proportionally while the second parent
is chosen at random. A maximum selection pressure of 100 was used as a termination
criteria for the algorithm (see Section 4.2.2).

Due to the dynamic termination criteria and the algorithm’s inherent stochasticity, OSGP
runs using the same configuration will not finish in the same number of generations. For
this reason, the results shown below are not aggregated into averages like in the case of the
standard GP. An exception was made only for the genetic operator improvement charts
where averages per generation of the remaining runs were calculated in order to be able to
present the data in a compact manner.

6.2.2 Best and Average Solution Qualities

An overview of the best and average solution qualities achieved by each algorithm
configuration is provided in Tables 6.9 and 6.10. Overall, the OSGP algorithm performs
significantly better than SGP (especially on the Poly-10 and Pagie-1 problems) due to the
fact that OSGP is able to more efficiently exploit the initial genetic diversity present in the
population. The offspring selection criteria makes sense from an evolutionary perspective:
just like in nature, deleterious changes at the genotype level, leading to decreased fitness
(compared to the parents) are not favored at all by selection. If in SGP the selection
mechanism still gave chances to weaker individuals — accepting non-adaptive genetic
variation — in OSGP only adaptive change is allowed to be transmitted from one generation
to the next. Therefore, the success of the OSGP algorithm is directly influenced by the
evolvability of the population (the ability to produce adaptive change). From this perspective,
the maximum selection pressure termination criteria acts as an indicator for when the
population has lost its adaptive potential.

Looking at the qualities alone, we can conclude from Tables 6.9 and 6.10 that the two
configurations perform the same, with no statistically-significant differences between the
average best solution qualities. We can thus infer that the strict offspring selection criteria
has a bigger influence on the overall behavior of selection than the specific methods of
parent selection (proportional or gender specific).

Due to the strict offspring selection criteria, in the case of OSGP the average population
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Selector Poly-10 Pagie-1 ‘ Friedman-2 Tower
Proportional 0.8424 £0.1253 | 0.9477 £0.0396 | 0.8334 +£0.0343 | 0.8713 + 0.0080
0.7511 +£0.2050 | 0.8024 +0.2494 | 0.7916 +£0.1108 | 0.8703 +0.0106
Gender Specific | 0.8586 + 0.1194 | 0.9560 + 0.0282 | 0.8438 £ 0.0315 | 0.8768 + 0.0081
0.7712 £0.1971 | 0.7935 £0.2735 | 0.8006 +£0.1168 | 0.8759 +0.0117
Table 6.10: OSGP Average Solution Qualities
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Figure 6.21: OSGP Proportional Selector Average Population Quality

quality is much higher throughout the evolutionary run compared to SGP, as shown in
Figs. 6.21 and 6.22 .

6.2.3 Selection Ratio and Parent Distribution

The evolution of selection ratio shown in Fig. 6.23 validates the hypothesis that most
of the initial population diversity is lost in the early stages of evolution. This happens
due to the fact that in the early generations big jumps in fitness occur in a small number
of individuals, leading to a highly uneven distribution of fitness values in the population,
ultimately causing selection to discard a large number of individuals.

In the case of proportional selection, we notice that the selection ratio drops as low as
0.2 (for the Pagie-1 problem) or 0.4 (for the Friedman-2) problem. The situation is better in
the case of OSGP with gender specific selection, where the random selection of the second
parent alleviates this phenomenon, although it can still be quite pronounced for example
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Figure 6.22: OSGP Gender Specific Selector Average Population Quality

on the Pagie-1 problem (Fig. 6.24b).

After the initial drop, the selection ratio increases and stabilizes to a value around 0.8
which is generally larger than the SGP selection ratio shown in Fig. 6.2. The comparison
between the parent distribution charts between SGP (Figs. 6.3 and 6.4) and OSGP (Figs. 6.25
and 6.26) shows that selection behaviour in OSGP is similar with the behaviour of pro-
portional selection in SGP, however with the important difference that OSGP selection
(especially in the case of gender specific selection) also samples the tail of the parent quality
distribution consisting of the least fit parents. This can be explained by the fact that OSGP
selection acts not only on fitness but also on evolvability, making it possible for less fit
individuals to participate as parents if they can produce children fitter than themselves,
while high fitness individuals may be out of the evolutionary race if they can no longer be
improved.

6.2.4 Average Tree and Fragment Length

Fig. 6.5 and Figs. 6.27 and 6.28 show that compared to SGP, OSGP runs are characterised
by a higher average tree length.

Since SGP and OSGP use the same PTC2 tree creator, we observe the same decrease in
average tree size in the first few generations. The remaining differences between SGP and
OSGP regarding average tree and fragment size can be explained by the different behavior
of the strict offspring selection mechanism.

Strict offspring selection rejects deleterious changes and only accepts offspring fitter
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Figure 6.24: OSGP Gender Specific Selector Average Selection Ratio
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Figure 6.27: OSGP Proportional Selector Average Tree Length

than their parents. Therefore, the increased OSGP average tree size compared to SGP can
be attributed to the pressure for adaptive change leading to more genotype buftering and
consequently, larger trees being favored by selection.

The increase in average crossover fragment size in the early generations (Figs. 6.29
and 6.30) is explained by the selection bias during the exploratory phase of the algorithm,
when the algorithm begins to lock onto the local optima points. Intuitively, larger genetic
changes are necessary to jump into different areas of the genotype space and when the
overall fitness of the population is low (as it happens in the first few generations), these
changes are the most likely to produce significant fitness improvements. As average fitness
increases and adaptive changes are harder to come by, selection begins to favor smaller
changes which are both less likely to damage fitness and less likely to dramatically improve
it.

The buftering of genotypes and the high average fitness determines the average crossover
fragment length to stabilize to a lower value for OSGP. Finally, the size of mutation frag-
ments tends to be significantly lower for OSGP as most mutations (except the smaller ones)
are likely to be rejected during the offspring selection phase.

6.2.5 Population Diversity

The genotype similarity curves in Figs. 6.33 and 6.34 show that OSGP populations
are generally more genotypically similar than their SGP counterparts, although no great
differences occur between the proportional and gender specific selection methods compared
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Figure 6.28: OSGP Gender Specific Selector Average Tree Length
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Figure 6.29: OSGP Proportional Selector Average Crossover Fragment Length
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Figure 6.30: OSGP Gender Specific Selector Average Crossover Fragment Length
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Figure 6.31: OSGP Proportional Selector Average Mutation Fragment Length
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Figure 6.32: OSGP Gender Specific Selector Average Mutation Fragment Length

to the differences between SGP with proportional and tournament selection.

Phenotype similarity shown in Figs. 6.35 and 6.36 marks an important difference between
SGP and OSGP. Due to the strict offspring selection criteria, most individuals in the
population end up having similar semantics, leading to situations where the phenotypes in
the population are 100% similar.

6.2.6 Genetic Operator Effectiveness

Figs. 6.37 to 6.40 show the effectiveness of genetic operators within the OSGP algorithm.
While the genotypic operators themselves do not act any differently than for example in
the case of SGP, the additional offspring selection criteria accepting only adaptive change
makes them “effective”, in the sense that deleterious changes are simply rejected. Therefore,
the figures show us the rate at which fitness can be improved with the help of the offspring
selection criteria.

The results show that on average qualities are quite slowly improved regardless of
problem or algorithm configuration. Therefore, the offspring selection criteria seems to play
a protective role against deleterious effects, rather than actively encouraging adaptation at
genotype level. Nevertheless the quality curves show that these incremental improvements
can make a significant difference in the overall performance of the algorithm, allowing
OSGP to obtain superior results compared to SGP on all problem instances and with a
lower population size.
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Figure 6.33: OSGP Proportional Selector Average Genotype Similarity
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Figure 6.34: OSGP Gender Specific Selector Average Genotype Similarity
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Figure 6.35: OSGP Proportional Selector Average Phenotype Similarity
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Figure 6.36: OSGP Gender Specific Selector Average Phenotype Similarity
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Figure 6.41: OSGP Proportional Selector Schema Frequencies and Quality

6.2.7 Schema Frequency Analysis

Schema frequencies for the best OSGP runs in Figs. 6.41 and 6.42 show the average
quality and frequency of the most common schema of the best run from each algorithmic
configuration:

o Average schema qualities follow closely the average population quality, as strict
offspring selection leads to a more uniform distribution of qualities in the population
and a higher degree of genotypic interrelatedness.

¢ In many instances the most common schema matches a very high proportion of
individuals. Spikes in relative schema frequency that go even above 0.9 (ie., the
schema matches more than 90% of the population) can be observed in Figs. 6.41a
to 6.41d, 6.42a, 6.42c and 6.42d.

At the same time, schema similarities in Figs. 6.43 and 6.43 show that the individuals
matching OSGP schemas represent identical phenotypes (as the phenotypic similarity
curves are very close to 1) and share a high degree of genotypic similarity. From this we can
conclude that offspring selection leads not only to high levels of genotype and phenotype
similarity but also to a common genetic template underlying the whole population, from
which it may prove difficult to evolve further, once the search begins to converge.
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Figure 6.44: OSGP Gender Specific Selector Schema Similarities

’ Selector | Poly-10 | Pagie-1 | Friedman-2 | Tower ‘
Proportional 2% 3% 3.2% 1.7%
Gender Specific 2.2% 1.6% 1.9% | 3.6%

Table 6.11: OSGP Best Solution Contribution Ratio

6.2.8 Analysis of Solution Contribution Ratio

Table 6.11 shows the solution contribution ratio calculated for the best solutions of
the OSGP algorithm. As the contribution ratio is calculated solely on the basis of the
genotypes in the population and their hereditary relationships, it gives a good indication of
the amount of genetic diversity lost through the action of selection during the evolutionary
search. At the same time, the contribution ratio acts as a measure of the effort expended
by the algorithm in producing the best solution, since it directly quantifies how many of
the total genotypic operations that acted on the ancestors of the best solution had a direct
contribution to its structure.

For the sake of completeness, Table 6.12 shows the trace graph size on the first line
and ancestry size on the line below for the best solution of each tested configuration. In
this case, the size variation can also be attributed to the fact that OSGP runs can differ in
the number of generations until the maximum selection pressure termination criteria is
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Selector Poly-10 | Pagie-1 | Friedman-2 | Tower ‘
Proportional 481 293 276 207
24367 9681 8500 | 11903
Gender Specific 396 148 238 612
18174 9512 12748 | 17172

Table 6.12: OSGP Best Solution Trace v. Ancestry Size
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Figure 6.45: OSGP Proportional Selector Cumulated Subtree Sample Count and Parent
Contribution Ratio

satisfied.

Considering the mapping of genotypes into phenotypes due to the G—P map, a lower
contribution ratio corresponds to a smaller region of the genotype space sampled by the
genetic operators during the algorithm’s attempt of producing adaptive genetic change. This
region is continuously reduced by loss of diversity (every generation), up to the point where
fitness is locally maximized and the available pool of genetic material is limited to a reduced
common set of inherited genes, originating from a small number of “super-ancestors”. This
behaviour can be also noticed on the subtree sample count curves in Figs. 6.45 and 6.46.
The spikes in these curves correspond to very fit building blocks propagated in the whole
population by the selection operator. Through their multiplicity and high fitness, such genes
end up dominating the population, thus reducing the algorithms exploratory potential.
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Figure 6.46: OSGP Gender Specific Selector Cumulated Subtree Sample Count and Parent
Contribution Ratio
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Table 6.13: OSGP Proportional Selector Most Sampled Subtrees
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Table 6.14: OSGP Gender Specific Selector Most Sampled Subtrees

Tables 6.13 and 6.14 show the most sampled subtrees by the OSGP algorithm:
¢ On the Poly-10 problem, both OSGP configurations using the proportional and

the gender-specific selection mechanisms were able to produce perfect solutions,
in which all the terms of the formula were correctly identified by the algorithm.
These terms are represented by the most sampled subtrees in Tables 6.13a and 6.14a,
including x{x7x9 and x3x6X10.

On the Pagie-1 problem, we notice the presence of the terms x* and y* in the most
sampled subtrees from both configurations (Tables 6.13b and 6.14b), along with
other combinations of constants and powers of x and y. When the essential building
blocks are present in the population, the algorithm is able to find the exact solution,
as shown by the perfect quality obtained in Table 6.9.

On the Friedman-2 problem, OSGP is able to find the relevant variable combinations
such as x1x;, x4 + x5, although the most sampled subtrees list does not offer any
evidence about the presence of x3 as a standalone term in the formula.

On the Tower problem, the most sampled subtrees by the OSGP algorithm contain a
similar set of variables to those identified by SGP: x1, x>, x3, X6, X3, X9, X12, X15, X22,
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X723, X24, X25. The sample counts indicate x, and the sum x¢ + x,3 as being the most
important for the obtained solutions.

6.3 Offspring Selection GP with Schemas

We tested the algorithmic improvement suggested in Section 5.2.5 using the same OSGP
configuration from Section 6.2, and using a gender specific selection scheme. In additionto a
maximum selection pressure of 100, a maximum of five million evaluated solutions was also
set as a termination criteria. This limit was necessary to prevent very lengthy algorithmic
runs, as the extra diversification step acts against local convergence by introducing new
genetic diversity in the population (through mutation). Then, the more diverse parents,
combined with the lower qualities caused by mutation (see Sections 6.1.6 and 6.2.6) make
it easier to produce offspring better than their parents under gender specific selection,
effectively reducing the necessary effort (thus, the active selection pressure) to obtain
adaptive change. Ultimately, this has the consequence of allowing the algorithm to run for
a long time fueled by continuous mutation.

6.3.1 OSGP-S Adaptive Replacement Ratio

Using an adaptive replacement ratio means that the amount of mutation applied to
the matching individuals of schemas that fulfil the diversification criteria is calculated
as a function of the relative schema frequency in the population. The idea is to allow
lower frequency schemas to propagate further by applying less mutation and conversely,
to prevent higher frequency schemas from dominating the population by applying more
mutation, with the overall effect of improving population diversity while allowing schemas
to grow.

Table 6.15 shows the configuration for the first experiment, using a number of different
adaptive replacement ratio rules, as well as two different schema matching rules called
“strict” and “relaxed” (non-strict). The tested replacement ratio rules are described in
Fig. 5.7. The schema matching rules refer to the conditions under which two tree nodes
are considered to be equal by the pattern matching algorithm. The following requirements
need to be satisfied:

1) Both nodes have to be of the same kind, either function nodes (representing the same
function) or leaf nodes (either constants or variables). Variable tree nodes have to
reference the same variable in the dataset.

2) In addition, strict matching requires leaf values to be exactly the same. By leaf values,
we mean the numerical values of constant nodes or the numerical weights of the
variable nodes.
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Replacement Ratio Adaptive (all rules)
Minimum Phenotypic Similarity 90%, 95%
Minimum Schema Length 10
Minimum Schema Frequency 0%
Schema Matching Strict, Relaxed

Table 6.15: OSGP-S Adaptive Replacement Ratio Experiment Configuration

We use the notation OSGP-S-Adaptive to denote the schema-based diversification strat-
egy with adaptive replacement ratio. The effects of the schema diversification strategy
on solution quality are displayed in Table 6.16. The results show that solution quality
is mainly influenced by the schema matching parameter, while the quality differences
between the tested schema replacement rules remain small. Relaxed schema matching (Ta-
ble 6.16a) produces the better results as it provides a better indication of local convergence
in combination with the minimum phenotypic similarity criteria.

Having established that OSGP-S actually performs significantly better using non-strict
schema matching, the next step is to test the influence of the minimum phenotypic similarity
parameter on the search outcome. We repeated the previous experiment using an OSGP-
S configuration with a minimum phenotypic similarity threshold of 95% and relaxed
matching. The results in Table 6.17 show that too restrictive diversification criteria such
as strict matching or high thresholds for phenotypic similarity may limit the method’s
potential to shift the focus of the search (when already in a state of advanced convergence)
from local to global. The overall qualities are comparable to the ones from Table 6.16 with
the exception of the Poly-10 problem, where they are significantly worse. This leads us to
conclude that a too high threshold for the phenotypic similarity within schemas does not
bring any practical benefits.

6.3.2 OSGP-S Fixed Replacement Ratio

The matter was further investigated by testing the two phenotypic similarity thresholds
(90% and 95%) using a fixed replacement ratio set to 90% of the matching individuals and
two different settings for the minimum schema length parameter: 10 and 25. For a clearer
notation, we abbreviate this algorithmic variant as OSGP-S-Fixed.

Table 6.18 shows that OSGP-S-Fixed produced better results with a minimum schema
length of 25. The minimum schema length affects the diversification strategy in two ways:

1) It tends to lead to the creation of more specific schemas, ie., schemas where the
wildcards symbols are situated lower in the tree. Fewer individuals will match these
higher-order schemas.

2) Higher-order schemas matched by fewer individuals will tend to have higher average
phenotypic similarity (between the matching individuals).
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Replacement rule ‘

Poly-10

Pagie-1

Friedman-2

Tower

fx) = x

0.9765 £ 0.0788
0.9549 £ 0.1401

0.9767 £ 0.0219
0.8810 £0.2187

0.9087 £ 0.0441
0.8757 £0.1017

0.8839 £ 0.0080
0.8823 £+ 0.0096

f(x) = tanh(x)

0.9517 + 0.0860
0.9352 +£0.1244

0.9767 £ 0.0179
0.8430 £ 0.2606

0.9044 £ 0.0473
0.8814 £ 0.0797

0.8828 + 0.0067
0.8765 £ 0.0381

f(x) = tanh(2x)

0.9581 £ 0.0991
0.9390 + 0.1385

0.9763 £ 0.0214
0.8298 +0.2941

0.9224 £ 0.0365
0.9054 £ 0.0622

0.8849 £ 0.0054
0.8838 £ 0.0077

f(x) = tanh(3x)

0.9737 £ 0.0474
0.9517 £ 0.1146

0.9828 +£0.0193
0.8496 £ 0.2743

0.9052 £ 0.0411
0.8941 £ 0.0562

0.8825 + 0.0059
0.8798 £ 0.0237

f(x) = tanh(4x)

0.9670 £+ 0.0998
0.9431 £ 0.1902

0.9779 £ 0.0191
0.8365 £ 0.2742

0.9013 £0.0413
0.8627 £ 0.1064

0.8856 + 0.0083
0.8850 + 0.0095

fx)=1-V1-x

0.9611 + 0.0542
0.9477 £ 0.0737

0.9723 £ 0.0197
0.8475 £ 0.2458

0.9040 + 0.0470
0.8808 £ 0.0856

0.8840 + 0.0074
0.8831 £ 0.0087

(a) Relaxed Schema Matching

Replacement rule ‘

Poly-10

|

Pagie-1

Friedman-2

Tower

fx) =x

0.8948 £ 0.1272
0.8028 + 0.2804

0.9721 £ 0.0227
0.8316 £ 0.2474

0.8846 £ 0.0436
0.8707 £ 0.0514

0.8840 + 0.0087
0.8814 £0.0138

f(x) = tanh(x)

0.8795 £ 0.1571
0.8211 £+ 0.2423

0.9704 £ 0.0225
0.8578 £ 0.2400

0.8844 £ 0.0522
0.8432 £0.1215

0.8832 £ 0.0074
0.8823 £ 0.0096

f(x) = tanh(2x)

0.9181 £ 0.1252
0.8486 + 0.2572

0.9619 £ 0.0266
0.7827 £ 0.2847

0.8986 £ 0.0405
0.8646 £0.1129

0.8858 £ 0.0077
0.8853 £ 0.0083

f(x) = tanh(3x)

0.9403 £+ 0.0766
0.9097 £ 0.1537

0.9671 £ 0.0227
0.7204 £ 0.3483

0.8884 + 0.0482
0.8725 £ 0.0591

0.8848 £ 0.0072
0.8835 £ 0.0092

f(x) = tanh(4x)

0.9247 £ 0.0964
0.8829 + 0.1655

0.9645 £ 0.0384
0.8767 £ 0.2209

0.8781 £ 0.0451
0.8626 + 0.0571

0.8840 + 0.0088
0.8818 £0.0120

fx)=1-V1-x

0.8561 £ 0.1481
0.7534 £ 0.2801

0.9600 + 0.0273
0.8654 £ 0.1959

0.8700 £ 0.0510
0.8429 £ 0.0945

0.8823 £ 0.0078
0.8811 £ 0.0087

(b) Strict Schema Matching

Table 6.16: OSGP-S Adaptive Replacement Ratio, Minimum Phenotypic Similarity 90%.
The results are expressed as (¢ + o) values of the training and test qualities in
the first and second line, respectively.
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’Replacement rule ‘

Poly-10

Pagie-1

Friedman-2

Tower

f(x) = x

0.9194 £ 0.1351
0.8806 + 0.2180

0.9752 £ 0.0219
0.8029 + 0.2996

0.9148 £ 0.0444
0.9011 £ 0.0588

0.8873 £ 0.0069
0.8803 £0.0477

f(x) = tanh(x)

0.9274+0.1133
0.8825 + 0.2085

0.9778 £0.0180
0.8722 £ 0.2361

0.9164 £ 0.0421
0.8962 £ 0.0885

0.8870 £ 0.0091
0.8861 £0.0112

f(x) = tanh(2x)

0.9567 + 0.0942
0.9104 £ 0.2184

0.9774 £ 0.0181
0.8170 £ 0.2606

0.9183 £0.0412
0.9055 £ 0.0651

0.8842 + 0.0071
0.8809 £ 0.0144

f(x) = tanh(3x)

0.9327 £0.1219
0.8978 + 0.2003

0.9817 £0.0180
0.8666 + 0.2325

0.9083 £ 0.0394
0.8834 £ 0.0783

0.8860 + 0.0067
0.8844 + 0.0089

f(x) = tanh(4x)

0.9578 + 0.0667
0.9223 £ 0.1623

0.9792 £ 0.0201
0.7772 £ 0.3231

0.9063 + 0.0528
0.8913 £ 0.0734

0.8846 + 0.0071
0.8839 £ 0.0082

fx)=1-V1-x

0.8896 £ 0.1296
0.8140 + 0.2446

0.9742 £ 0.0309
0.7949 £ 0.3087

0.9070 £ 0.0472
0.8928 £ 0.0689

0.8853 £ 0.0079
0.8836 + 0.0085

(a) Relaxed Schema Matching

Table 6.17: OSGP-S Adaptive Replacement Ratio, Minimum Phenotypic Similarity 95%.
The results are expressed as (1 + o) values of the training and test qualities in
the first and second line, respectively.

Similarity Threshold

Poly-10

Pagie-1

Friedman-2

Tower

90%

0.9906 £ 0.0316
0.9714 £ 0.1356

0.9676 £0.0215
0.8921 £ 0.2063

0.8430 £ 0.0415
0.7825 £ 0.1073

0.8777 £0.0072
0.8785 £ 0.0095

95%

0.9947 £ 0.0175
0.9928 £ 0.0235

0.9666 + 0.0199
0.8483 £0.2478

0.8439 £ 0.0412
0.7989 £ 0.1038

0.8789 + 0.0067
0.8799 £ 0.0080

(@) Minimum Schema Length = 10

Similarity Threshold ‘

Poly-10

Pagie-1

Friedman-2

Tower

90%

0.9809 £ 0.0605
0.9568 £ 0.1437

0.9688 £ 0.0214
0.8848 £ 0.2289

0.8668 £ 0.0395
0.8367 £ 0.0824

0.8770 £ 0.0057
0.8776 £ 0.0074

95%

0.9848 £ 0.0292
0.9804 £ 0.0376

0.9648 + 0.0226
0.8799 £ 0.2079

0.8596 + 0.0420
0.8191 £0.1212

0.8785 + 0.0080
0.8789 £ 0.0106

(b) Minimum Schema Length = 25

Table 6.18: OSGP-S Fixed Replacement Ratio 90%. The results are expressed as (¢ + o)
values of the training and test qualities in the first and second line, respectively.
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Looking at the differences in quality, we may conclude that the restriction on the mini-
mum schema size acts as a compensating force for the high value of the fixed replacement
ratio, preventing the diversification phase from affecting algorithm convergence.

The differences in solution quality between OSGP-S-Adaptive and OSGP-S-Fixed sug-
gest that it is beneficial to adjust the mutation intensity based on the relative population
frequencies of the given schemas. Setting a high fixed replacement ratio from the beginning
may in some cases

6.3.3 Comparison with OSGP

The OSGP-S methodology (Tables 6.16 to 6.18) performs clearly better in comparison
with OSGP (Table 6.10). However, Tables 7.19, 7.20a and 7.20b (in Appendix, see Section 7.3)
show that the OSGP-S runs consisted of a significantly higher number of generations,
amounting to a significantly higher effort in terms of solution evaluations. The question
arises whether or not the superior performance can be explained by the extra effort or by
the increased efficiency of the search due to the schema-based diversification strategy. To
test this hypothesis, we repeated the OSGP experiment without imposing any restrictions
on the active selection pressure values. A simple termination criteria set to a maximum
number of five million evaluations was used instead.

The results in Table 6.19 show that OSGP with five million evaluations (abbreviated as
OSGP-5M) does not produce the same overall level of performance:

o Compared to OSGP-S-Adaptive, OSGP-5M shows inferior solution qualities on the
training data for all problems except the Tower problem. Qualities on the test data
also show that the algorithm tends to produce overfit solutions as a result of loss of
diversity.

¢ Compared to OSGP-S-Fixed, OSGP-5M is able to produce better solutions for the
Friedman-2 problem when the minimum schema length for OSGP-S-Fixed is set to
10 nodes. At the same time, OSGP-5M produced significantly worse qualities on the
Poly-10 and Pagie-1 problems, with poor generalization capabilities as a result of
overfitting.

6.3.4 Overview of the Results

A non-exhaustive experiment on the diversification strategy parameter space was per-
formed using different values for the minimum schema length, minimum phenotypic
similarity, replacement ratio, replacement rule and schema matching parameters.

The results have shown that the schema-based diversification strategy introduced in
Section 5.2.5 can effectively promote population evolvability by preventing the degradation
of the search to narrow regions of the genotype space which promote essentially the same
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Selector Poly-10 Pagie-1 ‘ Friedman-2 Tower
Proportional | 0.8826 +0.1530 | 0.9611 £0.0247 | 0.8796 £ 0.0385 | 0.8843 + 0.0091
0.7843 +0.2937 | 0.7284 +0.3026 | 0.8343 +£0.1255 | 0.8824 +0.0100
Gender Specific | 0.9301 +0.1000 | 0.9603 + 0.0245 | 0.8858 +0.0389 | 0.8872 + 0.0083
0.8836 + 0.1547 | 0.7780 +0.2820 | 0.8325+0.1671 | 0.8779 £ 0.0485

Table 6.19: OSGP Average Solution Qualities - 5M Evaluations. The results are expressed
as (4 £ o) values of the training and test qualities in the first and second line,
respectively.

phenotype. The comparison with the OSGP algorithm using the same number of evaluated
solutions has proven the practical benefits of the diversification concept.

The variations in quality for each OSGP-S configuration and each test problem highlight
the fact that each fitness landscape has different characteristics and may be exploited more
efficiently by slightly different algorithms. In this regard, schema diversification provides
a useful means to fine-tune the search and perhaps identify the particularities of each
problem.

The superior qualities obtained by OSGP-S-Adaptive show the benefits of adaptive
mutation rates targeted at locally converged clusters of individuals which are highly similar
in both genotype and phenotype. Allowing the targeted mutation step to bypass the
offspring selection step (by acting on the population itself after the recombination phase
is completed) increases the population’s adaptive potential by ensuring that new genetic
material is present in the population. On the downside, it is likely that the newly-introduced
genetic diversity is also accompanied by lower-than-average quality, reducing the mutants’
chances of getting picked by selection.

Opverall, we have shown a new idea for promoting population evolvability, implemented
as a prototype algorithm which performed better on all test problems. Further improve-
ments to the methodology are likely possible either during the schema generation step
(detecting locally converged clusters) or at the genotype level where different ways of
introducing genetic diversity while maintaining fitness could be investigated.
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7.1 Overview

The main topic of this work is the analysis of genetic programming evolutionary dynam-
ics from a systems perspective, with a focus on genotype-phenotype relations and their
influence on the fundamental properties of complex evolving systems: robustness and
evolvability. We investigate these properties by looking at the inheritance patterns in the
population, shaped by the interplay between the selection and recombination operators.

With these goals in mind, this thesis represents both a work of synthesis and an original
contribution. The synthesis part consisting of the first four chapters aims to provide the
necessary context for our endeavour:

o It provides a theoretical background for optimization problems and the ways they
may be solved using algorithms, heuristics or metaheuristics. We begin the discussion
with the introduction of basic concepts pertaining to algorithms and computational
complexity theory, and explain why it is useful in many cases to look for approximate
solutions (instead of exact ones).

o Itexplains the idea of metaheuristics as practical solving methods inspired by metaphor
and fueled by randomness. We provide an overview of randomized algorithms and
probabilistic methods, and a taxonomy of metaheuristics where we describe each
main category.

o It discusses at length the implications of no-free-lunch (NFL) theorems on the search
properties of metaheuristics in general and evolutionary search in particular. We
conclude that the NFL theorem does not apply to many real-world problems where
the objective function is not closed under permutation. Concerning genetic algo-
rithms, the sharpened NFL theorem shows that global convergence is possible when
elitism is employed, and that the average number of fitness evaluations (ie., the effort
needed to arrive at the solution) is not greatly affected by neutrality.

o It introduces the reader to the basic vocabulary of evolution, consisting of notions
and ideas (defined in the glossary) from the field of biology. We believe that an under-
standing of the biological principles of evolution represents an essential requirement
for every computer scientist dealing with evolutionary computation. The biolog-
ical perspective highlights the importance of a systems approach focused on the
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developmental aspect of genetics and the non-linear, complex relationship between
phenotypic and genotypic variation.

It provides a general overview of evolutionary algorithms, and a comprehensive
treatment of genetic algorithms (GA) and genetic programming (GP). We highlight the
major impact of selection and recombination mechanisms on the genetic structure
of the population and implicitly, on the ability to produce adaptive change.

In the context of GP, we outline the principles of good representations (reflected
on the choice of primitive set) and we discuss the particularities of tree creation,
selection, crossover and mutation.

We explain harmful phenomena in GP like the loss of population diversity and code
bloat as consequences of the interplay between selection at the phenotype level
and the variation-producing operators acting on genotypes. The main responsible
operators (crossover and mutation) are discussed in detail along with an extensive
literature survey.

We discuss schema theorems for genetic algorithms and genetic programming and
adopt Poli and Langdon’s schema definition for the development of our own method-
ology for schema-based analysis of GP dynamics.

We explain the fundamental properties of complex evolving systems: evolvability
and robustness. In this context, fitness landscapes and genotype-phenotype (G—P)
maps represent powerful conceptual tools. Patterns of phenotypic development —
determined by the intrinsic properties of the G—P map - are subtly influenced by
epistatic effects and complex interactions within gene networks.

Since gene expression itself is under epigenetic control, robustness and evolvability
represent emergent properties. Emergence results from the causal loop between the
mechanism for phenotypic selection (top-down causation) and those for genotypic
variation (bottom-up causation). Robustness implies redundancy (neutral networks)
in genotype space, evolvability depends on the ability to walk across these networks
towards points with higher adaptive potential.

We argue that current attempts to improve GP performance are in fact attempts to
improve the system’s potential to evolve. It is therefore essential to understand the
developmental aspect of adaptation and the underlying mechanisms for adaptive
change. For example, genetic robustness can evolve by two main mechanisms: bufter-
ing and modularity — both conferring phenotypes a selective advantage. Buffering,
through the accumulation of hidden (cryptical) genetic variation leads to a size in-
crease in the genotype and the occurrence of bloat, but at the same time protects
phenotypes against deleterious genotype changes and acts as an evolutionary ca-
pacitance. Modularity is another way of maintaining phenotypic function against
perturbation, as genotypes organised in a network of autonomous modules are less
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likely to change their phenotypic expression when perturbed. Despite decreasing
phenotypic variability, robustness is a prerequisite for evolvability.

Applying the developmental paradigm to GP makes us realize the importance of
optimizing the design of artificial genetic operators with both robustness and evolv-
ability in mind. At the same time, the study of existing operators should take into
account the aspects that have an impact on evolvability, such as the frequency of
deleterious changes due to crossover and mutation, the rate of diversity loss, the
occurrence of bloat and the emergence of modularity (ie., building blocks) in the
population.

7.2 Main Contribution

Our main contribution described in the second part of this thesis (starting with Chapter 5)
consists of a methodology for the analysis of population genealogies and inheritance
patterns within GP. For a more complete picture, a set of metrics for the analysis of
population diversity at the genotypic and phenotypic level were developed to go along
with the genealogy analysis. The main points are described below.

Population Genealogy Graphs

o We represent genealogies as directed graphs in which vertices represent individuals
and arcs represent hereditary relationships.

¢ The information regarding the inheritance of genotype fragments from parent to
child is embedded directly into the genealogy graph, through instrumentation of
the crossover and mutation genotypic operators. This includes the positions of the
replaced subtree in the root parent and the replacement subtree in the non-root
parent, expressed as node indices in the prefix node ordering.

¢ Lineage continuity is preserved by also including in the genealogy graph the inter-
mediate offspring created when crossover and mutation are applied in succession.
This allows access to an individual’s full set of ancestors or descendants, as well as
its root lineage showing how the initial structure from generation zero was altered
by genetic operations in the course of evolution.

¢ We introduce new measurements for the analysis of evolutionary dynamics, based on
the parent-child hereditary relationships in the genealogy graph: average fragment
length, genetic operator improvement or selection ratio.
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Analysis of Population Dynamics

o We empirically show that GP systems suffer from low robustness as the majority of
genotypic changes have deleterious effects on fitness. This leads to loss of diversity
due to selection discarding the affected genotypes, reducing each generation the
available pool of genetic material and the potential to produce new adaptive variation.

Attempts to increase robustness by allowing for additional genetic buffering (for
example, by increasing the maximum tree length limit) would have the counter effect
of reducing the quality of solutions in terms of interpretability and generalization
ability, as bloat encourages overfit solutions.

In the case of offspring selection, the measurements of crossover and mutation
improvement change their interpretation to indicate how easy it is for the GP system
as a whole to produce adaptive change. We show that in this scenario the average
improvement is minimal, suggesting that OSGP’s advantage over the standard version
of the algorithm results simply from avoiding the effort of dealing with deleterious
changes, and not from significant improvements in terms of evolvability.

o We empirically investigate the rate of diversity loss for different selection schemes
using the selection ratio measure (the percentage of individuals that get selected
for reproduction). We show that selection ratio varies with problem instance for
proportional selection and remains the same for tournament selection.

o We use the crossover bias theory to explain the evolution of average tree size and
average crossover size as a result of the interaction between selection and crossover.

We explain the counter-intuitive relationship between average tree size and average
crossover fragment size observed in the SGP experiments. We show that high
selection pressure skews the distribution of tree sizes towards the size limit, which
in turn imposes a bias on the crossover operator towards smaller subtrees (so that
the resulting children do not exceed the maximum tree size). This bias, reflected
on the choice of the second crossover point (from the non-root parent) implies a
deeper relationship between crossover and selection with potentially interesting
ramifications.

¢ We introduce new genotype and phenotype distance measures for the analysis of
population diversity. Genotype similarity is calculated using the bottom-up tree dis-
tance, with a runtime complexity linear in the size of the trees. Phenotypic similarity
is calculated using the Pearson R? correlation coefficient. Both measures express the
degree of similarity between two individuals in the interval [0, 1], where 1 means
completely similar and 0 means completely dissimilar. By this convention, similarity
and diversity become complementary notions conveying the same information about
the population.
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o We show empirically that both methods represent viable instruments for the analysis
of GP diversity. As expected, higher selection pressure leads to higher similarity
(both genotypic and phenotypic) between solutions. Average similarity increases in
the beginning of the run and stabilizes to a value depending on the actual selection
pressure applied to the population.

An interesting aspect is revealed by the similarity measurements on the SGP algo-
rithm, where proportional selection leads to lower genotypic similarity and higher
phenotypic similarity, while the opposite is true for tournament selection. This sug-
gests that structural similarity does not imply similar semantics. In terms of G—P
map properties, this means that the genotype space is marked by transformational
boundaries where small changes determine transitions from one phenotypic state to
another.

This observation does not hold for the OSGP algorithm, where the strict offspring
selection drives the population not only to higher levels of genotypic similarity
(compared to SGP), but also to highly similar semantics. Phenotypic similarity
increased to be asymptotically close to 1 on all tested problems and algorithmic
configurations.

Tracing of Evolutionary Trajectories

¢ We introduce a new methodology and algorithm for tracing genotypic changes in
the population using the inheritance information embedded in the genealogy graph.

¢ The algorithm traverses an individual’s genealogy searching for genotypic changes
with respect to a specified subtree to be traced. The result is a subset of the genealogy
graph in which only the relevant operations (that contributed to the structure of the
traced subtree) are recorded. This new graph called a trace graph, represents both
the sequence of relevant genotypic operations and the ancestors individuals which
those operations were applied on.

o We define the contribution ratio measure as the ratio between the size of an individ-
ual’s trace graph (when tracing the root subtree of the tree individual) and the size of
its ancestry. This measure has the interpretation of effort expended by the algorithm
to produce solutions. A high contribution ratio implies frequent adaptive changes
across an individual’s ancestry, corresponding to incremental improvement. Since
the changes are adaptive (they improve fitness), they are maintained by selection and
present in the trace graph.

On the other hand, a low contribution ratio corresponds to neutral or deleterious
changes which are not fixated by selection and may get rejected or simply drift away.

The analogy with effort is the following: when changes are easy to come by, we say
that they are obtained by the evolutionary process with little effort. This corresponds
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to a high contribution ratio as described above. But when it becomes difficult to
produce adaptive changes — as the results show in SGP that the vast majority of geno-
typic changes are deleterious, we consider that they are obtained with considerably
more effort. This is reflected by small values of the contribution ratio as shown by
the experimental results.

The negative influence of selection pressure on the contribution ratio can be ex-
plained by the fact that higher selection pressure leads to fewer unique ancestors
and smaller trace graphs where fit ancestors contribute multiple genetic fragments.

¢ We demonstrate how the tracing methodology can be used to identify the most
sampled subtrees when applied on the whole population. In this case, the algorithm
uses a caching mechanism to generate a complete trace graph of all the individuals
and increment a weight value associated with every subtree. The weight difference
between parent and child tree nodes represents the effective sample count for the
given subtree.

The methodology is empirically validated by a) the correlation between the average
subtree weight and average parent distribution curves and b) the high degree of
correspondence between the most sampled subtrees (as identified by the algorithm)
and the actual formula terms of the problem test function.

This allows us to identify the genetic building blocks used by the algorithm to solve
different artificial or real-world regression problems. The main benefit of this method
is that it is general enough to work on any regression problem, extracting information
from GP’s implicit ability of finding patterns in data.

Identification of Common Schemas

¢ Schema theorems represent important theoretical instruments for the analysis of
GP dynamics. In this work we adopt Poli and Langdon’s schema definition and
use genealogy information to generate concrete schema instances as described in
Section 5.2.4.

¢ The practical investigation of GP schemas faces the computational challenge of using
tree pattern matching algorithms to compute schema frequencies. We overcome this
challenge by employing an algorithm by ( , ) from the area of query
processing and database programming (adapted and implemented in HeuristicLab)
to match a population of trees against generated schemas.

o Our empirical investigation shows that the most frequent schemas generated by our
approach are of above-average fitness and can be said to constitute in many cases
the underlying genotypic pattern of the population (matching a high proportion
of individuals). In this respect, schema-based analysis provides a more accurate
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description of genotypic diversity in the population, compared to the bottom-up
distance similarity metric.

¢ The results also confirm our intuition that individuals belonging to the same schema
are of high (above-average) genotype and phenotype similarity. Therefore, the infor-
mation about schema frequency and diversity provides a good indication of local
convergence.

Using Schemas to Improve the Search

o We propose a new strategy for tuning the “exploration versus exploitation” aspect
of the search by introducing localized mutation within locally converged clusters
of individuals, guided by the information provided by the schema analysis methods
described above.

A cluster of individuals is considered locally converged if it belongs to the same
schema and shares a minimum degree of phenotypic similarity. The exploration as-
pect is improved by applying differential mutation rates within such clusters depend-
ing on cluster size. Intuitively, this helps the search by redistributing the clustered
points more evenly across the search space.

We call this approach a “schema-based diversification strategy”, and we argue that it
provides all the necessary requirements for improving population evolvability:

1) Itis hereditary, as it uses the genealogy graph for schema generation

2) It is structural, as it considers individuals belonging to common schemas
3) It is semantic, as it considers phenotypically-similar individuals

4) It is adaptive, as differential mutation rates can be applied within clusters

o We extended the OSGP algorithm to use the schema-based diversification approach
and called the new variant OSGP-S (OSGP with Schemas). The diversification step is
completely tunable through a series of parameters which control every aspect of its
behavior such as the minimum schema length and frequency, minimum phenotypic
similarity or the rules for applying differential mutation.

As mutation tends to damage individual quality, OSGP-S was used in combination
with the gender-specific selection mechanism in order to give mutated individuals
a fair chance to compete with the rest of the population. This represents a weak
point of the algorithm which will be addressed in future research. We expect that
improvements are possible to the initial proof of concept version of the algorithm
either in the strategy itself or through better yet undiscovered parameterizations.
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¢ We compared the performance of the new method against the OSGP algorithm
on the four test problems: Poly-10, Pagie-1, Friedman-2 and Tower. The results
show that OSGP-S outperforms OSGP on all test problems, producing solutions
with better training quality, less overfitting and better generalization ability. The
algorithm performs particularly well on problems where adaptation is more likely
to be achieved through genotypic innovation rather than parameter tuning.

7.3 Future Research Ideas

This work demonstrates a set of novel techniques for the analysis — and improvement —
of genetic programming. These techniques are inspired by theoretically-sound principles,
such as preserving an optimal balance between exploration and exploitation and improving
population evolvability.

The proposed schema analysis methodology represents a particularly promising ap-
proach for further theoretical and practical advancements in the field. On the one hand, it
allows a more in-depth investigation of existing schema theory, and on the other hand, it
provides a sound mechanism for the adaptive tuning of selection pressure and mutation
rates.

Future enhancements of the OSGP-S algorithm should be achievable by improving the
survivability rate of mutated individuals (for example, allowing them to evolve in separate
demes), or by producing more accurate schemas from the available genealogical information.
The tracing methodology comes to mind here as a method to generate potentially more
accurate schemas.

Another promising research direction is in the area of robustness and genetic operator
effectiveness. It has been shown that GP genotypes are generally not robust enough, leading
to increased rates of diversity loss. Additionally, the search properties of the algorithm
(eg., size of genetic fragments) are more subtly influenced by the imposed size limits than
previously thought, through the interaction of crossover and selection. This represents a
good basis for further research into more effective and more robust genetic operators.

Finally, the methodology developed in this thesis can be used to extend the analysis to
other flavors of GP such as ALPS-GP ( ) ).
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7 Final Remarks

Appendix

Generation | Schema
1| (-(-(--7.4917.04) 0.12_X7) (- 0.52_X4 (* 1479 #)))
10 | (*0.29_X1 (/0.54_X2 (+ (- # #) 9.58)))
20 | (+(-13.93(*17.23 (*2.61_X2 1.93_X1))) #)
30 | (+(-13.93(*17.23 (*2.61_X2 1.93_X1))) #)
40 | (+ (+(*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
50 | (+#(+(*# 1.93_X1) (* 2.61_X2 1.93_X1)))
60 | (+# (+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)))
70 | (+# (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)))
80 | (+#(+(+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #))
90 | (+(+(*2.61_X21.93_X1)#)(+##))
100 | (+(+(*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)) #)
110 | (+(+##)(+ (*2.50_X5 1.91_X6) #))
120 | (+(+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)) #)
130 | (+(+#(*2.61_X2 1.93_X1)) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)))
140 | (+#(+# (+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1))))
150 | (+# (+ (¥ 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
160 | (+#(+ (+# (*2.61_X2 1.93_X1)) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) ) )
170 | (+(+ (+#(*2.49_X41.99_X3) ) #) #)
180 | (+#(+(*2.50_X51.91_X6) (+##)))
190 | (+(+(+(*2.61_X21.93_X1) #) #) (* 2.61_X2 1.93_X1))
200 | (+(+#(¥2.50_X5 1.91_X6) ) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)))
210 | (+(+(*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
220 | (+#(+ (¥ 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)) )
230 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
240 | (+(+(*2.61_X21.93_X1) (* 2.61_X2 1.93_X1) ) #)
250 [ (+(+ (+ (*2.61_X21.93_X1)#) #) #)
260 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
270 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) (+ (* 2.61_X2 1.93_X1) #) )
280 | (+#(+(¥2.50_X5 1.91_X6) (* 2.61_X2 1.93_X1)))
200 | (+(+(+(¥2.61_X21.93_X1)#)#)#)
300 | (+# (+ (+ (¥ 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) (* 2.49_X4 1.99_X3)))
310 | (+ (+ (¥ 2.49_X4 1.99_X3) (+ (* 2.50_X5 1.91_X6) #) ) #)
320 | (+(+(+(*2.49_X41.99_X3) # ) #) #)
330 | (+ (+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) (+ (* 2.50_X5 1.91_X6) #))
340 | (+#(+# (+ (*2.61_X2 1.93_X1) (* 2.50_X5 1.91_X6))))
350 | (+# (+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
360 | (+(+##)(+(*2.49_X41.99_X3) #))
370 | (+(+#(+##))(*2.50_X51.91_X6))
380 | (+(*2.50_X5 1.91_X6) (+ # (* 2.50_X5 1.91_X6)) )
390 | (+# (+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)) )
400 | (+#(+#(+(*2.50_X51.91_X6)(+##))))
410 | (+(+(*2.50_X5 1.91_X6) (+ (* 2.61_X2 1.93_X1) #)) (+ (* 2.50_X5 1.91_X6) #) )
420 | (+(+ (+#(*2.50_X51.91_X6) ) #) #)
430 | (+(+(*2.49_X4 1.99_X3) (* 2.49_X4 1.99_X3) ) (+ # #))
440 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
450 | (+(+(*2.61_X21.93_X1) (* 2.61_X2 1.93_X1) ) #)
460 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
470 | (+(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
480 | (+#(+(+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #) )
490 | (+(+(+ (*2.50_X51.91_X6) #) (* 2.61_X2 1.93_X1)) (+ # (* 2.61_X2 1.93_X1)) )
500 | (+# (+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)) )

Table 7.1: SGP Poly-10 Proportional Most Frequent Schemas

156




7 Final Remarks

Generation | Schema
1| ((-(--7.4917.04) 0.12_X7) (- 0.52_X4 (* 1479 #)))
10 | (*0.29_X1(/0.54_X2 (+ (- # #) 9.58)))
20 | (+(-13.93(*17.23 (* 2.61_X2 1.93_X1)) ) #)
30 | (+(-13.93(*17.23 (* 2.61_X2 1.93_X1)) ) #)
40 | (+((*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)) #)
50 | (+# @ (*# 1.93_X1) (*2.61_X2 1.93_X1)))
60 | (+#(+ (*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
70 | (+#(+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
80 | (+# (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) # )
90 | (+(+(*2.61_X21.93_ X1)#)(+##))
100 | (+(+(*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)) #)
110 | (+(+##)(+ (*2.50_X5 1.91_X6) #))
120 | (+ (+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
130 | (+(+#(*2.61_X2 1.93_X1)) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)))
140 | (+#(+# (+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1))))
150 | (+# (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)))
160 | (+# (+ (+# (* 2.61_X2 1.93_X1)) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1))))
170 | (+(+ (+#(*2.49_X41.99_X3)) #) #)
180 | (+# (+(*2.50_X5 1.91_X6) (+# #)))
190 | (+(+(+(*2.61_X21.93_X1)#)#)(*2.61_X2 1.93_X1))
200 | (+(+# (* 2.50_X5 1.91_X6) ) (+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)))
210 | (+(+ (* 2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
220 | (+# (+(*2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6)))
230 | (+(+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
240 | (+(+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
250 | (+(+(+(*2.61_X21.93_X1)#)#)#)
260 | (+(+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
270 | (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) (+ (* 2.61_X2 1.93_X1) #) )
280 | (+# (+(*2.50_X5 1.91_X6) (* 2.61_X2 1.93_X1)))
290 | (+(+ (+ (*2.61_X21.93_X1)#)#)#)
300 | (+# (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) (* 2.49_X4 1.99_X3)))
310 | (+(+ (% 2.49_X4 1.99_X3) (+ (* 2.50_X5 1.91_X6) # ) ) # )
320 | (+(+(+(*2.49_X41.99_X3) # ) #) #)
330 | (+(+(*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1)) (+ (* 2.50_X5 1.91_X6) #))
340 | (+#(+# (+(*2.61_X2 1.93_X1) (* 2.50_X5 1.91_X6))) )
350 | (+# (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
360 | (+(+##)(+(*2.49_X4 1.99_X3) #) )
370 | (+(+#(+##))(*2.50_X51.91_X6))
380 | (+(*2.50_X5 1.91_X6) (+ # (* 2.50_X5 1.91_X6)) )
390 | (+# (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )
400 | (+#(+#(+(*2.50_X51.91_X6) (+ ##))))
410 | (+(+ (* 2.50_X5 1.91_X6) (+ (* 2.61_X2 1.93_X1) #)) (+ (* 2.50_X5 1.91_X6) #) )
420 | (+(+(+#(*2.50_X5 1.91_X6) ) #) #)
430 | (+(+ (* 2.49_X4 1.99_X3) (* 2.49_X4 1.99_X3)) (+ # #) )
440 | (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
450 | (+(+ (*2.61_X2 1.93_X1) (* 2.61_X2 1.93_X1) ) #)
460 | (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
470 | (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #)
480 | (+# (+ (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) #) )
490 | (+(+(+(*2.50_X51.91_X6) #) (* 2.61_X2 1.93_X1)) (+ # (* 2.61_X2 1.93_X1)))
500 | (+# (+ (* 2.50_X5 1.91_X6) (* 2.50_X5 1.91_X6) ) )

Table 7.2: SGP Poly-10 Tournament Most Frequent Schemas
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7 Final Remarks

Generation | Schema
1| (068 Y(/(/(/##)#)#))
10 | (+(/11.97 (*-0.06_X #)) (+ # #))
20 | (+(--15.84(/12.10 (* 1.81_Y 0.23_Y)) ) #)
30 | (+(--15.84(/12.10 (* 1.81_Y 0.23_Y)) ) #)
40 | (+(/11.97 (* -0.06_X (/ (+ 4.66 (* (* 1.41_X (* 0.71_Y 1.73_Y)) 1.48_X) ) (- (* 0.25_X #) 0.72_X) ) ) ) # )
50 | (+#(/11.97 (+ 466 (* (* 1.41_X (* 1.81_Y 0.23_Y)) 1.48_X))))
60 | (+#(/11.97 (+4.66 (*# 1.48_X))))
70 | (+#(/11.97 (+ 466 (* (* 1.41_X # ) 1.48_X))))
80 | (+#(/11.97 (+4.66 (* # 1.48_X))))
90 | (+#(/11.97 (+4.66 (*# 1.48_X))))
100 | (+#(/ 11.97 (+ 4.66 (* # 1.48_X))))
110 | (+(/11.97 (+4.66#))(/ 11.97 (+ 466 (*##))))
120 | (+#(/ 11.97 (+ 4.66 (* # 1.48_X))))
130 | (+#(/ 11.97 (+ 4.66 (* # 1.48_X))))
140 | (+#(/ 10.44 (+ 4.68 (* # 1.48_X))))
150 | (+#(/ 10.44 (+ 4.68 (* (* # (* 1.87_Y 0.21_Y)) 1.48_X))))
160 | (+# (/ 12.04 (+ 4.62 (* (* 1.41_Y (* 1.84_X 0.23_Y)) 1.39_X))))
170 | (+#(/ 12.04 (+ 462 (* # 1.39_X))))
180 | (+#(/ 12.04 (+ 462 (* # 1.39_X))))
190 | (+#(/ 11.35(+5.06 (* # 1.42_Y))))
200 | (+#(/ 11.04 (+ 4.30 (* (* 1.39_Y (* 2.01_Y 0.23_X) ) 1.47_X))) )
210 | +(/ (/001 X#)#)(/11.04(+4.30%)))
220 | (-(/##)(/895(+3.82 (* (* 1.54_X (* 2.04_Y 0.23_X) ) 1.47_Y))))
230 | (+(/0.00_Y #)(/ 10.63 (+ 431 #)))
240 | (-# (/1054 (+ # (*# 1.54_Y))))
250 | (+(/0.00_Y #)(/10.63 (+4.31#)))
260 | (+(/0.01_X#)(/9.27 (+431(*# 1.54_Y))))
270 | (+#(/ 927 (+5.35( # 1.57_X))))
280 | (+(/001_X(-##))(/9.27#))
290 | (+#(/9.27 (+5.35(* (*2.05_Y #) 1.57_X))))
300 | (+#(/11.35(+4.62 (* (* 1.43_Y (* 1.91_X 0.23_Y) ) 1.39_X) ) ))
310 | (+#(/11.35(+4.62 (* (* 1.43_Y #) 1.39_X))))
320 | (+#(/11.35(+4.62 (* (* 1.43_Y (* 1.91_X 0.23_Y) ) 1.39_X) ) ))
330 | (+#(/9.27 (+5.22 (* (F 1.52_Y (* 1.76_X 0.24_X) ) 1.64_Y) ) ))
340 | (+#(/9.27 (+5.35(* (* 1.48_Y #) 1.63_Y))))
350 | (+#(/9.27 (+6.71 (* (* 1.52_Y (* 1.76_X 0.24_X) ) 1.64_Y) ) ))
360 | (+#(/11.30 (+4.73 (* (* 1.39_Y (* 1.30_X 0.25_Y) ) 1.98_X))))
370 | (+(/0.00_Y #)(/ 1032 (+ 677 #)))
380 | (+#(/9.27 (+5.92(* # 1.50_X))))
390 | (+(/0.00_Y#)(/10.73 (+3.79#)))
400 | (+(/10.01#)(/10.01 (+4.92 (* (* 1.56_Y #) 1.52_X))))
410 | (+(/0.00_X #)(/ 10.01 (+4.92#)))
420 | (+#(/9.76 (+3.96 (* # 1.46_X))))
430 | (+#(/10.08 (+4.39 (* (* 1.43_X #) 1.48_Y) ) ))
440 | (+#(/10.08 (+4.39 (* (* 1.43_X (* 1.75_X 0.21_Y) ) 1.48_Y))) )
450 | (+(/0.00_Y #)(/-1436 (+4.72#)))
460 | (+(/0.00_Y #)(/-14.36 (+ 472 (* (* 1.38_Y #) 1.95_X))))
470 | +(/001_Y#)(/10.10(+3.13#)))
480 | (+#(/10.02(+4.54 (*# 1.48_Y))))
490 | (+(/0.01_X#)(/10.02(+6.60#)))
500 | (+(/0.01_Y(+##))(/10.10#))

Table 7.3: SGP Pagie-1 Proportional Most Frequent Schemas
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7 Final Remarks

Generation Schema
1| (+1.00_X(+(--578 (+(*##)-12.74)) #))
10 | (+ 1.OO_X (+ # (* -0.23_Y (- (* (* (* 2.55_Y 0.62_X) 3.92_X) 16.32) #)) ) )
20 | (+(-#(/(-7.52-18.25) (* 0.79_Y 1.66_Y)) ) (* (/ -5.08 -20.36) (/ -5.08 -20.36) ) )
30 [ (+(-#(/#(*0.79_Y 1.66_Y))) #)
40 | (+(-#(/(*-18.62-3.67) (*0.79_Y 1.66_Y))) #)
50 | (+(-#(/#(*0.79_Y 1.66_Y))) (*# #))
60 | (+(-#(/#(*0.79_Y 1.66_Y))) #)
70 | (+(-(/-10.66 (* -0.38_X -0.58_X) ) #) #)
80 | (+#(+#(*#(*243.X0.61_X))))
90 | (+(-#(/(*-18.62-3.67) (*0.78_Y 1.66_Y))) #)
100 | (+#(* (* 0.79_Y 1.66_Y) (* 2.43_X 0.64_X) ) )
110 | (+#(*(*0.85_Y #) (*2.43_X 0.61_X)))
120 | (+(-##)(*(*0.79_Y 1.66_Y) #))
130 | (+(-#(/(*-18.62-3.67) (*0.79_Y 1.66_Y))) #)
140 | (+# (¥ (- #-2.29) (* 2.43_X 0.62_X)))
150 | (+(-#(/##))(x##))
160 | (+# (* (- #-2.29) (* 2.43_X 0.62_X)))
170 | (+(-(-##)(/##)) (*#(*243.X0.62.X)))
180 | (+(-#(/(*-18.62-3.67) (*0.79_Y 1.66_Y))) #)
190 | (+#(* (*2.43.X0.62_X) (* 2.43_X 0.62_X) ) )
200 | (+#(*(-(*0.78_Y 1.61_Y) -2.29) #))
210 | G (-#(/ #(*0.79_Y 1.66_Y) ) ) #)
220 | (+(-#(/ (*-19.21 -3.67) (* 0.79_Y 1.66_Y)) ) #)
230 | (+(-##)(*#(*243.X0.62_X)))
240 | (+(-#(/(*-18.62-3.67) (* 0.79_Y 1.66_Y)) ) #)
250 | (+(-(-(+(/-11.06#)#)#)(/##))#)
260 | (+(-#(/(*-18.62-3.69) (* 0.79_Y 1.66_Y)) ) #)
270 | (+#(*(-#-11.06) (* 2.43_X 0.62_X)))
280 | (+(-#(/#(*0.79_Y 1.66_Y)) ) #)
290 | (+(-(-(+un)s)s)#)
300 | (+ (- (+#-0.59_Y) (/ (* -18.62 -2.88) (- (* # -0.58_X) -0.06) ) ) #)
310 | (+#(-(-(*-0.36_X -0.53_X) #) #))
320 | (+#(-(#(/#(-(*-0.36_Y -0.59_Y) -0.06)) ) #))
330 | (+(-##)(-#(*#-058_X)))
340 | (+(-#(/(*-18.62 -2.88) (- (* -0.58_X -0.58_X) -0.06) ) ) #)
350 | (+(-#(/(*-18.62-2.88)#)) #)
360 | (+(-(/-0.58_X#)(/ (*-18.62 -2.88) (- (* (* (* -0.36_X -0.58_X) -0.58_X) -0.58_X) -0.06) ) ) # )
370 | (+(-#(/(*-18.62-2.88)#)) #)
380 | (+(-#(/(*-18.62-2.88) (- (* (* (* -0.36_X -0.53_X) -0.58_X) -0.58_X) -0.06) ) ) #)
390 | (+#(-(-(*-036_X#)#)#))
400 | (+(-(*-18.62-2.88)(/ (*-18.62-2.88) #)) #)
410 | (+(- (- (*-0.36_Y -0.36_Y) -0.06) (/ (* -18.62 -2.88) (- (* (* (* -0.36_X -0.53_X) -0.58_X) -0.58_X) -0.06) ) ) #)
420 | (+(-#(/(*-18.62-2.88) (- # -0.06))) #)
430 | (+(-(*-0.58_X-0.53_X)(/ ##)) #)
440 [ (+(-#(/ (*-18.62-2.88) (- #-0.06))) #)
450 | (+(-#(/ (*-18.62 -2.88) (- (* (* (* -0.36_X -0.53_X) -0.58_X) -0.58_X) -0.06) ) ) #)
460 | (+(- (*-0.35_Y -0.35_Y) (/ (* -18.62 -2.88) (- # -0.06) ) ) #)
470 | (+(- (*-0.35_Y -0.35_Y) (/ (* -18.62 -2.88) (- (* # -0.58_X) -0.06) ) ) #)
480 | (+(-(*-18.62-2.88) (/ # (- (* # -0.58_X) -0.06) ) ) #)
490 | (+(-#(/(*-18.62-2.88) (- (* (* (* -0.36_X -0.53_X) -0.58_X) -0.58_X) -0.06) ) ) # )
500 | (+(-#(/(*-18.62-2.88) (- #-0.06))) #)

Table 7.4: SGP Pagie-1 Tournament Most Frequent Schemas
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7 Final Remarks

Generation | Schema
1| U #+#1.12.X4) (-17.61 17.55)) #)
10 | ((*#-7.32) (- (+ 1.92_X10#) 3.17))
20 | (-(-#(/-14.87-19.35)) (- # (* 0.90_X8 1.48_X4)))
30 | (-15.71 (+ # (+ (* (+-16.13 0.61_X7) 2.14_X4) -0.04_X2) ) )
40 | (*(-(/(-0.47_X1(*1.18 #)) 11.40) #) 0.20_X4)
50 | (% (*(+ 1.75_X1 (+ 1.42_X5 -0.29_X4) ) 1.56_X4) # )
60 | (-(*18.35(*-19.26 %)) (+ # -4.59))
70 | (+3.76_X4 (- (+ (+ 1.66_X1 17.24) 1.39_X2) #))
80 | " (+ 1.75_X1 139 X2) (+ (+ (4 # (- # 1.71_X4)) #) 2.12_X7))
90 | (- (+ 18.06 2.34_X2) (- # (+ # -7.59)))
100 | (+#(* (+ 1.73_X4 (+ # 0.47_X4) ) 0.83_X4))
110 (+#(* (- (*(+ 1.75_X1 1.65_X5) 18.10) 1.97_X8) 0.83_X4) )
120 | (+# (+ (+ 1.73_.X4 1.39_X2) (+ 1.73_X4 1.39_X2) ) )
130 | (+(+ (+3.76_X4 -0.29_X4) (+ 1.73_X4 1.39_X2) ) #)
140 | (+(+(+#6.42) (+ 1.75_X1 (+ 1.75_X1 1.68_X2) ) ) 1.39_X2)
150 | (+#(+19.66 (- (+ 1.73_X4 1.39_X2) -7.48) ) )
160 | (+1.82_X2 (+ # (+ (+ 0.15_X10 (* 1.72_X4 1.37_X4) ) 2.79_X1) ) )
170 | (+ (+ (+ 1.75_X1 1.39_X2) (+ 1.75_X1 3.76_X4) ) #)
180 | (+(+# (+ (+ 1.39_X2 #) 3.76_X4) ) (* 1.63_X4 1.28_X3))
190 | (+#(+0.15_X10 (+ (* 1.75_X1 1.39_X2) #)))
200 | (+ (+ 1.75_X2 3.73_X4) (+ 0.30_X2 (+ 19.13 #) ) )
210 | (+(+(+0.69_X1 (+3.76_X4 1.39_X2) ) (+ # -3.00) ) (+ 1.75_X1 (+ # 1.39_X9) ) )
220 | (+(+# (+ 1.72_X5 (+ 1.69_X4 (+ 1.65_X5 (+ 1.75_X1 3.76_X4)) ) ) ) #)
230 | (+(+#(/1.75_X1-11.08)) (+ 1.75_X1 11.97))
240 | (+(+1.65_X5#) (+ (+ 1.73_X4 1.39_X2) #))
250 | (+(+1.65_X52.20_X5) (+ # (+ (+ # 17.24) -8.91) ) )
260 | (+1.65_X5 (+ (+ 1.70_X1 (+ -17.07 (+ 0.04 1.39_X2) ) ) #) )
270 | (+(+#(+3.76_X4 (+ 1.73_.X4 1.39_X2)) ) #)
280 | (+# (+ -0.08_X8 (+ (+ # 1.39_X2) 17.17)))
290 | (+ 17.58 (+ # (+ (+ (+ 3.76_X4 1.39_X2) 1.75_X1) 1.39_X2)))
300 | (+(+ 1.68_X5 2.29_X7) (+ (+ -1.14 2.76_X4) #))
310 | (+#(+(+# 1.75_X1) (+ 3.76_X4 1.39_X2)))
320 | (+3.82_X5(+ 1.73_ X4 (+ (+ (+ (+1.97_X4 #)#)17.24) #)))
330 | (+(+ (+ (+ 2.32_X5 2.60_X2) (+ 1.75_X1 (+ 1.41_X2 3.07_X4) ) ) 0.34_X5) #)
340 | (+3.61_X4 (+# (+(+0.5212.36) 1.91_X2)))
350 | (+(+(+ 1.40_X2 (+ # 5.26) ) (+ (+ 3.72_X4 0.54_X8) (+ # 2.04_X5) ) ) 1.39_X2)
360 | (+-6.92 (+ (+-4.63 1.55_X5) (+ # (+ 1.77_X1 1.82_X2)) ) )
370 | (+#(+(+# (+ 1.27_X2 2.04_X5)) (+ (+ -6.75 1.64_X5) 2.04_X2)))
380 | (+ 1.39_X2 (+ (+ # (+ (+ 1.81_X4 1.85_X1) 3.23_X6)) #))
390 | (+(+ 1.74_X5 (+ (+ 3.67_X1 1.39_X2) -0.77_X3) ) # )
200 | (+#(+1.79.X4 (+#(+ 1.76_X5 0.93_X10))))
410 | (+(+(+2.76_X4#) (+ (+ 1.73_X4 0.76_X1) 1.87_X1) ) #)
420 | (+ (+ (+ # 2.43_X4) -8.20) (+ # 0.95_X7))
430 | (+ (+ 1.59_X3 (+ (+ 1.65_X5 (+ 0.89_X6 #)) 2.81_X1)) #)
440 | (+# (+ (+#-7.66) (+ -0.63_X2 2.00_X2) ) )
450 | (+(+2.03_X2 (+ (+ (+ 1.75_X1 1.73_X4) #) 1.75_X1) ) #)
460 | (+(+(+ 1.75_X1 (+ 2.76_X4 1.33_X1) ) 0.95_X9) # )
470 | (+(+(+ 1.75_X4 -18.99) (+ 3.76_X4 1.75_X4) ) #)
480 | (+ (+(+ 1.86_X2 (/-19.29 0.68)) 1.21_X2) # )
490 | (+(+-1635(+ 141 X2 (+ 1.73_X4#))) #)
500 | (+(+ 0.46_X10#) (+ (+ # (+ 2.87_X4 3.50_X4) ) 1.68_X5))

Table 7.5: SGP Friedman-2 Proportional Most Frequent Schemas
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7 Final Remarks

Generation | Schema
1| (-1427 (¢ (* (* (+ 0.60_X6 #) (/ # (* (+ 1.75 (+ 2.34_X9 10.20) ) (- 14.22 1.54_X1)))) 2.10) (+ (- # 2.09) -10.59)
)
10 | ((*1202(-(*1.13_X4#)#))#)
20 | (+(-(+8.78 (* (+ 1.95_X5 2.85) 1.90_X1) ) 2.38_X6) #)
30 | (+(/#-18.67) (+ (* (- 6.99 (* 16.87 (+ (- # 0.68_X2) 1.89_X2))) (+ 1.95_X52.85)) #))
40 | (+#(+(*(-6.99 (F 16.87 (+ (- (+ 1.25_X1 1.50_X4) 0.68_X2) 1.89_X2))) (+ 1.95_X5 4.00)) #) )
50 | (+#(+#(*2.56_X1(*#1.84_X1))))
60 | (+#(*(+8.78 (* (+ 1.95_X5 2.85) 1.90_X1)) #) )
70 | (+#(*(+8.78 (* (+1.95_X52.85) 1.90_X1) ) #))
80 | (+(*16.87#)(*(+8.78#)#))
90 | (+#(*(+8.78 (* (+ 1.95_X52.85) 1.90_X1) ) (- (* # 0.65_X2) (* (+ 1.78_X2 (+ 2.48_X4 0.53_X5) ) #))))
100 | (+(+ 1.78_X2 #) (* (+ 8.78 (* (+ 1.95_X5 2.85) 1.90_X1) ) #))
110 | (+# (*(+8.78 (+ 1.50_X4 0.53_X5) ) #))
120 | (+#(*(+878¢#) (- (* 400 0.65_X2) #)))
130 | (+ (+2.48_X4 0.53_X5) (* (+ 8.78 (+ # 2.85) ) # ) )
140 | (+#(*(+8.78 (+ (+ 1.95_X52.85) 8.78) ) #) )
150 | (+(+ 1.50_X4 0.53_X5) (* (+ 8.78 (+ #2.85))(-##)))
160 | (+#(*(+8.780.53_X5)(-##)))
170 | (+ (+ (+ (* (+ 1.50_X4 0.53_X5) 1.84_X1) 1.89_X2) #) #)
180 | (+ (+(* 1.89_X2 1.90_X1) (* 1.89_X2 1.90_X1)) #)
190 | (- (* (+ (*2.56_X1 1.81_X2) (+ 1.50_X4 0.53_X5) ) (- # 14.65) ) #)
200 | (+(+(+ 1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
210 | (+(+(+8.780.53_X5)0.53_X5) (-##))
220 | (+(+878#)(-#(-##)))
230 | (+(+#0.53_X5) (- (+ 1.74_X2 #) (- (* (+ (* 2.56_X1 1.81_X2) (+ 1.50_X4 0.53_X5)) #) #)))
240 | (+(+#0.53_X5) (- # (- (* (+ # (+ 1.50_X4 0.53_X5) ) (- (* (* 2.56_X1 1.81_X2) (* 1.89_X2 1.84_X1)) 14.65) ) #)
)
250 | (+#(-(+1.74_X2 #) (- (* (+ (* 2.56_X1 1.81_X2) #) (- (* (* 2.56_X1 1.81_X2) (* 1.89_X2 1.84_X1)) 14.65) ) (*
1.78-X31.97_X3))))
260 | (+(+(+1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
270 | (+#(-# (- (* (+ (* 2.56_X1 1.81_X2) (+ 1.50_X4 0.53_X5) ) (- (* (* 2.56_X1 1.81_X2) (* 1.89_X2 1.84_X1))
14.65)) (* 1.78_X3 1.97_X3))))
280 | (+(+(+1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
290 | (+(+(*2.56_X11.81_X2) (*2.56_X1 1.81_X2)) #)
300 | (+(+1.50_X40.53_X5) (- (* (+ 1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #))
310 | (+(+1.50_X4 0.53_X5) (- (* (+ 1.50_X4 0.53_X5) (+# #) ) #))
320 | (+(+(+ 1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
330 | (+(*(+1.50_X40.53_X5) #) (-# (*# (- (*#(*1.89_X2 1.84_X1)) 14.65))))
340 | (+#(-#(* (+# (+ 1.50_X40.53_X5)) #)))
350 | (+(* (+ 1.50_X4 0.53_X5) #) (- # (* (+ (* 2.56_X1 1.81_X2) (+ 1.50_X4 0.53_X5) ) (- (* (* 2.56_X1 1.81_X2) (*
2.56_X11.81_X2)) 14.65))))
360 | (+# (- (*(+1.50_X4 0.53_X5) (* 2.56_X1 1.81_X2) ) #))
370 | (+(+1.50_X40.53_X5) (- (+0.53_X5#)#))
380 | (+(*1.78_-X31.97_X3) (- (+ # (+ 1.50_X4 0.53_X5) ) #) )
390 | (+# (- # (- (* (+(*2.56_X1 1.81_X2) (+ 1.50_X4 0.53_X5) ) (- (* (* 2.56_X1 1.81_X2) (* 1.89_X2 1.84_X1))
14.65)) (+ (+ 1.50_X4 0.53_X5) #))))
400 | (+(F1.89_X2#) (+# (- (" 1.89_X2 1.84_X1)(-##))))
410 | (+# (- (* (+ 1.50_X4 -0.08_X5) (+ (* 2.56_X1 1.81_X2) (* 2.56_X1 1.81_X2)) ) #))
420 | (+(+(+ 1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
430 | (+(+(+1.50_X40.53_X5) (* 2.56_X11.81_X2)) #)
440 | (+(+1.50_X4 0.53_X5) (+ (+ 1.50_X4 0.53_X5) #) )
450 | (+(+(+ 1.50_X4 0.53_X5) (+ 1.50_X4 0.53_X5) ) #)
460 | (+# (- # (- (* (+ (+ 1.50_X4 0.53_X5) (* 2.56_X1 1.81_X2) ) (- (* (* 2.56_X1 1.81_X2) (* 1.81_X2 1.84_X1))
14.65))#)))
470 | (+(+(*2.56_X11.81_X2) (* 2.56_X1 1.81_X2)) #)
480 | (+(+##) (+ (+ 1.50_X4 0.53_X5) #))
490 | (+(+# (- (*#(* 1.78_X3 1.97_X3)) 1.97_X3)) #)
500 | (+#(-(-#1.97_X3) (* (+ (+ 1.50_X4 0.53_X5) (* 2.56_X1 1.81_X2) ) (- (* (* 2.56_X1 1.81_X2) (* 1.81_X2 #))

14.65))))

Table 7.6: SGP Friedman-2 Proportional Most Frequent Schemas
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7 Final Remarks

Generation [ Schema

l

1

(/0.76_X12 (+ (+ 15.63 (* 2.85_x8 (* (+ (+ -17.81 (/ (- (+ 12.29 0.91_x3) (+ 17.18 -19.38) ) (* -0.80_x13 (+ 18.35
0.89_x11)))) (- # #)) 2.14_x23)) ) (+ -14.33 15.05) ) )

10 | (-(/-0.15_x12 #) (* (/ 1.32_x6 -1.06) -12.15) )
20 | (-(/1.24_x6 #) (- 1.12_x6 (+ 0.25_x21 #)))
30 | (/(- (+ 1.36_x10 (+ 1.68_x13 1.14_x1) ) (+ (* -13.75 20.01) (- # -0.85_x6) ) ) -17.90)
40 | (+19.12(*0.71_x25(/ (F##)#)))
50 | (- (+(+# (+ 1.32_x18 1.61_x12) ) -0.42) #)
60 | (-(/(-(* (- 2.41_x6 1.58_x6) 9.28) (- # 1.49_x15)) 1.14_x1) (- -1.40 # ) )
70 | (*(- 1.90_x18 (- 14.07 (- (- 2.49_x12 1.54_x24) #)) ) #)
80 | (*(*(-0.49_x3 1.14_x1) 0.53_x23) (/ # 1.14_x1))
90 | (*#(*(*2.34_x6 (- 1.41 2.11)) 0.53_x23))
100 | (-(*(+0.57_x5#)(/2.27_x6 1.14_x1)) #)
110 | (((*(-#(#0.53_x23))(/ 2.27_x6 1.14_x1) ) #)
120 | (-#(/# (- (*(*16.29 1.31_x6) 0.08_x6) 0.76_x24) ) )
130 | (*(/ (* (*-5.47 0.49_x6) #) 1.14_x1) #)
140 | (+0.91_x7(/ (- (/ 1.93_x6 # ) (* # 0.53_x23) ) 1.14_x1))
150 | (/ (+ (- # -11.55) (* # 0.53_x23) ) 1.14_x1)
160 | (/ (+ (- (/ (- # 1.93_x6) 1.18_x9) -11.55) # ) 1.14_x1)
170 | (+#(/ (* 15.89 (* 1.80_x23 2.24_x6) ) 1.14_x1))
180 | (+#(/ (* 15.89 (* 1.80_x23 2.24_x6) ) 1.14_x1))
190 | (+#(/ (* 15.89 (* 1.80_x23 2.24_x6) ) 1.14_x1))
200 | (+(/(/227_x6#)#)(/# 1.14_x1))
210 | ((+031_x19#)(/ (/(/ # (/2.27_x6 1.14_x1) ) 1.14_x1) 2.27_x6))
220 | ((/(-227_x6(*##)) 1.14_x1) -13.63)
230 | (/(-#(*#(+1.11_x6 -9.71)) ) 1.14_x1)
240 | (+#(/ (+(* 15.72 2.27_x6) (* 1.80_x23 2.24_x6) ) 1.14_x1))
250 | (*(/(+# (¥ 1.80_x23 2.24_x6) ) 1.14_x1) 7.72)
260 | (F(/(-(+##)#)1.14_x1)#)
270 | (+#(/ (+# (* 1.80_x23 2.24_x6) ) 1.14_x1))
280 | (*(/ (+#(* 1.80_x23 2.24_x6)) 1.14_x1) #)
290 | (+(/(+#(*11.21 1.81_x23)) #) #)
300 | (+(+(* 1.80_x23 2.24_x6) (* 1.80_x23 2.24_x6) ) # )
310 | (+ (+# (/ (* 1.80_x23 2.24_x6) 1.14_x1) ) (* -12.47 2.07_x13))
320 | (+(/# 1.14_x1) (/ (* 2.27_x23 2.24_x6) 1.14_x1))
330 | (+(/(* 1.80_x23 2.24_x6) # ) (/ (* 1.80_x23 2.24_x6) 1.14_x1))
340 | (+ (+# (/ (* 1.80_x23 2.24_x6) 1.14_x1) ) (* -12.47 2.07_x13))
350 | (+(/ (* (* 1.80_x23 2.24_x6) -6.49) 1.14_x1) #)
360 | (+# (+ (¥ 1.80_x23 2.24_x6) (* 1.80_x23 2.24_x6) ) )
370 | (/(+ (+ (¥ 1.79_x12 2.24_x6) # ) # ) 1.14_x1)
380 | (/(+(+ (¥ 1.80_x23 2.24_x6) # ) (* 1.80_x23 2.24_x6) ) 1.14_x1)
390 | (+# (+ (¥ # 2.24_x6) (* 1.80_x23 2.24_x6) ) )
400 | (+#(/(+(* 1.80_x232.24_x6) # ) 1.14_x1))
410 | (/ (+# (+ # (* 1.80_x23 2.24_x6) ) ) 1.14_x1)
420 | (/ (+ (+ (+ (* 1.80_x23 2.24_x6) (* 1.80_x23 2.24_x6) ) # ) # ) 1.14_x1)
430 | (/ (+ (+ # (* 1.80_x23 2.24_x6) ) # ) 1.14_x1)
440 | (/ (+(+ (- 1.43_x18 #) 18.18) #) 1.14_x1)
450 | (/ (+# (- (* 1.80_x23 2.24_x6) -15.63) ) 1.14_x1)
460 | (/ (+ (* 1.80_x23 2.24_x6) (* # 2.24_x6)) 1.14_x1)
470 | (/(+ (+ # (+ 0.55_x23 0.05)) (/ # 1.14_x1) ) 1.14_x1)
480 | (/ (+(* 1.80_x23 2.20_x6) (/ # 1.14_x9) ) 1.14_x1)
490 | (/ (+(*2.24_x6 2.16_x23) (+ # #)) 1.14_x1)
500 | (/(+(*2.24_x6 2.16_x23) (+ # #) ) 1.14_x1)

Table 7.7: SGP Tower Proportional Most Frequent Schemas
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7 Final Remarks

Generation [ Schema

1| (+#C+(+(-1.88(-#(/8.66839))) (- (+6.30-15.87) 1.13_x6) ) #) (- 1.93 9.34)) )

10 | (+(*-221#)(*#(-1.939.34)))

20 | (*12.53 (*(/ # (- -2.61 2.07_x16)) -0.50) )

30 | (/(-(+(*1.71_x6 #) #) (+ # 0.95_x4) ) 2.00_x14)

40 | (+-1882(- #(-# (+ (+ 1.39_x13 -0.26_x8) -2.61)) ) )

50 | (+-1882(#(#(+#-261))))

60 | (+-18.82(-(+ (* 1.71_x6 #) (/ # -0.06_x11) ) (+ # -2.61) ))

70 | (+-18.82( #(+ 1.39_x13 (/0.73_x19 -5.11))))

80 | (+-18.82(-(+#(/#-0.06_x11))#))

90 | (+-18.82(-#(+1.39_x13(/ #-5.11))))

100 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (- # #))

110 | (+#(-#(-#(+ 1.39_x13-0.27_x15) ) ))

120 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (/ # -0.06_x11) )

130 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (- # #))

140 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #))

150 | (+(/(*#0.70_x1) -0.06_x11) (- # #))

160 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #))

170 | (+ (/ (* 0.70_x1 0.70_x1) -0.06_x11) (- # #))

180 | (+(/ #-0.06_x11) (/ (*0.70_x1 0.70_x1) -0.06_x11) )

190 | (+(/ (* 0.70_x10.70_x1) -0.06_x11) (- # (- ##)))

200 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #) )

210 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (/ # -0.06_x11) )

220 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (/ # -0.06_x11) )

230 | (+(/#-006_x11)(-#(-##)))

240 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # (- # (+ 1.39_x13 -0.27_x15) ) ) )

250 | (+#(-#(-#(+ 1.39_x13-0.27_x15))))

260 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #))

270 | (+(/(*0.70_x10.70_x1) -0.06_x11) (/ # -0.06_x11) )

280 | (+#(-#(-#(+1.39_x13-0.27_x15))))

290 | (+(/(*0.70_x1 0.70_x1) -0.06_x11) (- # #))

300 | (+(/ (* 0.70_x1 0.70_x1) -0.06_x11) (- # #))

310 | (+(/ (* 0.70_x1 0.70_x1) -0.06_x11) (- # #))

320 | (+(/ (*0.70_x1 #)-0.06_x11) (- # #))

330 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #) )

340 | (+#(-#(-#(+ 1.39_x13 -0.27_x15))))

350 | (+#(-#(-#(+ 1.39_x13-027_x15))))

360 | (+(/(0.70x10.70_x1) #) (- ##))

370 | (+(/ (*0.70_x1 0.70_x1) -0.06_x11) (/ # -0.06_x11) )

380 | (+(/ (*0.70_x10.71_x1) -0.06_x11) (- # (- # (+ 1.39_x13 -0.27_x15))))

390 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #) )

400 | (+(/(*0.70_x10.70_x1) -0.06_x11) (- # #))

410 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

420 | (+(/#-006_x11) (-(/ ##) (- # (+ 1.39_x13 -0.27_x15))))

430 | (+#(-#(-#(+1.39_x13-0.27_x15))))

440 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

450 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

460 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

470 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

480 | (+#(#(-(+(*1.71_x6#)#)(+ 1.39_x13 -027_x15))))

490 | (+(/#-0.06_x11) (- # (- # (+ 1.39_x13 -0.27_x15))))

500 | (+(/(*0.70_x10.71_x1) -0.06_x11) (- # #))

Table 7.8: SGP Tower Tournament Most Frequent Schemas
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7 Final Remarks

Generation | Schema
1| FC1.36_X4027_X3) (*(+£#)#))
5 | (F1.27_X4 (+ (* (+ (- 17.44 2.32_X6) 0.70_X3) 1.16_X3) (* # #)))

10 | (+#(*3.01_X3 (- 1.36_X4 (* 0.50 0.40_X4))))

15 | (+(* 1.70_X1 (+ 0.33_X7 2.08_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- (+ 0.33_X7 2.08_X2) #) ) #))

20 | (+(* 1.70_X1 (+ 0.33_X9 2.08_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- 5.00 #) ) (* 3.01_X3 #)))

25 | (+(* 1.70_X1 (+ (* 0.16_X9 1.67_X7) (+ (* 0.16_X9 1.67_X7) 2.08_X2) ) ) #)

30 | (+(* 1.70_X1 (+ (* 1.39_X9 1.67_X7) 2.08_X2) ) #)

35 | (+(*1.70_X1 (+ (* 1.39_X9 1.67_X7) 2.08_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- 5.00 (* # #) ) ) (* 3.01_X3 (- 1.36_X4
(*0.27_X10 (* 0.85_X6 (+ # -4.26)))))))

40 | (+(* 1.70_X1 (+ (* 1.39_X9 1.67_X7) 2.08_X2) ) #)

45 | (+(* 1.70_X1 (+ (* 1.39_X9 1.67_X7) 2.20_X2) ) #)

50 | (+(* 1.75_X1 (+ (* 1.39_X9 1.67_X7) 2.26_X2) ) (+ # (* 3.01_X3 (- 1.36_X4 (* 0.27_X10 (* 0.85_X6 #))))))

55 | (+(* 1.75_X1 (+ (* 1.39_X9 1.67_X7) 2.32_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- 5.00 #) ) (* 3.01_X3 (- 1.36_X4 (*
0.27_X10#)))))

60 | (+(*1.75_X1 (+(* 1.39_X9 1.67_X7) 2.32_X2) ) (+ # (* 3.01_X3 (- 1.36_X4 (* 0.27_X10 (* 0.85_X6 (+ (+ # -1.68)
-4.26)))))))

65 | (+ (* 1.75_X1 (+ (* 1.39_X9 1.67_X7) 2.33_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- 4.98 (* (* # 1.67_X7) #))) (*
3.01_X3 (- 1.36_X4 (* 0.27_X10 (* 0.85_X6 (+ (+ # -1.68) -4.28)))))))

70 | (+(* 1.75_X1 (+ (* 1.39_X9 1.67_X7) 2.33_X2) ) (+ (* (* 0.86_X6 0.95_X5) (- 4.98 #)) (* 3.01_X3 (- 1.36_X4 (*
0.27_X10 (* 0.85_X6 (+ (+ (* (* 0.09_X1 2.32_X2) 0.16_X9) -1.68) -4.28)))))))

75 | (+(* 1.75_X1 (+ (* 1.39_X9 1.67_X7) 2.34_X2) ) (+ # (* 3.01_X3 (- 1.36_X4 #))))

80 | (+(* 1.75_X1 (+ (* 1.40_X9 1.67_X7) 2.34_X2) ) #)

85 | (+(* 1.75_X1 (+ (* 1.40_X9 1.67_X7) 2.34_X2) ) (+ (* (* 0.86_X6 0.95_X5) # ) #))

90 | (+(* 1.75_X1 (+ (* 1.40_X9 1.67_X7) 2.34_X2) ) (+ # #))

95 | (+(* 1.75_X1 (+ (* 1.40_X9 1.67_X7) 2.34_X2) ) #)

Table 7.9: OSGP Poly-10 Proportional Most Frequent Schemas
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7 Final Remarks

Generation | Schema
1 (+# (+(/ 0.67_X6 (* 2.03_X10 (* (+ 0.10_X3 12.05) 1.53_X8) ) ) (* 5.11 (/ (+ # 1.06_X3) 0.18_X5))))
2 | (+(/(+#(+(/3.346.11)0.04_X1)) #) (* 2.01_X6 1.41_X5))
3| (+(/#(/(*(+#-0.24-X9) #) 0.85_X8) ) (* 2.01_X6 1.41_X5) )
4| +(/#(/(*##)0.85_X8)) (*2.01_X6 1.41_X5))
5 | (*0.77_X3 (*(/ 1.62_X4 (- # 5.47) ) 16.66) )
6 | (*0.77_X3 (*(/ 1.62_X4 (- # 5.47) ) 16.66) )
7 | (*0.77_X3 (*(/ 1.62_X4 (- # 5.47) ) 16.66) )
8 | (+(*0.77_X3 (+# 1.28_X4) ) (* 2.01_X6 1.41_X5))
9 | (+(*0.77_X3 (+ # 1.28_X4) ) (* 2.01_X6 1.41_X5) )
10 | (+(+#(*0.77_X3 (* (/ 1.62_X4 15.99) 16.66) ) ) (* 2.01_X6 1.41_X5))
11 | (+(+#(+(*1.70_X2 (* 1.78_X1 (+ 12.28 -11.71) ) ) (* 0.77_X3 #) ) ) (* 2.01_X6 1.41_X5))
12 | G2 170 X2 (F 178 X1 (+ 1228 -11.71))) #) ) (* 2.01_X6 1.41_X5))
13 | (+#(+(/ (*1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
14 | (+#& ¢/ (*1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
15 | (+(* 1.70_X2 2.02_X1) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
16 | (+#(+(/(* 1.74_X3 (* 1.78_X4 15.99) ) # ) (* 2.01_X6 1.41_X5)))
17 | (+(* 1.70_X2 2.02_X1) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
18 | (+#(+(/(*1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
19 | (+#&(/ (*1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (* 2.01_X6 1.41_X5)))
20 | (+(-#(/(*1.70_X22.02_X1) (- 1.51_X6 -6.20) ) ) #)
21 | (+(/(+(+12.8112.81)2.01_X6) (+ 12.81 #)) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 (* 1.78_X1 #))) (+ (*
1.70_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
22 | (+(/ (+(*2.01_X6 1.41_X5) 12.81) (+ 12.81 -0.73_X6) ) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 #) ) (+ (*
1.70_X2 1.78_X1) (* 2.01_X6 1.41_X5))))
23 | (+(/(+(+12.8112.81)2.01_X6) (+ 12.81 (- (* 1.70_X2 2.02_X1) #) ) ) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) #) (+
(* 1.70_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
24 | (+(/ (+#2.01_X6) #) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 (* (* 1.78_X4 1.65) (* 1.70_X2 2.02_X1))))
(+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5) ) ))
25 | (+(/ (+#201_X6) (+ 12.81 #) ) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 15.99 (* (* 1.78_X4 1.65) (* 1.70_X2
2.02_X1)))) (+ (* 1.28-X2 2.02_X1) (* 2.01_X6 1.41_X5) ) ))
26 | (+(/(+(*2.01_X6 1.41_X5)2.01_X6) (+ 12.81 #) ) #)
27 | (+(/ (+(*2.01_X6 1.41_X5) 2.01_X6) (+ 12.81 #) ) #)
28 | (+(/ (+(*2.01_X6 1.41_X5)2.01_X6) (+ 12.81 #) ) #)
29 | (+#(+(/(*1.74_X3 (* 1.78_X4 15.99) ) # ) (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
30 | (+(/#(+12.81#))(+(/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- # (* (* 1.78_X4 1.65) (* 2.01_X6 1.42_X10))) ) (+ (*
1.28_X22.02_X1) (* 2.01_X6 1.41_X5))))
31 | (+#(+ (/ (* 1.74_X3 (* 1.78_X4 15.99) ) (- 16.22 (* (* 1.78_X4 1.65) (* 2.01_X6 1.42_X10) ) ) ) (+ (* 1.28_X2
2.02_X1) (* 2.01_X6 1.41_X5))))
32 | (+(/(+#201_X6) (+12.81#)) (+(/ (* 1.74_X3 #) (- 16.22 (* (* 1.78_X4 1.65) (* 2.01_X6 1.42_X10))) ) (+ (*
1.28_X22.02_X1) (* 2.01_X6 1.41_X5))))
33 | (+#(+(/ (*1.74_X3 (* 1.78_X4 15.99) ) # ) (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
34 | (+#(+ (/ (*1.74_X3 (* 1.78-X4 15.99) ) (- 16.22 (* (* 1.78_X4 1.99) (* 2.01_X6 1.42_X10))) ) (+ (* 1.28_X2
2.02_X1) (* 2.01_X6 1.41_X5))))
35 | (+(/ (+ (* (+ (* 1.70_X9 2.02_X1) 2.01_X6) 1.04_X7) 2.01_X6) (+ 12.81 (- ##)) ) #)
36 | (+#(+#(+(*1.28.X22.02_X1) (* 2.01_X6 1.41_X5)) ) )
37 | (+(/(+#2.01_X6) (+12.81(-##))) (+ # (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
38 | (+#(+#(+(*1.28-X22.02_X1) (*2.01_X6 1.41_X5))))
39 | (+(*(*2.01_X61.42_X10) 1.36_X3) (+ (/ (* 1.74_X3 #) (- 16.22 #) ) (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5)
)))
40 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5))))
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7 Final Remarks

Generation | Schema

41 | (+(* (* 2.01_X6 1.42_X10) 1.36_X3) (+ (/ (* 1.74_X3 (* 1.78_X4 15.99)) (- 16.22 #) ) (+ (* 1.28_X2 2.02_X1) (¥
2.01_X6 1.41_X5))))

42 | (+ (* (*2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (/ # (- 16.22 # ) ) (+ (* 1.28_X2 2.02_X1) (* 2.01_X6 1.41_X5)))))

43 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) (- 16.22 #) ) (+ (* 1.28_X2 2.02_X1)
(*2.01_X6 1.41_X5)))))

44 | (+(*(* 2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) (- 16.22 %)) (+ (* 1.28_X2 2.02_X1)
(*2.01_X6 1.41_X5)))))

45 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65) ) (- 16.22 #) ) (+ (* 1.48_X2 2.02_X1)
(*2.01_X6 1.41_X5)))))

46 | (+ (* (* 2.01_X6 1.42_X10) 1.36_X3) (+ (/ # (+ 12.81 (+ 1.65 1.41_X5)) ) (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) (-
1622 #)) (+ (* 1.48_X2 2.02_X1) (* 2.01_X6 1.41_X5)))))

47 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ (/ # # ) (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) # ) (+ (* 1.48_X2 2.02_X1) (*
2.01_X6 1.41_X5)))))

48 | (+(* (* 2.01_X6 1.42_X10) 1.36_X3) (+ (/ # (- 16.22#)) (+ # (+ (* 1.48_X2 2.02_X1) (* 2.01_X6 1.41_X5)))))

49 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) (- 16.22 %)) (+ (* 1.48_X2 2.02_X1)
(*2.01_X6 1.41_X5)))))

50 | (+(*(*2.01_X6 1.42_X10) 1.36_X3) (+ (/ (+ (* (* 1.82_X9 (* 1.79_X1 15.99) ) 1.04_X7) # ) 15.65) #) )

51 | (+ ( (* 2.01_X6 1.15_X10) 1.36_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65) ) # ) (+ (* 1.48_X2 2.02_X1) (*
2.01_X6 1.41_X5)))))

52 | (+(*(*2.01_X6 1.42_X10) 1.04_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) (- 16.22 %)) (+ (* 1.48_X2 2.02_X1)
(*2.01_X6 1.41_X5)))))

53 | (+(* (* 2.01_X6 1.42_X10) 1.04_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) 16.22) (+ (* 1.48_X2 2.02_X1) (*
2.01_X6 1.41_X5)))))

54 | (+(* (* 2.01_X6 1.42_X10) 1.04_X3) (+ # (+ (/ (* 1.74_X3 (* 1.78_X4 15.65)) 16.22) (+ (* 1.48_X2 2.02_X1) (¥
2.01_X6 1.41_X5)))))

55 | (+(* (* 2.01_X6 1.42_X10) 1.04_X3) (+ # (+ # (+ (* 1.48_X2 2.02_X1) (* 2.01_X6 1.41_X5)) ) ))

56 | (+(*(*2.01_X6 1.42_X10) 1.04_X3) (+ # (+ # (+ (* 1.48_X2 2.02_X1) (* 2.01_X6 1.41_X5)))))
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Generation Schema
1| C(/(-#(*(/16.50-0.58_X) 5.63)) 1.50_X) # ) -18.59)
2 | (¢ (-#(*(/16.50 -0.58_X) 5.63) ) 1.50_X) (+ # 16.76) ) -18.59)
31 ¢/ (-#(*(/16.50-0.58_X) 5.63)) 1.50_X) # ) -18.59)
4 | (-427(/#((-#(/-6.261.65_Y)) (- -0.63_Y 1.03_Y))))
5 | (-2.45(/-0.41_X (- (/ #-0.71_-X) 0.49_X) ) )
6 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
7 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
8 | (-245(/-0.41_X(-(/(-#(/(/-1.283.35_Y) 0.69_Y)) -0.71_X) 0.49_X) ) )
9 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
10 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
11 | (-2.45(/-0.41_X (- (/ (- # #)-0.71_X) 0.49_X) ) )
12 | (-2.45(/-0.41_X (- (/ # -0.71_X) 0.49_X) ) )
13 [ (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
14 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
15 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
16 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
17 | (-2.45(/-0.41_X (- (/ #-0.71_X) 0.49_X) ) )
18 | (-(-2.77(/2.45#))(/ -0.41_X (- (/ # -0.71_X) 0.49_X) ) )
19 [ (-#(/-041_X(-(/ (- #(/(/-1.28 3.35_Y) 0.69_Y) ) -0.71_X) 0.49_X) ) )
20 | (-(-277#)(/-0.41_X (- (/ # -0.71_X) 0.49_X)))
21 | ((-277(/2.45(- (+-1.28 14.06) (/ (/ -6.26 1.65_Y) 0.69_Y)))) #)
22 | ((-277(/2.45(-10.54(/ # 0.69_Y)))) (/ -0.41_X (- # 0.49_X) ) )
23 | (-(-2.77 (/ 2.45(- 10.54 (/ (/ -6.26 0.69_Y) 0.69_Y) ) ) ) (/ -0.41_X (- # 0.49_X) ) )
24 | (-#(/231(-(+-1.3413.03) (/ (/ -4.84 1.35_X) 0.69_X) ) ) )
25 | (-#(/231(-#(/(/-4.84 1.35_X) 0.69_X))))
26 | (#(/#(-(-(+-1.3413.03)(/ (/ -4.84 1.35_X) 0.69_X) ) (/ (/ -4.84 1.35_X) 0.69_X)) ) )
27 | (-#(/2.31(-(+-1.3413.03) (/ (/ (/ # 0.69_X) 1.35_X) 0.69_X)) ) )
28 | (-(-291(/229(-#%)))#)
29 | (-(-291(/229#%)) (/231 (- (+-1.3413.03) (/ (/ (/ (/ -4.84 1.35_X) 0.69_X) 1.35_X) 0.69_X) ) ))
30 | (-#(/231(-(+-1.3413.03) (/ (/ (/ (/ -4.84 0.69_X) 0.69_X) 1.35_X) 0.69_X))))
31 | (-(-291#)(/2.31 (- (+-1.3413.03) (/ (/ (/ (/ -4.84 0.69_X) 0.69_X) 1.35_X) 0.69_X) ) ) )
32 | (#(/231(-(+-1.3413.03) (/ (/ (/ (/ -4.84 0.69_X) 0.69_X) 1.35_X) 0.69_X) ) ) )
33 | (-(-291(/229#))(/2.31(-(+-1.3413.03) (/ (/ (/ (/ -4.84 0.69_X) 0.69_X) 1.35_X) 0.69_X))))
34 | (-(-291(/229(-(-(+-1.3413.03) (/ (/ (/ (/ -6.26 0.69_Y) 0.69_Y) 1.65_Y) 0.69_Y) ) #)) ) #)
35 | (-#(/231(-(+-1.3413.03) (/ #0.69_X))))
36 | (-(-291(/229(-(-(+-1.3413.03) (/ (/ (/ (/ -6.26 0.69_Y) 0.69_Y) 1.65_Y) 0.69_Y) ) #))) (/ 2.31 #))
37 | (#(/231(-(+-1.3413.03)#)))
38 | ((#(/231(-(+-1.3413.03)#)))
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Generation | Schema
1| (/(*(+(-#4.09)-12.99) (* (+ (- (/ -3.88 1.69_X) (/ (* 0.00_Y 1.14_Y) (- -6.04 (- -1.67 6.37)) ) ) 0.72_X) (- # #)) )
0.34_X)
2 | (/(*(+(-#4.09)-12.99) # ) 0.34_X)
3| (-(+#(-0.90(*(*(*-18.77 19.97) (* -15.58 1.15_X) ) 0.69_X) ) ) -19.28)
41 (/(+#(H1.77-X0.86_X)) (+ (* 1242 (/ (/ 7.74 (* 1.12_Y 1.88_Y) ) 1.81_X) ) 0.33_X) )
51 (+-18.07(/0.08_X (+#(+#(/19.800.17_X)))))
6 | (+-18.07(/0.08_X (+# (+#(/19.800.17_X)))))
7 | (+-18.07 (/ 0.08_X (+ # (+ (* (* -10.93 -18.92) 0.59_X) (/ 19.80 0.17_X))) ) )
8 | (/(+(/#-13.07)#)(+(*#(/(/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) ) 0.33_X))
91 (/#((/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
10 | (/#&((/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
11 | (/#&((/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
12 | (/#&((/7.74( 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
13 (/#&((/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
14 | (/#&((/7.74(* 1.12_Y 1.88_Y) ) 1.81_X) 0.33_X) )
15 | (-#(/(+-19.42(/-18.44 (- 15.77 (/ (* (+ (* 0.10_X 0.10_Y) -12.99) -18.68) (* 1.34_Y #)))) ) 1.67))
16 | (-#(/ (+-19.42(/ -18.44 (- 15.77 (/ (* (+ # -12.99) -18.68) (* 1.34_Y (* 1.52_Y -14.64))))) ) 1.67))
17 | (-(+(/ (--5.517.05) (- 4.65 (- (* 1.50_X (* -9.60 1.50_X) ) 16.43)) ) #) (/ (+-19.42 (/ -18.44 #)) 1.67))
18 | (-(+(/(--5.51(-14.66 8.72)) (- 1.88_X (- (* 1.50_X (* -9.60 1.50_X) ) 16.43))) #) (/ # 1.67))
19 | -(+(/(--5.51(-14.668.72) ) (- 1.81_X (- # 16.43)) ) # ) (/ (+ 7.74 #) 1.67))
20 | (-#(/ (+-19.42(/ -18.44 (- 15.77 (/ (* (/ (* (+ # -11.73) -18.68) (* 1.34_Y (* 1.52_Y -14.64) ) ) -18.68) (* 1.34_Y
#))))) 1.67))
21 | (-#(/ (+-19.42(/ -18.44 (- 15.77 (/ (* -18.68 -18.68) (* 1.34_Y (* 1.52_Y -14.64)))))) 1.67))
22 | (-#(/(+-19.42(/ -18.44 (- 15.77 (/ (* (/ (* (+ -16.99 -11.73) -18.68) (* 1.34_Y #)) -18.68) (* 1.34_Y (* 1.52_Y
-14.64)))))) 1.67))
23 | (-(+(/ (+(*0.10_X 0.10_Y) -12.99) (- 7.58 (- (* 1.48_X (* -9.60 1.50_X) ) 7.74) ) ) # ) (/ # 1.67) )
24 | (-(+##)(/ (+-19.42#)1.67))
25 | (-#(/ (+-19.42(/-18.44#)) 1.67))
26 | (-(+(/(--5.5112.81) (- 7.58 (- (* 1.39_X (* # 1.50_X) ) 16.43)) ) # ) (/ # 1.67))
27 | (-#(/(/-18.44(- 1577 #)) 1.67))
28 | (-(+(/(--5.5112.81)(-7.58 (- (* 1.39_X (* (* # (* -9.60 1.41_X) ) 1.50_X) ) 16.43) ) ) # ) (/ # 1.67))
29 | (-(+(/(--5.5112.81) (- 7.58 (- (* 1.39_X #) 16.43)) ) #) (/ (/ -18.44 #) 1.67))
30 | (-(+(/(--5.5112.81) (- 7.58 (- (* 1.39_X #) 16.43)) ) #) (/ (/ -18.44 #) 1.67))
31 | (-(+(/(--5.5112.81) (- 7.58 (- (* 1.39_X (* (* 1.48_X (* -5.51 1.50_X) ) 1.50_X)) 16.43) ) ) #) (/ # 1.67) )
32 | (-#(/(+-19.42(/ -18.44 (- 1435 (/ (* (/ (* -18.57 -18.68) #) -18.68) (* 1.34_Y (* 1.12_Y -14.64)))))) 1.67) )
33 | (-(+(/(--5.5112.81) (- 7.58 (- (* 1.39_X (* (* 1.48_X (* -5.51 1.50_X) ) 1.50_X)) 16.43) ) ) #) (/ # 1.67) )
34 | (-#(/ (+-19.42(/ -18.44 (- 1435 #))) 1.67))
35 | (-#(/(/-18.44 (- 1577 (/ (* (/ (* (+ -18.92 -12.99) -18.68) (* 1.34_Y (* 1.47_Y -14.64) ) ) -18.68) (* 1.34_Y (*

1.52_Y-11.73))))) 1.67))
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7 Final Remarks

Generation | Schema
1| ((+#(*6.12(*2.61_X415.36))) 2.94_X2)
2 | (F(+#(*6.12(*2.61_X4 15.36) ) ) 2.94_X2)
3 (F(+#(*6.12(*2.61_X4 15.36))) 2.94_X2)
4 | (+#(-1.71_X10 (+ (- (- # (* 17.69 (- 0.57_X2 (* (+ 1.08_X3 (* -8.80 0.39_X4) ) 1.08_X2))) ) (+ # (* 1.60_X5
19.75))) 5.71)))
5 (- (*0.90_X4 (- 2.56_X7 (+-16.86 #)) ) (- # (- (/ (* 19.43 2.61_X2) 4.46) (+ (* (+ 1.28_X5 -18.18) 0.39_X1) #)))
)
6 G-+ (-(*773-1453)1.25_X4)#)#) #)
7 | (-#(H+-17.00 (+ (+ # (* 1.44_X1 5.85) ) (* -19.33 (- -0.61_X2 0.69_X4)))))
8 | (/(+(+086_X2#)(+# 1.02_X1)) 14.26)
9 | (/(+(+ 0.86_X2 (+ (+ 1.28_X5 -18.59) (+ 2.21_X4 0.44_X2)) ) (+ # 1.02_X1)) 14.26)
10 | (/ (+ (+0.86_X2 (+ (+ 1.28_X5 -18.59) (+ 2.21_X4 0.44_X2)) ) # ) 14.26)
11 | (/ (+(+0.86_X2 (+ (+ 1.28_X5 -18.59) (+ 2.21_X4 0.44_X2)) ) # ) 14.26)
12 | (+(/-21.31(+0.41_X9 (- (/ -10.44 1.77_X1) (- 7.15 (+ # 1.05_X4))))) (+ 0.86_X2 #) )
13 | (+(/-21.31(+0.41_X9 #)) (+ 0.86_X2 (+ (+ 1.28_X5 #) (+ 2.21_X4 0.44_X2)) ) )
14 | (+0.84_X4 (+(+-16.86 (*0.58_X50.60_X2)) (/ -18.47 (+ # (- 7.20 (- (* (* 1.44_X1 5.85) (+ # (* (* 19.69 1.25_X2)
(/ 11.07 -17.00)))) 16.90))))))
15 | (+0.84_X4 (+ (+ -16.86 (* 0.58_X5 0.60_X2) ) (/ -18.47 #)))
16 | (+0.84_X4 (+ (+ -16.86 (* 0.58_X5 0.60_X2) ) (/ -18.47 #)))
17 | (+0.84_X4 (+ (+ -16.86 (* 0.58_X5 0.57_X5)) #))
18 | (+0.84_X4 (+ (+-16.86 (* 0.58_X5 0.57_X5)) #))
19 | (+0.84_X4 (+ (+-16.86 (* 0.58_X50.57_X5) ) #))
20 | (+0.84_X4 (+ (+-16.86 (* 0.58_X50.57_X5) ) #))
21 (+0.84_X4 (+ (*0.58_X50.57_X5) (/ -18.47 #)))
22 (+0.84_X4 (+ (*0.58_X50.57_X5) (/ -18.47 #)))
23 (+0.84_X4 (+ (*0.58_X50.57_X5) (/ -18.47 #)))
24 | (+0.84_X4 (+(* 0.58_X50.57_X5) (/ -18.47 #)))
25 | (+084 X4 (+#(/-1847(+#%))))
26 (+0.84_X4(+0.37_X5(/-1847 (+##))))
27 | (+0.84_X4 (+0.41_X5(/-18.47(-7.20#))))
28 | (+0.84_X4 (+0.41_X5(/ (+-16.86 (* 1.44_X1 #)) (- 7.20 (- (* # (* # (* # 0.39_X1)) ) 16.90))) ) )
29 | (+0.84_X4 (+0.41_X5(/ (+-16.86 #) (- 7.20 (- (* (* 1.44_X1 (* 1.44_X1 #)) (* # (* (* # #) 0.39_X1) ) ) 16.90))
)))
30 | (+0.84_X4(+0.41_X5(/ (+-16.86#) (- 7.20 (- # 16.90) ) ) ))
31 | (+0.84_X4(+041_X5(/ (+-16.86%)#)))
32 | (+0.84_X4 (+0.41_X5(/ (+-16.86 (* 1.44_X1#)) (- 7.20 (- # 16.90)))) )
33 | (+0.84_X4 (+0.41_X5(/ (+-16.86 (* 1.44_X1#))(-7.20%))))
34 | (+0.84_X4 (+0.41_X5(/ (+-16.86 #) (- 7.20 (- (* (* 1.44_X1 (* (/ 0.39_X1 (* 0.60_X3 2.61)) (* # 1.25_X2)) ) #
)16.90)))))
35 | (+0.84_X4(+041_X5(/(+-16.86#)#)))
36 | (+0.84_X4 (+0.41_X5 (/ (+ -16.86 (* 1.77_X1 (* (* 20.50 (* 0.60_X3 2.61)) 1.25_X2)) ) (- 7.20 (- (* (* 1.44_X1
(*(/ 0.39_X1 (* 0.60_X3 2.61)) #) ) (* # (* £ 0.39_X1) ) ) 16.90) ) ) ) )
37 | (+0.84_X4 (+0.41_X5(/ (+-16.86 (* 1.77_X1 #)) #)))
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7 Final Remarks

Generation | Schema
1 (+(/ (- (- #(*19.34 (- (* (+ 2.89_X4 1.64_X1) 10.03) 12.87) ) ) (* 0.38_X8 -0.92_X6) ) #) 0.66_X3)
2 | (+(/(-(-(+-3.06#)(*19.34 (- (* (+ 2.89_X4 1.64_X1) 10.03) 12.87))) #) # ) 0.66_X3)
3| (+(/(-(-#(*19.34 (- (* (+ 2.89_X4 1.64_X1) 10.03) 12.87) ) ) (* 0.38_X8 -0.92_X6) ) #) 0.66_X3)
4| (-(-#(*19.34(-(*£10.03) 12.87)) ) #)
5 (+2.89_X4(+(/(-##)-13.33)#))
6 | (/(-(+2.89_X4 1.64_X1) (+ 0.10_X9 (/ 1.91_X2 (/ (- 19.85 (- (/ -0.64_X7 1.82_X1) (/ 0.45_X9 #))) -12.03) ) )
)#)
7 | (/ (- (+2.89_X4 1.64_X1) (+ 0.10_X9 (/ 1.91_X2 (/ (- 19.85 (- (/ -0.64_X7 1.82_X1) #)) -12.03)) ) ) #)
8 | (/(-(+2.89_X41.64_X1) (+0.10_X9 (/ 1.91_X2 (/ (- 19.85 (- (/ -0.64_X7 1.82_X1) #)) -12.03))) ) #)
9| (+# &/ (+(*(*-12.68 (+ -7.33 3.25) ) (+ (+ (+ 0.26_X6 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1) ) ) 10.16) (-
-11.12 (¥ 0.34_X50.64_X8) ) ) #) )
10 | (+(/-1628#) (+ (/ (+ (* (* -12.68 (+ -7.33 3.25) ) (+ (+ (+ 0.26_X6 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1)))
10.16) #) #))
11 | (+(/-1628#) (+ (/ (+ (* (* -12.68 (+ -7.33 3.25) ) (+ (+ (+ 0.26_X6 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1) ) )
10.16) (- -11.12 (* 0.34_X5 0.64_X8) ) ) #) )
12 | (## & (+(F(*-12.68 (+ -7.33 3.25) ) (+ (+ (+ 0.26_X6 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1)) ) 10.16) (-
-11.12 (¥ 0.34_X5 0.64_X8) ) ) (+ 2.89_X4 1.64_X1) ) )
13 | (+#H ¢ (+(*(*-12.68 (+-7.333.25)) (+ (+ (+-16.59 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1))) 10.16) (- -11.12
#))(+2.89_-X4 1.64_X1)))
14 | (+#H(/ (+FF 12,51 (+18.441.08_X2) ) (+ (+ (+ 4.58 1.11-X5) 1.30_X2) (- 1.57_X1-15.77) ) ) -12.68) (- -11.12
19.34)) (- 0.77_X2 2.08_X4) ) )
15 | (+# ¢/ (+(*(+12.51 (+ 18.44 1.08_X2) ) (+ (+ (+ 4.58 1.11_X5) 1.30_X2) (- 1.57_X1-15.77) ) ) -12.68) (- -11.12
19.34)) (- 0.77_X2 2.08_X4) ) )
16 | (+#(H+(/(+*(+12.51 (+18.441.08_X2) ) (+ (+ (+ 4.58 1.11_X5) 1.30_X2) (- 1.57_X1-15.77) ) ) -12.68) (- -11.12
19.34)) (- 0.77_X2 2.08_X4) ) )
17 | (+(/-16.28(/ (-(/ 6.92 (/ (+ (+ 2.89_X4 1.64_X1) (+ 2.89_X4 1.64_X1)) (/ 2.89_X4 1.64_X1)) ) (- -9.25 1.05_X8)
) -0.40_X2) ) (+ (+ (+ # 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1)))
18 | (+(/-16.28(/(-(/ 6.92(/ #(/ 2.89_X4 1.64_X1))) (- -9.25 1.05_X8) ) -0.40_X2) ) (+ (+ (+ # 1.11_X5) 1.30_X2)
(+2.89_X41.64_X1)))
19 | (+#(+ (+ (+# 1.11-X5) 1.30_X2) (+ 2.89_X4 1.64_X1) ) )
20 | (+(/-16.28(/ (-(/ 6.92(/ (+ (+ 1.64_X1 1.64_X1) (+ 2.89_X4 1.64_X1)) (/ 2.89_X4 1.64_X1))) (- -9.25 1.05_X8)
) -0.40_X2)) (+ (+ # 1.30_X2) (+ 2.89_X4 1.64_X1)))
21 | (+(/-16.28 (/ (- (/ # #) (- -9.25 1.05_X8) ) -0.40_X2) ) (+ # (+ 2.89_X4 1.64_X1)))
22 | (+(/-16.28 #) (+ (+ (+ # 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1)))
23 | (+(/-16.28 (/ #-0.40_X2) ) (+ (+ (+ (/ 6.92 (- # (/ # 1.09_X3) ) ) 1.11_X5) 1.30_X2) (+ 2.89_X4 1.64_X1)))
24 | (+(/6.47 (+ (+ (* 1.31_X2 0.67_X1) -10.49) 11.36) ) (- # (+ 2.95_X4 1.67_X5)))
25 | (+(/6.47 (+ (+ (* 1.31_X2 0.67_X1) -10.49) 11.36) ) (- # (+ 2.95_X4 1.67_X5)))
26 | (+(/6.47 (+(+ (* 1.31_X2 0.67_X1) -10.49) 11.36) ) (- # (+ 2.95_X4 1.67_X5)))
27 | (+(/6.47 #) (- # (+2.95_X4 1.67_X5)))
28 | (+(/6.47 (+(+ (* 1.31_X2 0.67_X1) #) 11.36) ) (- (+ # (* 1.31_X2 0.67_X1) ) (+ 2.95_X4 1.67_X5)))
29 | (+(/6.47 #) (- #(+2.95_X4 1.67_X5)))
30 | (+(/6.47 (+ (+ (* 1.31_X2 0.67_X1) (+ # -10.49) ) 11.36) ) (- (+ # #) (+ 2.95_X4 1.67_X5) ) )
31 | (+(/6.47 (+ (+# (+ (* 1.31_X2 0.67_X1) -10.49) ) 11.36) ) (- (+ # # ) (+ 2.95_X4 1.67_X5)))
32 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) #)
33 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) #)
34 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) #)
35 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) #)
36 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) #)
37 | (+(/6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) (- # (+ 2.95_X4 1.67_X5) ) )
38 | (+(/6.47 (+ (+(* 1.31_X2 0.67_X1) (+ (* 1.31_X2 0.67_X1) -10.49) ) 11.36) ) (- # (+ 2.95_X4 1.67_X5)))
39 | (+(/6.47 (+(* (* 1.31_X2 0.67_X1) (- -11.12 #) ) 11.36) ) (+ (/ 6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) (-
#(+2.95_X41.67_X5))))
40 | (+(/6.47 (+(*(* 1.31_X20.67_X1) (- -11.12 (* # 0.67_X1) ) ) 11.36) ) (+ (/ 6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49)
11.36)) #))
41 | (+(/6.47 #)(+(/ 6.47 (+ (+ (* 1.31_X2 1.64_X1) -10.49) 11.36) ) (- # (+ 2.95_X4 1.67_X5))))
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7 Final Remarks

Generation Schema
1| (-11.73(+ (--12.19 (/ (- # (- 1.53_x15 17.09) ) 0.63_x15) ) 1.54_x6) )
2 | (-11.73(+(--12.19 (/ (- # (- 1.53_x15 17.09) ) 0.63_x15)) 1.54_%6))
3 | (-(+-6.98(/-0.15_x5 #)) (/ 2.52_x13 1.35_%6) )
4 | (-(+-6.98(/-0.15_x5#))(/ 2.52_x13 1.35_x6) )
5 | ((#(/(*1.94_x1 #) 0.44_x6) ) -5.52)
6 | (-(-#(/(* 1.94_x1 #) 0.44_x6) ) -5.52)
7 | (-(-#(/ (* 1.94_x1 #) 0.44_x6) ) -5.52)
8 | (/(/ (- 1.05_x4 (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (+ 1.28_x24 0.29_x16) ) 1.07_x16) ) ) 1.96_x1) # )
9 | (/(/(- 1.05_x4 (* (+ -2.00 1.96_x23) #) ) 1.96_x1) #)
10 | (*-15.08 (+ (- (- 2.31_x6 #) (/ 0.97_x22 1.70_x15) ) (+ 3.16_x23 (* 19.91 (/ (+ 3.39_x24 (- # (- 1.89_x9 0.55_x1)
))1.04.x1)))))
11 | ¢/ (-#(*(+-2.00 1.96_x23) (- (+ (+ -0.81 1.93_x6) (+ 1.28_x24 0.29_x16)) 1.07_x16) ) ) 1.96_x1) (+ 7.74 #))
12 | (/(/ (- 1.05_x4 (* (+ -2.00 1.96_x23) (- (+ (+ -0.81 1.93_x6) (+ 1.28_x24 0.29_x16)) 1.07_x16) ) ) 1.96_x1) # )
13 | (/(/ (- 1.05_x4 (* (+ -2.00 1.96_x23) (- (+ (+ -0.81 1.93_x6) (+ 1.28_x24 0.29_x16)) 1.07_x16) ) ) 1.96_x1) # )
14 | (/(/ (- 1.05_x4 (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (+ 1.28_x24 0.29_x16) ) 1.07_x16) ) ) 1.96_x1) # )
15 | (/ (/ (- 1.05_x4 (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) #) 1.07_x16) ) ) 1.96_x1) (+ (/ 2.24_x4 (/ -0.20_x6
0.28_x12)) (- # (- 1.89_x9 0.55_x1))))
16 | (/#(+ (/ 2.24_x4 (/ -0.20_x6 0.28_x12)) (- # (- 1.89_x9 0.55_x1))))
17 | 7 ¢ (- (- 3.48_x12 -0.64_x12) (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71) ) )
1.07_x16))) 1.96_x1) #)
18 | (/ (/ (- (- 3.48_x12 -0.64_x12) (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71)))
1.07_x16))) 1.96_x1) #)
19 | (/(/(-#(*#0.55_x1 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71)) ) 1.07_x16) ) ) 1.96_x1) #
)
20 | (/ (/ (- (- 3.48_x12 -0.64_x12) (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71) ))
1.96_x23))) 1.96_x1) #)
21 | (/ (/ (- (- 3.48_x12 -0.64_x12) (* (+ -2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71)))
1.96_x23))) 1.96_x1) #)
22 | (/(/#1.96_x1) (+ # (- (+ (/ 0.97_x22 1.70_x15) (- 0.53_x13 (* 12.62 4.83))) (/ -4.04 #))))
23 | (/ (/ (- (- 3.48_x12 -0.64_x12) (* (+ 12.62 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71) ) )
1.96_x23))) 1.96_x1) #)
24 | (/(/ (- #(* (+-2.00 1.96_x23) (- (+ (* 1.27_x6 14.27) (* 1.54_x15 (/ 2.32_x1 15.71)) ) 1.96_x23) ) ) 1.96_x1) # )
25 | (/(/(-#(#(+14.27 1.96_x23) (- (+ (* 1.27_x6 12.56) (* 1.54_x15 (/ 2.32_x1 15.71)) ) 1.96_x23)) ) ) 1.96_x1)
(+(/ 0.82_x8 (+-10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83) ) (/ -4.04%))))
26 | (/(/(-##)1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83)) #)) )
27 | VU (-#(C#C+14.27 1.96_x23) (- (+ (* 1.27_x6 12.56) (* 1.54_x15 (/ 2.32_x1 15.71)) ) 1.96_x23)) ) ) 1.96_x1)
(+(/ 0.82_x8 (+-10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83) ) (/ 0.83_x24 (* 1.27_x6 14.27)))))
28 | (/(/(- (- 3.48_x12 -0.64_x12) (* (+ 14.27 1.96_x23) (- (+ # (* 1.54_x15 (/ 2.32_x1 15.71))) 1.96_x23))) 1.96_x1)
#)
29 | (/(/#1.96_x1) (+ (/ 0.83_x24 (- 3.44_x22 -0.64_x12) ) #))
30 | (/(/(-#(*(+14.27 1.96_x23) (- (+ (* 1.27_x6 12.56) (* 1.54_x15 (/ 2.32_x1 15.71)) ) 1.96_x23)) ) 1.96_x1) # )
31 | (/#(+(/0.82_x8 (+-10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83)) (/ -4.04 1.37_x2))))
32 | (/(/#1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83) ) (/ -4.04 (- 1.04_x1 0.53_x6)))))
33 | (/#(+(/0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83) ) (/ -4.04 (- 1.04_x1 0.53_x6)))))
34 | (/#(+(/0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83)) (/ -4.04 (- 1.04_x1 0.53_x6)))))
35 | (/(/#1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) #))
36 | (/(/#1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 # ) (/ -6.27 (- 1.04_x1 0.53_x6)))) )
37 | (/#(+(/0.82_x8 (+-10.48 -6.27)) (- (- 0.53_x13 (* 12.62 4.83) ) (/ -6.27 (- 1.04_x1 0.53_x6))) ) )
38 | (/(/#1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 # ) (/ -6.27 (- 1.04_x1 0.53_x6)))) )
39 | (/(/#1.96_x1) (+ (/ 0.82_x8 (+ -10.48 -6.27) ) (- (- 0.53_x13 (* 12.62 4.83)) (/ -6.27 (- 1.04_x1 0.53_x6)))) )
40 | (/(/(#H#(*(+0.22_x16 1.96_x23) (- (+ (* 1.27_x6 11.20) (* 1.54_x15 (/ 2.32_x1 18.06))) #)))) 1.96_x1) (+
(/0.82_x8 (- 1.04_x1 0.53_x6) ) #))
41 [ (/(/(-#(+# ( (+ 0.22_x16 1.96_x23) (- (+ (* 1.27_x6 11.20) (* 1.54_x15 (/ 2.32_x1 18.06) ) ) 1.96_x23) ) ) )
1.96_x1) (+ (/ 0.82_x8 (- 1.04_x1 0.53_x6) ) (- (- 0.53_x13 #) (/ -4.04 (- 1.04_x1 0.53_x6)))))
42 | (/(/#1.96_x1) (+ (/ 0.82_x8 (- 1.04_x1 0.53_x6) ) (- (- 0.53_x13 # ) (/ -4.04 (- 1.04_x1 0.53_%6)))))
43 | (/(/#1.96_x1) (+ (/ 0.82_x8 (- 1.04_x1 0.53_x6)) #))
44 | (/#(+(/0.82_x8 (- 1.04_x1 0.53_x6) ) #))
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7 Final Remarks

Generation | Schema
1| (-(/-876 (+(+-13.37-0.02_x21) #)) #)
2 | (-(/-8.76 (+ (+-13.37 -0.02_x21) #) ) #)
3| (*2.22_x6 (+ (* (- 8.94 0.60_x3) 0.29_x6) # ) )
4 1 (/(-19.28(*0.22 (* 1.49_x6 -17.31) ) ) (- 0.73_x20 # ) )
5| (/(-19.28 (*0.22 (* 1.49_x6 -17.31) ) ) (- 0.73_x20 (/ 0.81_x2 #)))
6 | (*(*(+-7.57 17.60) -0.32_x23) (/ # 1.05_x1))
7 | (*(*(+-7.57 17.60) -0.32_x23) (/ # 1.05_x1))
8 | (*(*(+-7.5717.60)-0.32_x23) (/ # 1.05_x1))
9 | (*(*(+-7.57 17.60) -0.32_x23) (/ # 1.05_x1))
10 | (*(*(+-7.57 17.60) -0.32_x23) (/ # 1.05_x1))
11 | (*(*(+-7.57 17.60) -0.32_x23) (/ # 1.05_x1))
12 (* (* (+-7.57 17.60) -0.32_x23) (/ (/ (/ (+ -0.60_x6 (- -16.57 -0.38) ) (* 1.85_x16 (+ 19.17 -2.60) ) ) #) 1.05_x1) )
13 | (*(*(+(/1.65_x3 8.73) 17.60) -0.32_x23) (/ (/ (/ # (* -6.23 (+ 7.89 (+ 0.08_x12 -12.26) ) ) ) (* # (- -4.91 (+ 1.49_x4
17.82)))) 1.05_x1))
14 | (*(*(+(/ 1.29_x4 -6.66) 19.20) -0.32_x23) (/ # 1.05_x1))
15 | (*(*(+(/ 1.65_x3 8.73) 17.60) -0.32_x23) (/ (/ (/ (+ -0.60_x6 # ) (* -6.23 (/ (- 1.04_x13 #) -16.53) ) ) (* # (- -4.91
(+1.49_x4 17.82)))) 1.05_x1))
16 | (*(*(+(/ 1.65_x3 8.73) 17.60) -0.32_x23) (/ (/ (/ (+ -0.60_x6 # ) (* -6.23 (/ (- 1.04_x13 #) -16.53) ) ) (* # (- -4.91
(+1.49_x417.82)))) 1.05_x1) )
17 | (*(*(+ # 17.60) -0.32_x23) (/ (/ (/ (- 1.95_x6 (/ 3.32_x20 (+ 7.89 -16.72) ) ) (* 2.22_x13 -14.09) ) (* (- 0.43_x20
(/ (+ (+ 3.43_x6 3.33_x25) 1.30_x7) -0.32_x23) ) (/ (/ (- 2.22_x9 7.27) -0.23_x6) 0.39_x15) ) ) 1.05_x1) )
18 | (*(*#-0.32_x23) (/ (/ (/ (- 1.95_x6 (/ 3.32_x20 (+ 7.89 -16.72) ) ) (* 2.22_x13 -14.09) ) (* (- 0.43_x20 (/ (+ (+
3.43_x6 3.33_x25) 1.30_x7) -0.32_x23) ) (/ (/ (- 2.22_x9 7.27) -0.23_x6) 0.39_x15) ) ) 1.05_x1))
19 | (* (* (+#17.60) -0.32_x23) (/ (/ (/ (- 1.95_x6 (/ 3.32_x20 (+ 7.89 -16.72) ) ) # ) (* (- 0.43_x20 (/ (+ (+ 3.43_x6
3.33_x25) 1.30_x7) -0.32_x23) ) (/ (/ (- 2.22_x9 7.27) -0.23_x6) 0.39_x15) ) ) 1.05_x1) )
20 | (*(*(+(/##)17.60) -0.32_x23) (/ (/ (/ (- 1.95_x6 # ) (* 2.22_x13 -14.09) ) (* (- 0.43_x20 (/ (+ (+ 3.43_x6
3.33_x25) 1.30_x7) -0.32_x23) ) (/ (/ (- 2.22_x9 7.27) -0.23_x6) 0.39_x15) ) ) 1.05_x1) )
21 | (*(*0.11_x15-0.32_x23) (/ (/ (/ (+ -0.60_x6 (+ -0.60_x6 (- # 9.87))) (* -6.23 (+ 19.55 #) ) ) (* (- 1.44_x20 (+
-0.08_x8 0.95_x1) ) (- 0.43_x20 (+ (/ 1.29_x4 -6.66) 19.20) ) ) ) 1.05_x1))
22 | (*(* (+-7.57 #)-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (*
1.91_x20 #)) 1.05_x1))
23 *#(/(/(/ (+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) #) 1.05_x1) )
24 | (¥ (* (+-7.57 (- 0.43_x20 # ) ) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6)
0.39_x15)) #) 1.05_x1) )
25 | (* (* (+-7.57 (- 0.43_x20 # ) ) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6)
0.39_x15)) #) 1.05_x1))
26 | (*(*#-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) # ) 1.05_x1) )
27 | (#(/(/(/ (+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) #) 1.05_x1) )
28 | (* (* (+-7.57 #) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (-
0.43_x20 #)) 1.05_x1))
29 | (*(*(+-7.57 (- 0.43_x20 (/ (- 2.22_x9 #) -0.23_x6) ) ) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12
-12.26) -0.23_x6) 0.39_x15) ) #) 1.05_x1))
30 | (*(*#-032_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (* -6.22 (* (-
1.04_x13 (/ 0.81_x2 1.05_x1) ) 8.24))) 1.05_x1) )
31 | (*(*(+(/0.81_x2 1.05_x1) (- 0.43_x20 #) ) -0.32_x23) #)
32 (*(* (+(/ 0.81_x2 1.05_x1) (- 0.43_x20 #)) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26)
-0.23_x6) 0.39_x15) ) #) 1.05_x1))
33 | (*(*(+-7.57(-0.43_x20 (- 13.46 (/ -9.98 (+ # #))))) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12
-12.26) -0.23_x6) 0.39_x15) ) (* 1.91_x20 (- -13.95 (- 13.46 #)))) 1.05_x1))
34 | (#(/(/(/(+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (* -6.22 #)) 1.05_x1))
35 | (*(* (+(/ 0.81_x2 1.05_x1) # ) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6)
0.39_x15)) (- 1.04_x13 (- 0.35_x12 #))) 1.05_x1) )
36 | (*(*(+(/0.81_x2 1.05_x1) # ) -0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6)
0.39_x15)) (- 1.04_x13 (- 0.35_x12 (/ (- 2.22_x9 7.27) #) ) ) ) 1.05_x1) )
37 | #( (/(/ (+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (- 0.35_x12 (/ (-
2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))
38 | (*(*#-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.35_x12 (/ (- 2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))
39 | (*(*#-032_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.35_x12 (/ # (+ -0.60_x6 1.05_x1))))) 1.05_x1) )
40 | (*(*#-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-

0.35_x12 (/ (- 2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

Table 7.17: OSGP Tower Gender Spleﬁ'ﬁc Most Frequent Schemas — Part 1




7 Final Remarks

Selector ‘ Poly-10 ‘ Pagie-1 ‘ Friedman-2 | Tower

Proportional 496014 | 501168 524916 551336
Gender specific | 617276 | 731684 691742 822984

Table 7.19: OSGP Average Evaluated Solutions

Generation | Schema

41 (* (* #-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.35_x12 (/ (- 2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

42 | (*(*#-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.35_x12 (/ (- 2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

43 | (*#(/(/ (/ (+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (- 0.35_x12 (/ (-
2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

44 | (*#(/ (/ (/ (+-0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (- 0.35_x12 (/ (-
2.22_%9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

45 | (% (* #-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.26) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.35_x12 (/ (- 2.22_x9 7.27) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

46 | (* (*(+(+0.08_x12-12.26) (+ (/ 0.81_x2 1.05_x1) #)) -0.32_x23) (/ # 1.05_x1))

47 | (* (* (+ -7.57 (+ (/ 0.81_x2 1.05_x1) (- 0.43_x20 (/ (+ -0.60_x6 1.05_x1) 1.63_x2))) ) -0.32_x23) (/ (/ (/ (+
-0.60_x6 -0.32_x23) (/ # 0.39_x15) ) (- 1.04_x13 #) ) 1.05_x1))

48 | (*(* #-0.32_x23) (/ (/ (/ (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.22) -0.23_x6) 0.39_x15) ) (- 1.04_x13 (-
0.33_x16 (/ (+2.22_x9 #) (+ -0.60_x6 1.05_x1))))) 1.05_x1))

49 | (*(*(+(/0.81_x2 1.05_x1) (- 0.43_x20 (+ (- 5.90 #) 0.43_x10) ) ) -0.32_x23) (/ # 1.05_x1))

50 | (*(*(+(/0.81_x2 1.05_x1) (- 0.43_x20 (+ # 0.43_x10) ) ) -0.32_x23) (/ # 1.05_x1) )

51 | (*(*(+(/0.81_x2 1.05_x1) (- 0.43_x20 #)) -0.32_x23) (/ (/ / (+ -0.60_x6 -0.32_x23) (/ (/ (+ 0.08_x12 -12.22)
-0.23_x6) 0.39_x15) ) (- 1.04_x13 #)) 1.05_x1) )

52 | (*(*(+(/0.81_x2 1.05_x1) (- 0.43_x20 (+ (- 5.90 (+ 0.08_x14 #)) 0.43_x10) ) ) -0.32_x23) (/ # 1.05_x1))

Table 7.18: OSGP Tower Gender Specific Most Frequent Schemas — Part 2
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7 Final Remarks

’ Replacement rule ‘ Poly-10 | Pagie-1 | Friedman-2 | Tower
f(x)=x 2597004 | 4202342 | 4730560 | 4724672
f(x) = tanh(x) 2289008 | 4499724 | 4757191 | 4769932
f(x) = tanh(2x) | 2492327 | 4668455 | 4173848 | 4986492
f(x) = tanh(3x) | 2406219 | 4729180 | 4693742 | 4943163
f(x) = tanh(4x) 2777475 | 3859863 | 4732257 | 4941368
f(x)=1- V1—x | 2519187 | 4670874 4333620 4510939

(@) Minimum Phenotypic Similarity 90%

’ Replacement rule ‘ Poly-10 | Pagie-1 | Friedman-2 | Tower
f(x)=x 2643261 | 4623542 | 4429457 | 5009276
f(x) = tanh(x) 2166972 | 4502617 | 4218980 | 4904499
f(x) = tanh(2x) 2338860 | 4703514 4780838 4874290
f(x) = tanh(3x) 2655113 | 4756972 4656273 4875607
f(x) = tanh(4x) 2981839 | 4296971 4518030 | 4868244
f(x)=1-V1—x | 1846627 | 3998111 4250781 4655143

(b) Minimum Phenotypic Similarity 95%

Table 7.20: OSGP-S Adaptive Replacement Average Solution Evaluations

Minimum Phenotypic Similarity ‘ Poly-10 | Pagie-1 | Friedman-2 | Tower
90% 3483716 | 4731112 | 5003719 | 5003015
95% 3202283 | 5004201 5004529 | 5003516
(a) Minimum Schema Length = 10
Minimum Phenotypic Similarity ‘ Poly-10 | Pagie-1 | Friedman-2 | Tower
90% 3544254 | 4857343 | 5004209 | 5004219
95% 3766646 | 4779941 5004358 | 5004258

(b) Minimum Schema Length = 25

Table 7.21: OSGP-S Fixed Replacement Average Solution Evaluations
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Glossary of Biological Terms

allele

colonial organism

DNA

effective population size

environment

An allele is a concrete value out of a number of alternate
values of the same gene or the same genetic locus.

A colonial organism could be described as a “collective
entitiy” made up of many individual organisms of the same
species living together, such as ants or bees.

DNA or deoxyribonucleic acid is a macromolecule which
holds the genetic information that guides the development
of biological organisms. Structurally the DNA consists of
two strands of polynucleotides which are in turn made of
nucleotides that can be of four types, depending on their
nitrogen base: cytosine (C), guanine (G), adenine (A) or
thymine (T). The nucleobases can bond with each other ac-
cording to specific rules: A with T and C with G. Nucleotide
sequences representing distinct units of information that
encode for specific functions are called genes.

Geneticist Sewall Wright introduced the concept of effec-
tive population size as “the number of breeding individu-
als in an idealised population that would show the same
amount of dispersion of allele frequencies under random
genetic drift or the same amount of inbreeding as the pop-
ulation under consideration”. Simply put, the effective pop-
ulation size is the size of an ideal population that would
lose heterozygosity at a rate equal to that of the observed
population. Empirically, the effective population size can
be estimated as the number of individuals in a population
who contribute offspring to the next generation.

In the context of GP, by environment we understand the
fitness landscape on which the organisms have to compete
for survival. As such, the environment may change for
example when the training data for the algorithm changes.
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epistasis

evolvability

fitness

gene

gene flow

Glossary of Biological Terms

Epistasis refers to the situation where the effects of genes
are influenced by other genes from different loci on the
chromosome. The fact that genes are context-dependent
through epistatic effects is of particular importance for con-
cepts such as evolvability and genotype-phenoytpe maps
and plays an influential role in the dynamics of evolution.
Adaptability represents the potential of systems, processes,
populations or organisms to adapt. Evolutionary adapt-
ability or evolvability refers to an organism’s capacity to
generate heritable phenotypic variation. In the context of
populations, evolvability refers to a population’s potential
to evolve, to adapt to changing environmental conditions.
( ) ) defines evolvability as the ability of pop-
ulations to produce variants fitter than any yet existing. Al-
tenberg considers evolvability to be an emergent property
of evolutionary systems due to selection. ( )

) define evolvability as the capability of a system to
generate adaptive phenotypic variation and to transmit it
via an evolutionary process.

An organisms’ fitness indicates how well it is adapted to
the environment. In GP, fitness is usually expressed as a
measure of how well the estimated data fits the target data
of the algorithm. For this purpose, normally a correlation
measure (e.g.,Pearson R? coefficient) or an error measure
(e.g., the mean squared error) is used.

When talking about living organisms, a gene is defined as
a molecular unit of heredity. Technically speaking, a gene
is a DNA sequence which encodes information pertaining
to a specific cell function. In the context of genetic pro-
gramming, our working definition of a gene is “a heritable
unit that may influence a trait”. As with their biological
counterparts, GP genes are context-dependent, subject to
epistasis and can be characterized by the same properties
such as robustness and evolvability.

Gene flow represents the transfer of genes due to the move-
ment of individuals between populations, and can be an
important source of genetic variation.
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genetic drift

genetic linkage

genotype

heredity

heterozygosity

ideal population

Glossary of Biological Terms

Genetic or allelic drift is considered to be one of the main
processes in evolution and refers to the variation in allelic
frequencies in a population due to the random sampling
of organisms. The chance element is represented by the
probability that an individual survives and reproduces. The
effects of genetic drift are inversely proportional to allele
frequencies.

Genetic linkage refers to the idea that linked genes that sit-
ting together on the chromosome are likely to be inherited
together. Geneticists can use linkage to find the location of
a gene on a chromosome and can map gene distances by
looking at how often different genes are inherited together.
The genotype can be taken to mean:

a The entire set of genes in an organism.

b A set of allelles that determines the expression of a
particular characteristic or trait.

In this thesis, the first meaning will be favored. In the con-
text of genetic programming all the genotype-altering op-
erations actually operate on the entire collection of genes.
Furthermore, in GP inheritance is in no way limited to par-
ticular structures or genes. Generally speaking, any basic
gene or building block can be inherited.

Heredity is the passing of traits from ancestors to their
descendants.

If both alleles of a diploid organism are the same, the or-
ganism is homozygous at that locus. If they are different,
the organism is heterozygous at that locus .

An idealised population is a population which satisfies a
number of simplifying assumptions. A common model, that
of R.A. Fisher and Sewall Wright assumes ideal populations
to be of constant size, with members that can mate and
reproduce with any other member.
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Lamarckism

locus

macroevolution

macromolecule

microevolution

orthogenesis

Glossary of Biological Terms

Lamarckism or Lamarckian inheritance or soft inheritance
is an idea developed by French biologist Jean-Baptiste
Lamarck (1744-1829) who maintained that organisms can
pass acquired traits to their offspring. Lamarck thought that
during their lifetime individuals lose unnecessary traits and
develop useful ones that can be inherited by their offspring.
Lamarck’s view on evolution is in contradiction with Dar-
win’s theory of natural selection which explains adaptation
as random variation acted on by selective pressure.

In the field of genetics, a locus (plural loci) represents the
specific location of a gene or DNA sequence on the chro-
mosome.

In contrast to microevolution, macroevolution describes
evolution at a bigger scale, studying changes that occur at
or above the level of species.

A macromolecule is a large molecule composed of smaller
subunits called monomers (smaller molecules that bind to
each other to form polymers). DNA is the most important
example of a macromolecule specialized in the encoding of
information.

Microevolution describes evolution at population level and
refers to changes allele frequencies due to mutation, selec-
tion, gene flow and genetic drift.

Orthogenesis is a hypothesis proposed by biologist Wilhelm
Haacke in 1893 and later popularized by German zoologist
Theodor Eimer. The orthogenetic hypothesis claims that
evolution takes place continuously and “in a straight line”,
under the effects of internal and external factors. In other
words it claims that variation is not random but directed
towards fixed goals.
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phenotype

phenotypic plasticity

polymorphism

punctuated equilibria

takeover time

trait

Glossary of Biological Terms

Similarly to the definition of the genotype, the phenotype
can have more than one meaning:

a The concrete appearance of an organism as a result of
the interaction of its genotype and the environment.

b The expression of a particular trait, according to the
individual’s genetic makeup and environment.

In evolutionary search methods, the phenotype of an in-
dividual is given by a numerical value which indicates its
fitness.

Phenotypic plasticity represents an organism'’s ability to
change its phenotype in response to changes in the environ-
ment. According to ( , ), phenotypic plasticity
represents another aspect of robustness, as it enables or-
ganisms to robustly adapt to a changing environment.
Polymorphism represents the presence of different pheno-
types in the same population of a species. Polymorphism is
heritable and controlled by natural selection.

Punctuated equilibria is a biological theory about evolution
which claims that once formed, populations tend to stabilize
and exhibit little evolutionary change, remaining in a state
of evolutionary stasis (as observed in fossil records). The
theory proposes that when subsequent significant evolu-
tionary change occurs, it is generally restricted to branching
speciation events.

The time required by selection to fill up the population with
copies of the best individual in the initial generation.

A trait is a distinct variant of an organism’s phenotypic
character, that may be inherited, be environmentally de-
termined or be a combination of the two. An example of a
phenotypic trait is hair color: there are underlying genes
that control the hair color, but the actual hair color, the
part we see, is the phenotype.
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Glossary of Computational Terms

big O notation

computational class NP

computational class P

feasible solution

Markov’s inequality

In mathematics, big O notation describes the limiting be-
havior of functions (when the argument tends to oo or to
some value). The letter “O” signifies the order of the func-
tion, ignoring constants or lower order terms. In computer
science, big O notation is used to classify algorithms by their
resource usage (time or memory) as a function of input size,
specifically describing the worst-case scenario.

NP refers to non-deterministic polynomial time. The com-
putational class NP can be defined as:

(@) The class of problems solvable by a non-
deterministic Turing machine in polynomial
time

(b) The class of problems verifiable by a deterministic
Turing machine in polynomial time

Definitions (a) and (b) are equivalent. The class NP contains
all the problems in P since one can verify any instance of
the problem by solving it.

The class of problems that can be solved by a deterministic
Turing machine in polynomial time. ( , ) asserts
that computational problems can be feasibly computed if
they belong to complexity class P.

In mathematics and computer science, a feasible or candidate
solution for a given problem is a solution that satisfies all
the constraints..

Markov’s inequality offers information about the proba-
bility that the value of random variable X is “far” from its
expectation. Theorem: For a non-negative random vari-
able X : Q — R, where X(s) > 0 for all s € Q, for any

positive real number a > 0, P(X > a) < @
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Glossary of Computational Terms

NP-complete A decision problem is NP-complete when it is both in NP
and NP-hard.
NP-hard NP-hard (Non-deterministic Polynomial-time hard) is a

class of problems that are “at least as hard as the hardest
problems in NP”. A problem H is NP-hard when every
problem L in NP can be reduced in polynomial time to H.

polynomial time An algorithm is said to be of polynomial time if the amount
of time taken to run as a function of the input size is upper
bounded by a polynomial expression, i.e., T(n) = O(n¥) for
some constant k.

pseudo-polynomial time An algorithm is said to be running in pseudo-polynomial
time if it is polynomial in the numeric value of the input,
but it is exponential in the length of the input - the number
of bits required to represent it. For example, an algorithm
which checks if a number n is prime by testing whether
no number in {2, 3, ..., y/n} divides n evenly can take up to
y/n — 1 divisions which is sublinear in the value of n but
exponential in the size of n (which is about log(n)).

PTAS A polynomial-time approximation scheme (PTAS) is a type
of approximation algorithm for optimization problems
(usually used to find approximate solutions to NP-hard
problems) .

Turing machine Hypothetical computation device that can manipulate sym-
bols stored on an unbounded strip of tape, according to a
table of rules. The Turing machine can read or write one
symbol at a time and store its state in a special state register.
Turing machines can be used to simulate the logic of any
computer algorithm and to describe their behavior.

Turing machine (determin- A Turing machine whose set of rules prescribes at most one

istic) action to be performed for any given situation.
Turing machine (non- A Turing machine whose set of rules prescribes more than
deterministic) one action for a given situation. This means that given a

branching point, the choice made is non-deterministic.
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Glossary of Computational Terms

Turing machine (proba- A Turing machine which chooses randomly between the

bilistic) available state transitions at each point, according to some
probability distribution. When the transition probabilities
are equal, the probabilistic Turing machine can also be
described as a deterministic Turing machine with an added
tape full of random bits called the random tape.
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